Pretreatment PSMA PET in Prostate Cancer Patients without Metastases by Conventional Imaging Changes Primary Stage and Treatment: A Systematic Review and Meta-Analysis
by Manuela Andrea Hoffmann1,2, Cigdem Soydal3, Irene Virgolini4, Murat Tuncel5, Kalevi Kairemo6, Daniel S. Kapp7, Finn Edler von Eyben8*
1Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
2Institute or Preventive Medicine of the German Armed Forces, Andernach, Germany
3Department of Nuclear Medicine, University of Ankara, Turkey
4Department of Nuclear Medicine, University Hospital Innsbruck, Innsbruck, Austria
5Department of Nuclear Medicine, Hacettepe University, Ankara, Turkey
6Docrates Cancer Center, Helsinki, Finland
7Department of Radiation Oncology, Stanford University, Stanford, California, USA
8Center for Tobacco Control Research, Odense, Denmark
*Corresponding author: Finn Edler von Eyben, Center for Tobacco Control Research, Odense, Denmark
Received Date: 30 January 2025
Accepted Date: 05 Feberuary 2025
Published Date: 07 February 2025
Citation: Hoffmann MA, Soydal C, Virgolini I, Tuncel M, Kairemo K, et al. (2025) Pretreatment PSMA PET in Prostate Cancer Patients without Metastases by Conventional Imaging Changes Primary Stage and Treatment: A Systematic Review and Meta-Analysis. J Surg 10: 11247 https://doi.org/10.29011/2575-9760.011247
Abstract
Background: PSMA PET is more sensitive than conventional imaging in patients with Prostate Cancer (PCa) but in patients without metastases by conventional imaging, the change of pretreatment staging and change of treatment is rather limited documented.
Methods: A systematic review and meta-analysis studied publications of patients with PCa localized by conventional imaging for the impact by pretreatment PSMA PET, published between 2016 and January 2025 (INPLASY 2024311004). The team searched for publications in Pubmed, Google Scholar, and reference lists. Forest plots summarized changes of the primary stage and treatment.
Results: 116 publications reported preoperative PSMA PET was used in 19,717 patients with PCa. 131 (1%) patients had low-risk, 5,895 (40%) had intermediate-risk, and 7,247 (59%) had high-risk PCa. PSMA PET downstaged 19% of the patients and upstaged 22%. For 27%, PSMA PET changed the primary treatment.
Conclusion: For a quarter of high-risk patients, pretreatment PSMA PET changed the stage and the primary treatment relative to conventional imaging.
Keywords: Prostate Neoplasms; Prostate Specific Membrane Antigen; Positron Emission Tomography; Staging; Treatment
Introduction
Traditional management of patients with Prostate Cancer (PCa) start with staging with conventional imaging such as ultrasound, CT, and bone scans and a systematic 12 needle diagnostic biopsy. For patients with localized cancer by conventional imaging, primary treatment with a curative intention included Radical Prostatectomy (RP) or External Beam Radiotherapy (EBRT), brachytherapy, or both. After RP, most patients have a fall of PSA to undetectable values, but it is a clinical challenge that a quarter of the responding patients relapse (Biochemical Recurrence (BCR)) [1]. Further, other patients had persisting measurable Prostate Specific Antigen (PSA). Half of the patients who died of PCa initially did not have metastases diagnosed by conventional staging [2]. It was hoped that PSMA PET meets the challenge. In patients with High-Risk PCa (HRPC), pretreatment [68Ga]Ga-PSMA-PET/CT diagnosed metastases better than conventional imaging [3], and some countries recommended that HRPC patients were staged with pretreatment PSMA PET [4]. The Federal Drug Administration of the United States of America (FDA) approved [68Ga]Ga PSMA [3], [18F]F-DCF Pyl PSMA [5], and [18F]F-rh-PSMA 7[6]. Today, half of HRPCa patients are staged with pretreatment PSMA PET [7], and the rate of the pretreatment staging increases.
However, oncologists and international guidelines disagreed on whether changes in the stage diagnosed with pretreatment PSMA PET needed to change the primary treatment [8-11]. Our Systematic Review and Meta-Analysis (SR and MA) aimed to summarize pretreatment PSMA PET for impact on the primary staging and treatment.
Methods
Publications
In August 2024 to January 2025, we undertook a SR according to the Preferred Reporting Items For Systematic Analysis (PRISMA) guidelines [12]. The Pubmed search used the search words ((cohorts) AND (prostate adenocarcinoma OR prostate cancer OR prostate malignancy OR prostate neoplasms) AND (diagnosis OR preoperative OR staging) AND (prostate specific membrane antigen OR PSMA) AND (18Fluoride OR 18FOR 68Gallium OR 68Ga) AND (positron emission tomography OR PET) NOT (abstracts OR case reports OR editorials OR proceedings OR number of patient less than 20 OR publications published before 2016 OR reviews) NOT (biochemical recurrence OR relapse OR restaging)). We searched for publications in Google Scholar and in reference lists of original research publications and reviews. The SR included original research publications reported in English between 2016 and January 2025 including at least 20 patients with localized PCa who had undergone pretreatment PSMA PET. The SR excluded publications that only reported patients with Low-Risk (LRPC) or Intermediate-Risk (IRPC) and Lymph Node Metastases (LNM).
The SR was registered in the INPLASY register (2024311004).
