short communication

A Novel Approach to Ameliorate and Provide a Protective Role in Neurodegenerative Diseases by A Novel Peptide, TFP5/TP5, Derived from Cdk5 Activator P35

Harish C. Pant

National Institutes of Health, NINDS, Bethesda, USA

*Corresponding author: Harish C. Pant, National Institutes of Health, NINDS, Bethesda, MD 20892, USA. Tel: 301-402-2124; Email:

Received Date: 14 March, 2018; Accepted Date: 27 March, 2018; Published Date: 2 April, 2018

Citation: Pant HC (2018) A Novel Approach to Ameliorate and Provide a Protective Role in Neurodegenerative Diseases by A Novel Peptide, TFP5/TP5, Derived from Cdk5 Activator P35. Res Adv Brain Disord Ther   RABDT-101. DOI: 10.29011/ RABDT-101. 100001

1.       Communication

The Etiology of AD and other age-related neurodegenerative disorders is complex, involving as it does, many multivariate interacting pathways among which are aging itself, inflammation, mitochondrial ROS disorders, hyperactive kinases such as Cdk5, mutations in Amyloid Precursor Protein (APP), secretases and tau processing. The identification of gene mutations responsible for neurodegeneration in humans has led to development of a variety of transgenic mouse models, each expressing a neurodegenerative phenotype such as AD, PD or ALS. For AD, for example, an extensive model mouse literature has accumulated validating one or another pathway as specifically responsible for the behavioral and pathological disease phenotype (e.g. Elder et al, 2010, Landreth et al, 2012). And, in some instances, these mutant mice have been claimed successfully “cured” or “rescued” to some extent by agents or manipulations that restore the damaged pathways. These are touted as potential therapeutic candidates.

Our current research program evolved after years of basic science studies of neuronal cytoskeletal protein phosphorylation during nervous system development and function, a brief summary of our accomplishments over the years should illustrate how we arrived at our present program. We found that neurofilaments, the major axonal proteins, are selectively phosphorylated in axons [1-4]. Using a neurofilament assay, our laboratory identified Cyclin Dependent Kinase 5 (Cdk5), together with its activator, P35, as one of the principal kinases regulating neuronal topographic phosphorylation biology and physiology. The multifunctional kinase, Cdk5, was initially characterized as a tau protein kinase, a proline directed kinase [5] or a neuronal cdc-2 like kinase in our lab, presently known as Cdk5. We as well as other laboratories have shown that Cdk5 is a tightly regulated multifunctional kinase essential for neuronal development, neurogenesis, migration, synaptic activity, memory / learning and survival, phosphorylating a large number of target protein substrates [6-11].

Cdk5 when deregulated by neuronal stress (e.g., glutamate excitotoxicity, Ab toxicity, Reactive Oxygen Species, ROS, and others), Cdk5 activity is deregulated and hyperactivated as a stable complex with p25 (a truncated fragment of p35, a major activator of Cdk5) and induces Perikaryal hyper phosphorylated tau, Neuro filament Proteins (NF-M/H), and other neuronal intermediate filament proteins as seen in AD, PD and ALS [12,13], thus Cdk5/p25 becomes a pathological target. This relationship to AD and other pathologies has been documented in studies of AD brains showing high levels of p25, reduced p35/p25 ratios and Cdk5 hyperactivity [14,15], Furthermore, we have confirmed that Cdk5/p25 induces tau and NFP aberrant hyperphosphorylation along with cell death in cultured cortical neurons [15,16]. Consistent with this hypothesis is a p25-overexpressing model mouse, developed by Dr. Tsai’s lab and recently our own lab, that displays the typical AD Abnormal Phenotype [17]. Accordingly, hyperactive Cdk5/p25 has been identified as a possible therapeutic target for neurodegeneration. Recently, a more compelling role of hyperactive Cdk5/p25 as a significant factor in the etiology of AD comes from studies of cell cultures in vitro [16] and model mice in vivo as documented in three publications [18,19 and 20]. Since the binding of p25, the proteolytic fragment of p35, induces deregulated and hyperactivated Cdk5, we asked the question what is the role of smaller truncated peptides of p25 in the regulation of Cdk5 activity?  This has led us to the isolation and identification of peptides derived from p35 (CIP , cdk5 inhibitory peptide and P5, a 24 amino acid peptide derived from p25) that specifically inhibited the hyperactive Cdk5/p25 without affecting the physiologically normal Cdk5/p35 [16] Consistent with the model, we succeeded in showing that pathological and behavioral phenotypes in AD model mice (over-expressing p25 transgenic) and the 5XFAD transgenic can be alleviated after treatment with CIP and TFP5, our in vivo therapeutic reagents.

