The Role of Protein Electrophoresis in Differential Diagnosis of Renal Disorders
1Department of Clinical
Pathology, Far Eastern Memorial Hospital, New Taipei, Taiwan
2Division of
Nephrology and Clinical Toxicology, Chang Gung Memorial Hospital, Lin-Kou
Medical Center, Taoyuan, Taiwan
3School of Medical
Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
4Graduate School of
Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
5Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
*Corresponding author: Fang-Yeh Chu, Department
of Clinical Pathology, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S.
Road, Banqiao, New Taipei City, Taiwan. Tel: +886277282111; Fax: +886277281003;
Email: jacpha@mail.femh.org.tw
Received Date: 26 June, 2018; Accepted Date: 13 July, 2018; Published Date: 19
July, 2018
Citation: Lee SJ, Lin IH, Yen TH, Chu FY (2018) The Role of Protein Electrophoresis in Differential Diagnosis of Renal Disorders. J Urol Ren Dis 2018: 1101. DOI: 10.29011/2575-7903.001101
1. Abstract
With the advance of laboratory technologies, protein electrophoresis has been a commonly available screening and monitoring tool for certain diseases in clinical practice. As the pattern of protein electrophoresis varies in different situations involved with renal disorders or complications, it helps the clinical pathologist and laboratory technician for intepretation and differential diagnosis of certain renal disorders. Here, we briefly introduced the specific characteristics of protein electrophoresis in various conditions involved with renal disorders and combined our own results and experiencesto outlook the clinical application of protein electrophoresisin differential diagnosis of renal disorders.
Keywords: Protein Electrophoresis, Renal disorders
1. Introduction
Protein Electrophoresis (PE), developed by Arne Tiselius
in the early-mid 20th century, is a laboratory technique for
protein separation [1]. Nowadays, PE has been a commonly
available screening and monitoring tool for
certain diseases in clinical practice[2-6]. The main purpose of PE is to identify whether there
is monoclonal gammopathy from other differential diagnosis of serum
protein-related disorders [6]. Due to the development of high resolution and
capillary electrophoresis[7], the
results of PE have been easier to be interpreted by the clinical pathologistand
laboratory technician in comparison with the results of agarose gel electrophoresis in conventional.
Though PE helps in evaluating a variety of clinical situations at the initial
stage, sometimes the electrophoretic results are confusing and needed to be
interpreted carefully.The pattern of PE in the serum could be primarily divided
into five components, including albumin, alpha-1, alpha-2, beta-1/beta-2, and
gamma globulins, on the basis of their electrophoretic mobilities (Figure 1).
Of these, alpha-1 fraction is mainly composed of antichymotrypsin, antitrypsin and acid glycoprotein; alpha-2-macroglobulin and haptoglobin contribute to alpha-2 fraction; beta fraction is mainly composed of beta-lipoprotein, complement components, transferrin, antithrombin III and fibrinogen; while gamma fraction is manifestly composed ofimmunoglobulins (Igs; such asIgA, IgD, IgE, IgG and IgM) and C-reactive protein. The pattern of PE varies in different conditions involved with renal disorders. Here, the electrophoretic characteristics of PE in various renal disorders in the serum and urine would be discussed in the following sections.
2. Protein Electrophoresisin Light Chain Disease and Light Chain Myeloma
Light chain diseasewas commonly caused by amyloidosis and light chain myeloma. Of which, light chain myeloma belongs to one subtype of myeloma, featured by plasma cell proliferation that produces a monoclonal immunoglobulinin the bone marrow [8,9]. Therefore, serum PE with immunofixation or immunosubtraction is indicated when myeloma was suspected.In light chaindisease, only monoclonal light chain of immunoglobulin is overproduced with lack of heavy chain expression. According to the literature review, about 15-20% of myeloma expressed exclusively monoclonal light chain in the serum or urine [9-11].Patients with light chain disease could present with renal insufficiency, proteinuria and even nephrotic syndrome. It was also shown that light chain disease contributed to approximately 20-60% of renal injury in myeloma, implying that light chain filtration could be nephrotoxic in the kidney [9,11-13].Free light chain was previously described as Bence-Jones protein in the urine [14].Thus, detection of Bence-Jones protein used to play an important role in the investigation of light chain disease, especially when monoclonal component was undetectable in serum PE [15, 16].To date, light chain immunoassay and urine PE with immunofixation were commonly performed for myeloma diagnosis in hematologic laboratories [17,18].Capillary electrophoresiswith urine specimenshas not been routinely practiced in clinical yet, as certain organic acids and metablolites in the urine may interfere with the technique and pretreatment of urine samples is needed. Two kinds of light chains have been identified, kappa and lambda. There was no significant difference in distribution of kappa and lambda light chain myeloma [10, 19].In one study from 2005 to 2012, 96 cases of light chain myeloma were diagnosed from 459 mutiple myeloma patients. Among these 96 patients, 42 were kappa type and 54 were lambda type [10]. In another investigation, 17 kappa and 20 lambda light chain myeloma cases were enrolled [19].Similar to our experience, a total of 28 cases were diagnosed as light chain disease with the evaluation of urine PE with immunofixation and other evidence of histological pathology from 2014 to 2018 in our institution. Of these, 13 patients were diagnosed as kappa light chain diseaseand the remaining 15 patients belonged to lambda light chain disease. The serum PE with immunosubtraction and urine PE with immunofixation in case of free lambda light chain myeloma were shown in (Figure 2).