Definitions
PCa histology was redefined using the grading of the International Society of Urologic Pathology 2019 (ISUP) [13]. Prostatic lesions with the highest ISUP grade were defined as dominant intraprostatic lesions (DIL). It is the most common site of local failure after radiation therapy for local PCa [14]. Risk groups were defined according to the D’Amico classification [15]. Multiparametric MRI (mpMRI) was defined as the combination of T2-weighted imaging, diffusion-weighted imaging, and dynamic contrast-enhanced imaging. Prostate Imaging Reporting and DataSystem (PI-RADS) 4-5, defined as positive mpMRI, had a higher sensitivity and negative predictive value than PI-RADS 1-3, defined as negative or intermediate mpMRI [16].
Lesions diagnosed with conventional imaging in the prostate, lymph nodes, and bones were defined as cT1, cN1, and cM1, respectively. Positive sites on PSMA PET in the prostate, lymph nodes, and bones were defined as miT1, miN1, and miM1, respectively [17].
Activity of the pretreatment PSMA PET was defined as the activity of the PET tracer following intravenous injection. Uptake time of the PET tracer was defined as the interval between injection of the tracer and reading of the uptake. A site was defined as positive, if it had a higher uptake than the liver. The Prostate Cancer Molecular Imaging Standardized Evaluation Framework Including Response Evaluation second version (PROMISE v2) defined how best to perform and report PSMA PET [18].
Statistical Analyses
The findings were registered in an Excel database and transferred to STATA. Rates of findings were summarized in Forest plots by the method by Nyaga [19]. All statistical analyses were carried out in STATA version 14 with updates (Stata Corp., College Station, TX, USA). A p value <0.05 indicated statistical significance.
Results
Pretreatment PSMA PET
Figure 1 shows the selection of publications. (Tables 1A and 1B) summarize findings in 116 original research publications [3,5,20153]. They reported 19,717 patients. 105 publications reported both IRPC and HRPC patients whereas 11 studies only reported HRPC patients. 131 (1%) patients had LRPC, 5,895 (40%) had IRPC, and 7,247 (59%) patients had HRPC. Meijer [94] and Ingvar [60] found that HRPC patients had more true-positive metastatic sites than IRPC patients. Tables 2A and 2B show PSMA PET methods. Most publications used [68Ga]-Ga-PSMA PET, and some used [18F]-F-PSMA PET. We based the diagnostic performance of pretreatment PSMA PET on publications that used ePLND and histologically confirmed LNM as the gold reference test, shown in Figure 2. Hoffmann [59] and Chandekar [42] found that [68Ga]Ga PSMA PET and [18F]F-PSMA-1007 were equally effectively to diagnose sites as positive.
The follow-up of findings with [18F]F-PSMA-1007 in patients over time has clarified findings in scapula and in abdominal ganglions showing they are likely to be due to benign and malignant disorders thereby reducing the false-positive readings [154]. PSMA PET could also yield false-negative. For example, PSMA PET did not diagnose most small metastases with a diameter <4 mm, as shown in Figure 3. Patients with small cell and neuroendocrine PCa downregulated PSMA. These patients generally had false-negative PSMA PET. A high ISUP grade and LNM gave a high SUVmax on PSMA PET [152,155]. Baas [53] found that pretreatment PSMA PET before RP predicted PSA persistence and BCR. Patients with a negative PSMA PET with no LNM (miN0 pN0) had the lowest rates of PSA persistence and BCR, whereas patients with a positive PSMA PET with LNM (miN1 pN1) had the highest rates.