We viewed these peptides as potential therapeutic candidates for rescuing neurodegenerative disorders in model mice sharing the hyperactivated Cdk5-induced phenotypes. Currently, most therapeutic approaches targeting the deregulated Cdk5/p25 complex and other kinases in neurodegenerative disorders and cancer have focused primarily on drugs like roscovitine, ATP analog, that inhibit Cdk5 activity by interfering with the ATP binding domain of the kinase. Most of these drugs, however, lack sufficient specificity, since all kinases including cell cycle Cdks including Cdk5, are vulnerable at the ATP binding site targeted by these drugs.  In order to make P5, small 24 amino acid peptides an in vivo therapeutic reagent, we coupled the C-terminus of P5 to a Protein Transduction Domain Peptide (PTD -TAT) and its N-terminus to FITC, Fluorescent Tag, Fluorescein Isothiocynate. This reagent that we call TFP5 was shown to pass the blood brain barrier and to rescue the AD phenotype in AD model mice.  Hence, next, we conducted the following studies:

Effects of TFP5 on expression of AD phenotypes in a p25Tg over-expressing and double transgenic (5XFADTg) AD model mice, mechanisms of specificity of TFP5 action and effect of TFP5 on ALS model mice (in preparation).

At the forefront of the AD literature are those model mice expressing the two landmark pathologies seen at human autopsy, hyper phosphorylated intracellular cytoskeletal tangles (tau, neurofilaments) and extracellular amyloid plaques. One of the many hypotheses invoked to explain these phenotypes is the role of deregulated, hyperactive Cdk5/p25, reported at elevated levels in AD brains at autopsy [14]. From these and other related studies in vivo and in vitro, a hypothesis has been proposed to account for the deregulation of Cdk5, and its induction of tau and amyloid pathology leading to the chronically long descent into the abyss of dementia.  A most persuasive validation of the hypothesis is overexpression of p25 in a mouse model that induces Cdk5 hyperactivity, AD pathology, behavioral defects and early mortality [17]. Elevated levels of p25 in post-mortem AD brains, however, though supported by the above (and other reports), was not confirmed in a few laboratories. These differences had been, in part, attributed to tissue sampling conditions and preparation protocols. Nevertheless, the weight of evidence from our lab and others is consistent with the hypothesis; hyperactive Cdk5/p25 has been identified as a target in neurodegeneration and many compounds that inhibit this kinase have been tested in AD model mice [19]. Thus, these studies demonstrate first time, the peptide TFP5/TP5 ameliorates familial (5XFAD) and sporadic p25Tg phenotypes in both AD model mice.

2.       Acknowledgements
Author will like to thank all the members of the laboratory and collaborators current and past for their help and support to accomplishment this work.

1.       Link WT, Dosemeci A, Floyd CC, Pant HC (1993) Bovine neuro filament-enriched preparations contain kinase activity similar to casein kinase I-neuro filament phosphorylation by casein kinase I (CKI). Neurosci Lett 151: 89-93.

2.       Pant AC, Veeranna, Pant HC, Amin N (1997) Phosphorylation of human high molecular weight neurofilament protein (hNF-H) by neuronal cyclin-dependent kinase 5 (cdk5). Brain Res 765: 259-66.