It was noticeable that there were two small peaks could be subtracted by anti-lambda light chain antibody, implying the possibility of polymerization of globular proteins. In such situations, specimens could be treated by beta-mercaptoethanol, a reducing agent that cleaves the disulfide bonds, and therefore prevent the protein polymerization. Actually, pretreatment of beta-mercaptoethanol has been commonly utilized to help identification of monoclonal proteins in serum PE with capillary electrophoresis techniques [20].Moreover, it was reported that overexpression and deposition of lambda light chain is often associated with light chain amyloidosis [12,21]. Importantly, approximately 10% myeloma cases presented panhypogammaglobulinemia with significant Bence-Jones proteinuria [6,9]. Accordingly, urine PE with immunnnofixation is always recommended in patients who have panhypogammaglobulinemia in serum PE.
3. Protein ElectrophoresisinProtein-Losing Nephropathy and Nephrotic Syndrome
Nephrotic syndrome is presented
with heavy proteinuria, hypoalbuminemia, peripheral edema and hyperlipidemia [22]. The urinary protein loss in nephrotic syndrome could be greater than 3
g per day, or more than 3,000 mg per g creatinine in protein-to-creatinine
ratio in the spot urine specimen [23]. In serum
PE, the
pattern of protein-losing nephropathy and nephrotic syndrome is characterized
by the increase of alpha-2 fraction and the decrease of albumin and gamma
globulins.However, the
diagnostic value of PE on a routine basis reamins controversial in nephrotic
syndrome, because serological examinations were seldom abnormal without
clinical suspicion [24]. Rarely,
bisalbuminemia could be observed in serum or urine PE in nephrotic syndrome[25-27] with an estimated incidence of 0.02-0.033%[27].Bisalbuminemia could be congenital or inherited. And several situations
such as pancreatic psuedocyst or beta-lactam use may contribute to acquired
bisalbuminemia [27-29], leading to the presence of double peaks
in PE. It was reported that there was a better performance of capillary PE in
albumin separation than PE with agarose gel, making bisalbuminemia detection
easier [30]. However, the underlying
mechanism of the association of bisalbuminemia in nephrotic syndrome is still
unknown.In our experience, serum
PE with capillary electrophoresistechnique and urine PE with agarose gel helped to diagnose
a case of nephrotic syndrome with bisalbuminemia, which were shown in (Figure 3).
4. Interpretation of Protein Electrophoresis in Some Complicated Conditions
For patients who had multiple
comorbidities, the pattern PE could be complicated, leading to difficulties for
the clinical pathologist and
laboratory technician to intepret. Here we presented some cases with the
electrophoretic characteristics of PE that were somewhat complexed. Case
1: A 57-year-old female who was healthy before presented with frothy urine for at
least 2 months. Hyperlipidemia and heavy proteinuria were found on health
examination. Further investigation accidentally revealed monoclonal gammopathy,
IgG lambda, in the serum protein electrophoresis. Increased alpha-2 region and
reduced albumin level were also detected, suggestive of protein loss pattern(Figure
4).
Besides, primary long bone imaging studies revealed no
osteolytic lesions, and serum creatinine (0.57mg/dL) and IgG (1.15g/dL) levels
were within the referenced normal range. Mild anemia with severe microcytosis
(hemoglobin: 11.0g/dL; mean corpuscular volume: 62.0 femtoliter) was found on Complete
Blood Count (CBC) analysis. The patient was then referred to hematologist for
further management. Biopsy of the kidney and bone marrow was suggested but the
patient hesitated. Heavy proteinuria with Monoclonal Gammopathy Of Undetermined
Significance (MGUS) was impressed and close observation was kept.Case 2: A
97-year-old male patient who was healthy before presented with intermittent
fever and generalized malaise for 2 weeks and was thus brought to our emergency
room for further assessment. The CBC analysis revealed marked leukocytosis with
predominant lymphocytosis, mild normocytic anemia and thrombocytopenia. Pyuria
and bacteriuria were also found on urinalysis. Besides, rouleaux formation of
red cells was observed on peripheral blood smear and serum albumin and globulin
levels were measured to be 2.6 and 7.9 g/dL, respectively. Serum IgG, IgA and
IgM concentrations were estimated to be 2.58, 0.28 and 2.59 g/dL, respectively.
The serum PE with immunosubtraction revealed a monoclonal peak over beta-gamma
region that could be subtracted by anti-IgM and anti-lambda antibodies.