Year |
Author |
Reference |
Study |
Total pts |
Clinical characteristics |
||||||
|
|
|
|
|
Median age (years) |
low risk |
intermediate risk |
high risk |
No with ISUP 4 and 5 |
Median PSA (ng/mL) |
|
2025 |
Incesu |
[20] |
R |
333 |
65 |
NR |
NR |
NR |
32 |
7.8 |
|
|
Madsen |
[21] |
R |
160 |
72 |
NR |
NR |
NR |
50 |
35 |
|
2024 |
Bauckneht |
[22] |
P |
97 |
67 |
NR |
NR |
NR |
63 |
17 |
|
|
Donswijk |
[23] |
R |
600 |
68 |
2 |
152 |
436 |
33 |
11 |
|
|
Gautahaman |
[24] |
P |
60 |
NR |
NR |
NR |
NR |
NR |
NR |
|
|
Heetman |
[25] |
R |
386 |
70 |
NR |
NR |
NR |
335 |
8 |
|
|
Huebner |
[26] |
R |
108 |
68 |
0 |
32 |
76 |
NR |
9.25 |
|
|
Karpinski |
[27] |
R |
244 |
65 |
NR |
NR |
NR |
NR |
3.6 |
|
|
Li |
[28] |
P |
86 |
70 |
NR |
NR |
NR |
NR |
41.2 |
|
|
Luining 68Ga |
[29] |
R |
939 |
70 |
22 |
602 |
1535 |
NR |
14.1 |
|
|
Luining 18F-DCF |
[29] |
R |
839 |
70 |
NR |
NR |
NR |
NR |
NR |
|
|
Luining 18F-1007 68Ga |
[29] |
R |
264 |
70 |
NR |
NR |
NR |
NR |
NR |
|
|
Luining 18F-JK |
[29] |
R |
161 |
70 |
NR |
NR |
NR |
NR |
NR |
|
|
Madendere |
[30] |
R |
81 |
64 |
5 |
46 |
30 |
16 |
6.8 |
|
|
Mai |
[31] |
R |
70 |
67 |
NR |
NR |
NR |
35 |
20.4 |
|
|
Mookerji |
[32] |
P |
134 |
62 |
NR |
NR |
NR |
6 |
7.8 |
|
|
Patel |
[33] |
p |
30 |
69 |
NR |
NR |
NR |
73 |
11.4 |
|
|
Prive |
[34] |
P |
75 |
67 |
NR |
NR |
NR |
NR |
7 |
|
|
Qiao |
[35] |
P |
120 |
69.9 |
NR |
NR |
NR |
49 |
17.6 |
|
|
Rajwa |
[36] |
R |
165 |
66.7 |
0 |
0 |
165 |
102 |
24.5 |
|
|
Shanmugasundaram |
[37] |
R |
667 |
68.3 |
NR |
NR |
NR |
594 |
9.2 |
|
|
Woo |
[38] |
R |
60 |
68 |
NR |
NR |
NR |
20 |
4.3 |
|
2023 |
Adiyat |
[39] |
R |
165 |
66.7 |
0 |
0 |
165 |
102 |
16.5 |
|
|
Bodar |
[40] |
P |
74 |
NR |
NR |
NR |
NR |
NR |
30.6 |
|
|
Chaloupka |
[41] |
P |
50 |
73 |
0 |
0 |
50 |
38 |
19 |
|
|
Chandekar |
[42] |
P |
40 |
68 |
0 |
8 |
32 |
17 |
50.2 |
|
|
da Silva |
[43] |
R |
35 |
NR |
NR |
NR |
NR |
NR |
NR |
|
|
Djaileb |
[44] |
P |
240 |
67 |
0 |
46 |
194 |
137 |
11.6 |
|
|
Du |
[45] |
R |
70 |
69 |
NR |
NR |
NR |
17 |
52 |
|
|
Hope |
[46] |
R |
167 |
68.5 |
NR |
NR |
NR |
78 |
12.2 |
|
|
Kubilay |
[47] |
R |
77 |
66 |
5 |
29 |
43 |
50 |
21.5 |
|
|
Pepe |
[48] |
R |
160 |
66 |
NR |
NR |
NR |
44 |
10 |
|
|
Seifert |
[49] |
R |
348 |
70 |
NR |
NR |
NR |
NR |
NR |
|
|
Weitzer |
[50] |
R |
100 |
69.5 |
9 |
29 |
62 |
42 |
12 |
|
|
Zheng |
[51] |
R |
152 |
68.3 |
NR |
NR |
NR |
58 |
12.08 |
|
2022 |
Arslan |
[52] |
R |
39 |
62 |
NR |
NR |
NR |
38 |
9.53 |
|
|
Baas |
[53] |
R |
213 |
NR |
0 |
72 |
141 |
51 |
9.3 |
|
|
Barbosa |
[54] |
R |
91 |
67 |
14 |
25 |
26 |
NR |
NR |
|
|
Bodar |
[55] |
P |
30 |
69 |
, 0 |
16 |
14 |
12 |
7.6 |
|
|
Erdem |
[56] |
R |
49 |
64 |
NR |
NR |
NR |
20 |
22 |
|
|
Ferraro |
[57] |
R |
39 |
65 |
0 |
0 |
39 |
NR |
7.1 |
|
|
Hermsen |
[58] |
P |
99 |
68 |
0 |
35 |
64 |
NR |
9.5 |
|
|
Hoffmann |
[59] |
R |
88 |
67.5 |
NR |
NR |
NR |
54 |
8.8 |
|
|
Ingvar |
[60] |
R |
104 |
66 |
0 |
24 |
80 |
56 |
12.6 |
|
|
Karagiannis |
[61] |
R |
43 |
70 |
NR |
NR |
NR |
18 |
4.34 |
|
|
Langbein |
[62] |
R |
83 |
66 |