3.       Pant HC, Veeranna (1995) Neurofilament phosphorylation. Biochem Cell Biol 73: 575-592.

4.       Pant HC, Veeranna, Grant P (2000) Regulation of axonal neurofilament phosphorylation. Curr Top Cell Regul 36: 133-150.

5.       Lew J, Wang JH (1995) Neuronal cdc2-like kinase. Trends Biochem Sci 20: 33-37.

6.       Chae T, Kwon YT, Bronson R, Dikkes P, Li E, et al. (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18: 29-42.

7.       Kesavapany S, Li BS, Amin N, Zheng YL, Grant P, Pant HC (2004) Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim Biophys Acta 1697: 143-53.

8.       Li BS, Zhang L, Takahashi S, Ma W, Jaffe H, et al. (2002) Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3. Embo J 21: 324-333

9.       Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna, et al. (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci U S A 93: 11173-11178.

10.    Tanaka T, Veeranna, Ohshima T, Rajan P, Amin ND, et al. (2001) Neuronal cyclin-dependent kinase 5 activity is critical for survival. J Neurosci 21: 550-558.

11.    Dhavan R, Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2: 749-759.

12.    Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, et al. (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405: 360-364.

13.    Kesavapany S, Li BS, Pant HC (2003) Cyclin-dependent kinase 5 in neurofilament function and regulation. Neurosignals 12: 252-264.

14.    Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, et al. (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402: 615-22.

15.    Zheng YL, Li BS, Amin ND, Albers W, Pant HC (2002) A peptide derived from cyclin-dependent kinase activator (p35) specifically inhibits Cdk5 activity and phosphorylation of tau protein in transfected cells. Eur J Biochem 269: 4427-4434.

16.    Zheng Y, Kesavapany S, Gravell M, Hamilton RS, Schubert M, et al. (2005) A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. Embo J 24: 209-220.

17.    Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40: 471-483.

18.     Varsha Shukla, Ya-Li Zheng, Santosh K Mishra, Niranjana D Amin, Joseph Steiner, et al. (2013) A truncated peptide from p35, a Cdk5 activator, prevents Alzheimer's disease phenotypes in model mice. FASEB J 27: 174-186.

19.     Shukla V, Seo J, Binukumar BK, Amin ND, Reddy P, et al. (2017) TFP5, a Peptide Inhibitor of Aberrant and Hyperactive Cdk5/p25, Attenuates Pathological Phenotypes and Restores Synaptic Function in CK-p25Tg Mice. J Alzheimers Dis 56: 335-349.

20.    Yong He, Suyue Pan, Miaojing Xu, Rongni He, Wei Huang, et al. (2017) Adeno-associated virus 9–mediated Cdk5 inhibitory peptide reverses pathologic changes and behavioral deficits in the Alzheimer’s disease mouse model. FASEB J 31: 3383-3392.

© by the Authors & Gavin Publishers. This is an Open Access Journal Article Published Under Attribution-Share Alike CC BY-SA: Creative Commons Attribution-Share Alike 4.0 International License. With this license, readers can share, distribute, download, even commercially, as long as the original source is properly cited. Read More.

Research Advances in Brain Disorders and Therapy

pola slot gacor zeusslot gacor mudah jackpotslot sugar rushslot mahjong thailandmahjong scatter naga hitamslot mahjong ways 2slot pg soft gacorprediksi judi bola sbobetparlay sbobet euro 2024rtp pg softbocoran rtp dan pola gacoragen bola euro terpercayatrik slot mahjong ways 2trik menaklukkan slot mahjong waysbandar bola terpercayaslot gacor gampang menangslot olympus 1000jam gacor pragmaticslot gacor mudah maxwinagen judi bola resmimahjong ways pola jitu maxwinpola gacor starlight princessslot server kambojarahasia scatter hitam mahjong waysturbo spin slot mahjongrtp slot candy villagepola gacor mahjong wins terbaruslot server luar terbarurtp slot olympusslot mahjong waysrtp sweet bonanzaagen sbobet euro 2024judi bola parlay sbobetslot gates of olympus jepe maxwinrtp slot gacorslot starlight christmas pragmatic