Additionaly, one broad peak over gamma region was subtracted by anti-IgG
antibody, and partially subtracted by both anti-kappa and anti-lambda
antibodies, implying the possiblility of chronic inflammation (Figure
5).
The marrow blood smear showed predominant lymphocytes and lymphoplasmacytoid cells. The flow cytometry of bone marrow revealed strong expression of B lymphoid cells (CD20/CD19/surface lambda light chain) with weakly positivity for CD38 and negativity for CD138. The overall picture was compatible with Waldenströmmacroglobulinemia[31,32].Considering the extremely old age of this patient, conservative management was given.
5. Conclusions
As more commonly available with advanced technique in laboratories, PE has been used to help diagnostic establishment in specific disorders as well as monitoring the disease progression. As the pattern of PE varies in different situations involved with renal disorders or complications, the electrophoretic characteristics of PE help the clinical pathologist and laboratory technician for intepretation and differential diagnosis of certain renal disorders.
6. Conflict of Interest
None
7. Author Contributions
Shu-Jene Lee and I-Hsin
Lin contributed as co-first authors. Fang-Yeh Chu contributed as corresponding
author. The manuscript has been read and approved by allauthors.
Figure 1: The referenced
normal pattern in serum protein electrophoresis, including albumin, alpha-1,
alpha-2, beta-1/beta-2, and gamma globulins. The capillary
electrophoresis was performed by SebiaCapillarys 2 Flex Piercing systems.
Figure 2: The serum protein electrophoresis with
immunosubtraction(A) and urine
protein electrophoresis with immunofixation (B) in
an 81-year-old female who was histopathologically diagnosed as free lambda light
chain myeloma. In the serum protein electrophoresis with
immunosubtraction, the restricted peak could only be subtracted by
anti-lambda light chain antibody. The urine protein electrophoresis with immunofixation also revealed
monoclonal gammopathy of free lambda
light chain. The serum protein electrophoresis with immunosubtraction was performed by
SebiaCapillarys 2 Flex Piercing systems. The urine protein electrophoresis with immunofixation was
performed by Helena SPIFE 3000 Electrophoresis Analyzer.
(A)
(B)
Figure
3:Bisalbuminemia in nephrotic syndrome. A 70-year-old male who had
stage 4 Chronic Kidney Disease (CKD) presented with progressive leg edema,
hypoalbuminemia and heavy proteinuria. Nephrotic syndrome with early stage of
focal segmental glomerulosclerosis was diagnosed histopathologically. The serum
protein electrophoresis revealed increased alpha-2 region and decreased of
albumin and gamma globulins, compatible with the pattern of protein loss (A).Bisalbuminemia was also found in
serum and urine protein electrophoresis. It was noticeable that the double
peaks of albumin could be identified easier by capillary electrophoresis using
serum specimen (A) than agarose gel
electrophoresis using urine specimen (B).
The serum protein electrophoresis was performed by SebiaCapillarys 2 Flex
Piercing systems. The urine
protein electrophoresis was performed by Helena SPIFE 3000
Electrophoresis Analyzer.
Figure
4: Heavy proteinuria accompanied with monoclonal gammopathy of
undetermined significance. A 57-year-old female who was healthy before was
found to have hyperlipidemia and heavy proteinuria on health examination.
Further investigation accidentally revealed monoclonal gammopathy, IgG lambda,
in the serum protein electrophoresis. Increased alpha-2 region and reduced
albumin level were also detected, suggestive of protein loss pattern. The serum
protein electrophoresis with
immunosubtraction was performed by SebiaCapillarys 2 Flex Piercing
systems.
Figure
5: The serum protein
electrophoresis with immunosubtraction in a 97-year-old male who was suspected to have Waldenströmmacroglobulinemia with concurrent pyuria and bacteriuria.
The monoclonal peak over beta-gamma region could be subtracted by anti-IgM and
anti-lambda antibodies. The polyclonal peak over gamma region was subtracted by
anti-IgG antibody, and was partially subtracted by both anti-kappa and
anti-lambda antibodies. This implied the possibility of chronic inflammation. The serum
protein electrophoresis with
immunosubtraction was performed by SebiaCapillarys 2 Flex Piercing
systems.
14.
Jones HB (1847) Papers on chemical pathology, lecture
III. Lancet11:88-92.
16.
Beetham R (2000) Detection of Bence-Jones protein in
practice. Ann Clin Biochem 37:563-570.
22.
Harrison's
Principles of Internal Medicine, 19th
Edition (2015) Chapter 338:Nephrotic syndrome.
23.
Hull RP, Goldsmith DJ (2008) Nephrotic syndrome in adults.
BMJ336:1185-1189.
28.
Andre P.
Garre M, Youinou P, Saleun JP (1977)
Les bisalbuminemies.Trois étiologies: Mutation héréditaire, antibiothérapie, pseudokyste du pancréas.
Nouv Presse Med6:4123-4124.
29.
Bachmeyer C,
Grateau G, Dhote R, Dauchy F (1996)
Une autre électrophorèse insolite. Revue Médecine Interne17:5.