0 |
0 |
83 |
18 |
11 |
|
|
Lenis |
[63] |
R |
168 |
66 |
0 |
44 |
124 |
NR |
11.4 |
|
|
Meissner |
[64] |
R |
25 |
NR |
NR |
NR |
NR |
15 |
7.3 |
|
|
Moreira |
[65] |
R |
126 |
66.8 |
NR |
NR |
NR |
NR |
NR |
|
|
Nuo |
[66] |
R |
68 |
NR |
NR |
NR |
NR |
NR |
NR |
|
|
Parathihasan |
[67] |
R |
65 |
67 |
NR |
NR |
NR |
NR |
NR |
|
|
Roberts |
[68] |
R |
848 |
66 |
NR |
NR |
NR |
30 |
6.0 |
|
|
Skawran |
[69] |
R |
49 |
65 |
0 |
NR |
38 |
46 |
9 |
|
|
Sonni |
[70] |
P |
74 |
65 |
0 |
14 |
60 |
NR |
11.1 |
|
|
Szigeti |
[71] |
P |
88 |
64.5 |
0 |
24 |
57 |
NR |
15.3 |
|
|
Zacho |
[72] |
R |
48 |
69 |
0 |
0 |
48 |
48 |
13 |
|
|
Zhang |
[73] |
R |
56 |
68 |
NR |
NR |
NR |
31 |
20.4 |
|
2021 |
Amiel |
[74] |
R |
230 |
68 |
0 |
64 |
NR |
46 |
NR |
|
|
Anttinen |
[75] |
P |
79 |
70 |
NR |
NR |
NR |
58 |
12 |
|
|
Aydos |
[76] |
R |
302 |
66.8 |
NR |
NR |
NR |
152 |
15 |
|
|
Bodar |
[77] |
P |
30 |
68.5 |
0 |
10 |
20 |
18 |
11.1 |
|
|
Chikatamarla |
[78] |
R |
194 |
70 |
5 |
71 |
118 |
90 |
10 |
|
|
Emmett |
[79] |
P |
291 |
64 |
NR |
NR |
NR |
21 |
5.8 |
|
|
Esen |
[80] |
R |
96 |
65 |
6 |
50 |
40 |
32 |
8 |
|
|
Franklin |
[81] |
R |
233 |
68 |
NR |
NR |
NR |
50 |
8.2 |
|
|
Harsini |
[82] |
P |
25 |
68.5 |
NR |
NR |
NR |
12 |
15.5 |
|
|
Hope |
[83] |
P |
764 |
68 |
8 |
166 |
590 |
450 |
11.4 |
|
|
Jansen |
[84] |
P |
117 |
67 |
0 |
43 |
74 |
41 |
10.9 |
|
|
Jioa |
[85] |
R |
106 |
NR |
NE |
NR |
NR |
30 |
11,7 |
|
|
Klingenberg |
[86] |
R |
691 |
70.4 |
0 |
0 |
691 |
458 |
18 |
|
|
Koerber |
[87] |
R |
335 |
67 |
15 |
101 |
219 |
49 |
11 |
|
|
Koseoglu |
[88] |
R |
81 |
67 |
5 |
33 |
43 |
21 |
7 |
|
|
Kwan |
[89] |
R |
72 |
68 |
NR |
NR |
NR |
29 |
8.7 |
|
|
Liu |
[90] |
R |
52 |
NR |
NR |
NR |
NR |
NR |
NR |
|
|
Lopci |
[91] |
P |
20 |
65,5 |
NR |
BR |
NR |
NR |
7 |
|
|
Malaspina |
[92] |
P |
79 |
72 |
NR |
NR |
NR |
58 |
12 |
|
|
Margel |
[93] |
P |
99 |
65 |
NR |
NR |
NR |
60 |
6.7 |
|
|
Meijer |
[94] |
R |
434 |
68 |
2 |
114 |
318 |
52 |
10.7 |
|
|
Meijer |
[95] |
R |
757 |
67 |
NR |
NR |
NR |
446 |
19.6 |
|
|
Onal |
[96] |
R |
121 |
67 |
0 |
74 |
369 |
224 |
15.7 |
|
|
Pienta |
[5] |
P |
268 |
65 |
NR |
NR |
NR |
90 |
9.7 |
|
|
Prive |
[97] |
R |
53 |
67 |
0 |
11 |
42 |
46 |
12 |
|
|
Qiu |
[98] |
R |
77 |
80 |
NR |
NR |
NR |
29 |
133 |
|
|
Scobioala 68Ga |
[99] |
R |
45 |
68 |
NR |
NR |
NR |
45 |
31 |
|
|
Scobioala 18F |
[99] |
R |
45 |
68 |
NR |
NR |
NR |
45 |
31 |
|
|
Wondergem |
[100] |
R |
160 |
71 |
0 |
0 |
160 |
55 |
22.8 |
|
|
Zhang |
[101] |
P |
120 |
71.1 |
NR |
NR |
NR |
NR |
28.2 |
|
2020 |
Brauchli |
[102] |
R |
100 |
65.8 |
NR |
NR |
NR |
61 |
6.1 |
|
|
Celen |
[103] |
P |
30 |
65 |
2 |
3 |
25 |
36 |
9.49 |
|
|
Chandra |
[104] |
R |
64 |
70 |
NR |
NR |
NR |
12 |
13.7 |
|
|
Chen |
[105] |
R |
54 |
69 |
NR |
NR |
NR |
35 |
13.3 |
|
|
Cytawa |
[106] |
R |
82 |
64.9 |
1 |
32 |
39 |
NR |
11 |
|
|
Donswijk |
[107] |
R |
64 |
69 |
0 |
8 |
56 |
56 |
12 |
|
|
Frumer |
[108] |
R |
89 |
67 |
0 |
40 |
49 |
20 |
NR |
|
|
Gultekin |
[109] |
R |
51 |
63.5 |
12 |
19 |
20 |
9 |
14.6 |
|
|
Hinsenveld |
[110] |
R |
53 |
67 |
0 |
8 |
45 |
32 |
11 |
|
|
Hofman |
[3] |
C |
148 |
69 |
NR |
NR |
NR |
64 |
10 |
|
|
Kopp |
[111] |
R |
90 |
64.9 |
0 |
39 |
51 |
30 |
7.4 |
|
|
Kroenke |
[112] |
R |
58 |
68 |
0 |
0 |
58 |
22 |
12.2 |
|
|
Kulkarni |
[113] |
R |
51 |
65 |
0 |
14 |
37 |
49 |
20 |
|
|
Liu |
[114] |
R |
31 |
66 |
NR |
NR |
NR |
NR |
20 |
|
|
Madsen |
[115] |
R |
51 |
67.2 |
1 |
14 |
32 |
18 |
25 |
|
|
Pallavi |
[116] |
P |
35 |
62.9 |
0 |
NR |
NR |
26 |
12.4 |
|
|
Van Kalmthout |
[117] |
P |
103 |
69 |
0 |
11 |
92 |
45 |
21.8 |
|
2019 |
Abufaraj |
[118] |
P |
65 |
61 |
NR |
NR |
NR |
30 |
9 |
|
|
Dekalo |
[119] |
R |
59 |
65 |
0 |
30 |
29 |
41 |
13 |
|
|
Demirci |
[120] |
R |
141 |
64.6 |
NR |
NR |
NR |
32 |
10.1 |
|
|
Donato |
[121] |
R |
58 |
65.5 |
0 |
45 |
13 |
14 |
7,35 |
|
|
Dyrberg |
[122] |
P |
55 |
NR |
1 |
8 |
28 |
50 |
30 |
|
|
El Hajj |
[123] |
R |
23 |
69 |
NR |
NR |
NR |
17 |
NR |
|
|
Muehlematter |
[124] |
R |
40 |
63 |
0 |
8 |
32 |
NR |
NR |
|
|
Nandurkar |
[125] |
R |
142 |
66 |
NR |
NR |
NR |
37 |
9 |
|
|
Uslu-Besli |
[126] |
R |
28 |
69 |
NR |
NR |
NR |
39 |
8.5 |
|
|
Van Leeuwen |
[127] |
R |
140 |
NR |
0 |
30 |
110 |
67 |
9.4 |
|
|
Yaxley |
[128] |
R |
140 |
NR |
0 |
30 |
110 |
68 |
9.4 |
|
|
Yaxley |
[129] |
R |
1257 |
NR |
18 |
638 |
597 |
510 |
8 |
|
|
Yilmaz |
[130] |
R |
24 |
62.8 |
3 |
15 |
6 |
21 |
12 |
|
2018 |
Al-Bayati |
[131] |
R |
22 |
68 |
NR |
NR |
NR |
6 |
14.5 |
|
|
Berger |
[132] |
R |
50 |
64.9 |
NR |
NR |
NR |
24 |
10.6 |
|
|
Gorin |
[133] |
R |
25 |
61 |
NR |
NR |
NR |
13 |
9.3 |
|
|
Grubmuller |
[134] |
P |
127 |
64 |
NR |
NR |
NR |
57 |
7.6 |
|
|
Gupta |
[135] |
R |
97 |
NR |
10 |
30 |
57 |
17 |
5.7 |
|
|
Hruby |
[136] |
R |
109 |
73 |
NR |
NR |
NR |
95 |
9.9 |
|
|
Lengana |
[137] |
P |
113 |
67 |
NR |
NR |
NR |
63 |
23 |
|
|
Park |
[138] |
P |
33 |
66.4 |
0 |
18 |
15 |
15 |
9.6 |
|
|
Rogasch |
[139] |
R |
108 |
NR |
2 |
17 |
89 |
53 |
18 |
|
|
Taneja |
[140] |
R |
29 |
65 |
NR |
NR |
NR |
28 |
13 |
|
|
Thalgott |
[141] |
R |
73 |
68 |
0 |
0 |
73 |
83 |
14 |
|
2017 |
Hoffmann |
[142] |
R |
25 |
67 |
NR |
NR |
NR |
NR |
20.4 |
|
|
Meyrick |
[143] |
R |
70 |
67 |
NR |
NR |
NR |
45 |
22.4 |
|
|
Obek |
[144] |
R |
51 |
NR |
NR |
NR |
NR |
NR |
NR |
|
|
Tulsyan |
[145] |
P |
36 |
65 |
0 |
0 |
36 |
NR |
8.1 |
|
|
Uprimny |
[146] |
R |
90 |
64 |
NR |
NR |
NR |
38 |
9.7 |
|
|
Van Leeuwen |
[147] |
P |
30 |
65 |
0 |
3 |
27 |
23 |
8.1 |
|
|
Von Klot |
[148] |
R |
21 |
68 |
NR |
NR |
NR |
NR |
11.9 |
|
|
Zhang |
[149] |
R |
42 |
68.9 |
NR |
NR |
NR |
24 |
52.3 |
|
2016 |
Budaus |
[150] |
R |
30 |
62.3 |
NR |
NR |
NR |
37 |
8.8 |
|
|
Eiber |
[151] |
R |
53 |
66 |
0 |
25 |
28 |
15 |
12 |
|
|
Fendler |
[152] |
R |
21 |
NR |
NR |
NR |
NR |
NR |
NR |
|
|
Maurer |
[153] |
R |
130 |
66.5 |
0 |
42 |
88 |
30 |
11.6 |
|
Total |
|
|
- |
19717 |
- |
131 |
5895 |
7247 |
- |
- |
Note: C : randomized controlled trial; 68Ga : [68Ga]Ga-PSMA-617 PET; 18F-DCF : [18F]F-DCFPyl-PSMA PET; 18F-1007 : [18F] F-PSMA-1007; 18F JK : [18F]F-PSMA; no : number: NR : not reported; P : prospective study; R : retrospective study.
Table 1A: Clinical characteristics in publications of pretreatment PSMA PET.
Characteristic |
|
|
Numbers of
publications |
Patients |
||
|
|
|
|
Number |
Median value |
IQR |
Publications |
|
Retrospective |
40 |
|
|
|
|
|
Prospective |
20 |
|
|
|
|
|
RCT |
1 |
|
|
|
Patients |
Age (years) |
|
|
|
67 |
66-68 |
|
Rate of ISUP
4,5 (%) |
|
|
|
56 |
36-66 |
|
PSA (ng/mL) |
|
|
|
12 |
9.5-15.6 |
|
Risk |
Low |
|
131 |
|
|
|
|
Intermediate |
|
5895 |
|
|
|
|
High |
|
7277 |
|
|
Table 1B: Summary of characteristics in the publications.
Study |
PSMA PET scan |
||||||
Year |
Author |
Reference |
PET tracer |
CT/MRI |
Median
activity of PET tracer (MBq) |
Median uptake
time (min) |
Median SUVmean |
2025 |
Incesu |
[20] |
NR |
NR |
185 |
NR |
NR |
|
Madsen |
[21] |
18F-1007 |
CT |
199 |
NR |
NR |
2024 |
Bauckneht |
[22] |
68Ga |
CT |
180 |
60 |
NR |
|
Donswijk |
[23] |
ALL |
CT |
NR |
NR |
NR |
|
Gauthaman |
[24] |
68Ga |
CT |
124 |
60 |
NR |
|
Heetman |
[25] |
68Ga |
CT |
145 |
60 |
6.5 |
|
Huebner |
[26] |
68Ga |
CT/MRI |
NR |
NR |
NR |
|
Karpinski |
[27] |
NR |
NR |
NR |
NR |
NR |
|
Li |
[28] |
18F-DCF |
CT |
|
NR |
NR |
|
Luining 68Ga |
[29] |
68Ga |
CT |
135 |
60 |
NR |
|
Luining 18F-DCF |
[29] |
18F-DCF |
CT |
300 |
90 |
NR |
|
Luining 18F-1007 |
[29] |
18F-1007 |
CT |
298 |
90 |
NR |
|
Luning
18F-JK-PSMA |
[29] |
18F-JK |
CT |
203 |
69 |
NR |
|
Madendere |
[30] |
68Ga |
CT |
NR |
NR |
NR |
|
Mai |
[31] |
68Ga |
CT |
NR |
NR |
NR |
|
Mookerji |
[32] |
18F-1007 |
CT |
360 |
120 |
16.9 |
|
Patel |
[33] |
68Ga |
CT |
NR |
NR |
NR |
|
Prive |
[34] |
18F-1007 |
CT |
360 |
86 |
NR |
|
Qiao |
[35] |
18F |
MRI |
NR |
NR |
NR |
|
Rajwa |
[36] |
68Ga |
CT |
NR |
NR |
NR |
|
Shanmugasundaram |
[37] |
68Ga |
CT |
250 |
30 |
NR |
|
Woo |
[38] |
18F-DCF |
CT |
250 |
90 |
NR |
2023 |
Adiyat |
[39] |
68Ga |
CT |
285 |
118 |
NR |
|
Bodar |
[40] |
18F-DCF |
CT |
285 |
118 |
NR |
|
Chaloupka |
[41] |
NR |
CT/ MRI |
NR |
NR |
NR |
|
Chandekar |
[42] |
18F-1007 |
CT |
NR |
NR |
NR |
|
da Silva |
[43] |
68Ga |
CT |
NR |
NR |
NR |
|
Djaileb |
[44] |
68Ga |
CT |
189 |
60 |
NR |
|
Du |
[45] |
68Ga |
CT |
180 |
NR |
17.6 |
|
Hope |
[46] |
NR |
NR |
NR |
NR |
NR |
|
Kubilay |
[47] |
68Ga |
CT |
NR |
45 |
NR |
|
Pepe |
[48] |
68Ga |
CT |
NR |
NR |
NR |
|
Seifert |
[49] |
NR |
CT |
NR |
NR |
NR |
|
Weitzer |
[50] |
68Ga |
CT |
90 |
60 |
NR |
|
Zheng |
[51] |
18F-1007 |
CT |
252 |
90 |
16.7 |
2022 |
Arslan |
[52] |
68Ga |
CT |
NR |
60 |
NR |
|
Baas |
[53] |
18F-1007 |
CT |
NR |
NR |
NR |
|
Barbosa |
[54] |
68Ga |
CT |
195 |
50 |
NR |
|
Bodar |
[55] |
18F-DCF |
MRI |
310 |
123 |
NR |
|
Erdem |
[56] |
68Ga |
CT |
NR |
NR |
NR |
|
Ferraro |
[57] |
68Ga |
MRI |
85 |
60 |
NR |
|
Hermsen |
[58] |
18F-1007 |
CT |
252 |
109 |
NR |
|
Hoffmann |
[59] |
18F-1007 |
CT |
326 |
60 |
12.2 |
|
Ingvar |
[60] |
18F-1007 |
CT |
320 |
120 |
NR |
|
Karagiannis |
[61] |
18F-1007 |
CT |
250 |
60 |
NR |
|
Langbein |
[62] |
18F-rh |
CT |
335 |
72 |
13 |
|
Lenis |
[63] |
NR |
CT |
|
|
|
|
Meissner |
[64] |
NR |
NR |
NR |
NR |
60.4 |
|
Moreira |
[65] |
68Ga |
CT |
180 |
NR |
NR |
|
Nuo |
[66] |
68Ga |
CT |
NR |
NR |
NR |
|
Parathihasan |
[67] |
18F-DCF |
CT |
250 |
NR |
18.3 |
|
Roberts |
[68] |
68Ga |
CT |
NR |
53 |
NR+ |
|
Skawran |
[69] |
68Ga |
MRI |
134 |
60 |
NR |
|
Sonni |
[70] |
68Ga |
CT |
90 |
61.5 |
NR |
|
Szigeti |
[71] |
68Ga |
CT |
189 |
60 |
NR |
|
Zacho |
[72] |
68Ga |
CT |
180 |
60 |
NR |
|
Zhang |
[73] |
18F-DCF |
CT |
320 |
53 |
7.2 |
2021 |
Amiel |
[74] |
68Ga |
CT |
NR |
NR |
NR |
|
Anttinen |
[75] |
18F-1007 |
CT |
NR |
NR |
10.5 |
|
Aydos |
[76] |
68Ga |
CT/MRI |
137 |
60 |
NR |
|
Bodar |
[77] |
18F-DCF |
CT |
312 |
118 |
NR |
|
Chikamatamarla |
[78] |
18F-1007 |
CT |
250 |
127 |
NR |
|
Emmett |
[79] |
68Ga |
CT |
180 |
60 |
NR |
|
Esen |
[80] |
68Ga |
CT |
180 |
45 |
NR |
|
Franklin |
[81] |
68Ga |
CT |
200 |
53 |
NR |
|
Harsini |
[82] |
68Ga |
CT |
170 |
NR |
NR |
|
Hope |
[83] |
68Ga |
CT/ MRI |
185 |
60 |
NR |
|
Jansen |
[84] |
18F-DCF |
CT |
331 |
118 |
NR |
|
Jiao |
[85] |
68Ga |
CT |
NR |
NR |
NR |
|
Klingenberg |
[86] |
68Ga |
CT |
189 |
60 |
NR |
|
Koerber |
[87] |
68Ga |
CT |
225 |
115 |
NR |
|
Koseoglu |
[88] |
68Ga |
CT |
NR |
NR |
4.8 |
|
Kwan |
[89] |
68Ga |
CT |
160 |
35 |
NR |
|
Liu |
[90] |
68Ga |
CT |
NR |
60 |
NR |
|
Lopci |
[91] |
68Ga |
CT |
325 |
NR |
4 |
|
Malaspina |
[92] |
18F-1007 |
CT |
NR |
NR |
NR |
|
Margel |
[93] |
68Ga |
MRI |
105 |
NR |
NR |
|
Meijer |
[94] |
All |
CT |
NR |
NR |
NR |
|
Meijer |
[95] |
68Ga |
CT |
299 |
120 |
NR |
|
Onal |
[96] |
68Ga |
CT |
160 |
53 |
NR |
|
Pienta |
[5] |
18F-DCF |
CT |
330 |
90 |
NR |
|
Prive |
[97] |
18F-1007 |
CT |
250 |
90 |
8.6 |
|
Qiu |
[98] |
68Ga |
CT |
NR |
NR |
NR |
|
Scobioala 68Ga |
[99] |
68Ga |
MRI |
NR |
60 |
NR |
|
Scobioala 18F |
[99] |
18F |
MRI |
NR |
120 |
NR |
|
Wondergam |
[100] |
18F-DCF |
CT |
328 |
120 |
NR |
|
Zhang |
[101] |
68Ga |
CT |
145 |
53 |
NR |
2020 |
Brauchli |
[102] |
18F-DCF |
CT |
304 |
120 |
NR |
|
Celen |
[103] |
68Ga |
CT |
185 |
60 |
NR |
|
Chandra |
[104] |
68Ga |
CT |
180 |
60 |
Detailed |
|
Chen |
[105] |
68Ga |
CT |
132 |
60 |
NR |
|
Cytawa |
[106] |
68Ga |
CT |
132 |
66 |
Detailed |
|
Donswijk |
[107] |
68Ga |
CT |
100 |
45 |
NR |
|
Frumer |
[108] |
68Ga |
CT |
NR |
NR |
NR |
|
Gultekin |
[109] |
68Ga |
CT |
NR |
NR |
NR |
|
Hinsenveld |
[110] |
68Ga |
CT |
100 |
NR |
NR |
|
Hofman |
[3] |
68Ga |
CT |
NR |
25 |
NR |
|
Kopp |
[111] |
68Ga |
CT |
170 |
60 |
NR |
|
Kroenke |
[112] |
18F-rh |
CT |
337 |
79.5 |
NR |
|
Kulkarni |
[113] |
68Ga |
CT |
137 |
60 |
11.3 |
|
Liu |
[114] |
68Ga |
CT |
206 |
60 |
NR |
|
Madsen |
[115] |
68Ga |
CT |
180 |
60 |
NR |
|
Pallawi |
[116] |
68Ga |
CT |
185 |
53 |
NR |
|
Van Kalmthout |
[117] |
68Ga |
CT |
135 |
60 |
NR |
2019 |
Abufaraj |
[118] |
68Ga |
CT/MRI |
NR |
NR |
NR |
|
Dekalo |
[119] |
68Ga |
CT |
156 |
53 |
NR |
|
Demirci |
[120] |
68Ga |
CT |
215 |
53 |
NR |
|
Donato |
[121] |
68Ga |
CT |
150 |
60 |
NR |
|
Dyrberg |
[122] |
68Ga |
CT |
NR |
30 |
NR |
|
El Hajj |
[123] |
68Ga |
CT |
113 |
60 |
NR |
|
Muehlematter |
[124] |
68Ga |
CT |
215 |
53 |
NR |
|
Nandurkar |
[125] |
68Ga |
MRI |
131 |
60 |
NR |
|
Uslu-Besli |
[126] |
68Ga |
CT |
180 |
60 |
NR |
|
Van Leeuwen |
[127] |
68Ga |
CT |
116 |
45 |
NR |
|
Yaxley |
[128] |
68Ga |
CT |
180 |
60 |
NR |
|
Yaxley |
[129] |
68Ga |
CT |
200 |
60 |
NR |
|
Yilmaz |
[130] |
68Ga |
CT |
NR |
NR |
NR |
2018 |
Al-Bayati |
[131] |
68Ga |
CT |
175 |
60 |
20.7 |
|
Berger |
[132] |
68Ga |
MRI |
113 |
158 |
NR |
|
Gorin |
[133] |
68Ga |
CT |
NR |
60 |
8.3 |
|
Grubmutter |
[134] |
18F-DCF |
CT |
288 |
60 |
NR |
|
Gupta |
[135] |
68Ga |
MRI |
NR |
NR |
NR |
|
Hruby |
[136] |
NR |
NR |
NR |
NR |
NR |
|
Lengana |
[137] |
68Ga |
CT |
180 |
45 |
NR |
|
Park |
[138] |
68Ga |
CT |
118 |
60 |
NR |
|
Rogasch |
[139] |
68Ga |
CT |
112 |
51 |
NR |
|
Taneja |
[140] |
68Ga |
CT |
192 |
NR |
NR |
|
Thalgott |
[141] |
68Ga |
MRI |
192 |
NR |
NR |
2017 |
Hoffmann |
[142] |
68Ga |
CT |
NR |
NR |
Dec-24 |
|
Meyrick |
[143] |
68Ga |
MRI |
138 |
55 |
NR |
|
Obek |
[144] |
68Ga |
CT |
180 |
45 |
NR |
|
Tulsyan |
[145] |
68Ga |
CT |
80 |
53 |
NR |
|
Uprimny |
[146] |
68Ga |
CT |
80 |
60 |
NR |
|
Van Leeuwen |
[147] |
68Ga |
CT |
150 |
60 |
NR |
|
Von Klot |
[148] |
68Ga |
CT |
98 |
60 |
NR |
|
Zhang |
[149] |
68Ga |
CT |
NR |
60 |
NR |
2016 |
Budaus |
[150] |
68Ga |
CT |
132 |
60 |
7.35 |
|
Eiber |
[151] |
68Ga |
CT |
180 |
60 |
NR |
|
Fendler |
[152] |
68Ga |
MRI |
141 |
60 |
NR |
|
Maurer |
[153] |
68Ga |
CT |
NR |
60 |
NR |
Table 2A: Pretreatment PSMA PET.
PET characteristic |
|
Numbers of
publications |
PSMA PET |
|
|
|
|
Median value |
(IQR) |
Tracer |
68Ga |
62 |
|
|
|
18F CDF Pyl |
5 |
|
|
|
18F 1007 |
10 |
|
|
|
Other |
5 |
|
|
CT |
|
109 |
|
|
MRI |
|
11 |
|
|
CT/MRI |
|
3 |
|
|
Activity
(MBq) |
|
|
180 |
135-250 |
Uptake time
(min) |
|
|
60 |
60-66 |
Note: 68Ga : [68Ga]Ga PSMAPET.
Table 2B: Summary of PSMA PET characteristics.
Figure 1: PRISMA flow chart for selection ofthe 116 publications.
Figure 2: Venn diagram of the diagnostic performance of pretreatment PSMA PET for sites in lymph nodes at initial radical prostatectomy and extensive regional lymph node dissection. The Venn diagram is based on 16 studies with 2051 patients [36,61 ,82,83,110,111,115,124,142,144,147]. The figure shows patientbased analyses. The left circle includes pathology with metastases, and the right circle includes the positive findings on pretreatment PSMA PET.
Note: TP (true-positive) is positive lesions on PSMA PET confirmed by pathology. FP (false-positive) is positive lesions and PSMA PET not confirmed by pathology. FN (false-negative) is negative lesions on staging PSMA PET in lymph nodes despite pathology is positive. TN (true negative) is negative lesions on staging PSMA PET in lymph nodes confirmed with negative pathology.
Figure 3: The figure shows six publications that reported the median size of lymph node metastases in patients who underwent extensive pelvic lymph node dissection. PSMA PET-positive lymph node metastases had a greater diameter (median of the median diameter >10 mm) than PSMA PET-negative lymph node metastases (median of the median diameter less than 5 mm).
In contrast to PSMA PET, conventional imaging with CT and bone scans had a low sensitivity to detect metastases. [68Ga]Ga-PSMA PET/CT was better than [99Tc]Tc-Methylene-Diphosphonate (MDP) bone scans. Table 3A shows that pretreatment PSMA was more sensitive to detect metastases than bone scans. Also a previous review [156] summarized six studies with 546 patients. PSMA PET diagnosed bone metastases better than bone scans and whole body mpMRI.
mpMRI is a newer imaging modality than bone scans, but mpMRI had limitations to delineate zones in the prostate. Studies found that pretreatment PSMA PET was better than mpMRI to diagnose extracapsular extension and invasion in seminal vesicles [103]. Pretreatment PSMA PET diagnosed LNM better than mpMRI, as shown in Table 3B.
For patients with local PCa treated with radiation therapy, diagnosis of DIL was more important than diagnosis of clinically significant or insignificant PCa lesions. A combination of mpMRI and pretreatment PSMA was more sensitive to diagnose DIL than mpMRI and pretreatment PSMA PET did separately.
Pretreatment PSMA PET often diagnosed bone metastases in patients with equivocal findings on [18F]-NaF PET/CT [115]. Some HRPC patients who were staged with PSMA PET and mpMRI also underwent bone and [18F]F-NaF PET/CT scans, but these scans did not diagnose significantly more bone metastases [21]. So HRPC patients can be staged adequately with only a combination of pretreatment mpMRI and PSMA PET. Diagnosed with pretreatment PSMA PET, 22% of the patients had LNM and 16% had bone metastases, as shown in Figure 4.
Publication |
Total pts |
Sensitivity (%) |
|||
Year |
Author |
Reference |
PSMA PET |
Bone scans |
|
2024 |
Qiao |
[35] |
120 |
90 |
43 |
2024 |
Shanmugasundaram |
[37] |
667 |
10.3 |
7.9 |
2023 |
Hope |
[46] |
167 |
17 |
30 |
2019 |
Dyrberg |
[122] |
77 |
17 |
34 |
2019 |
Uslu-Besli |
[126] |
28 |
90.9 |
72.7 |
Table 3A: Comparison of sensitivity with pretreatment PSMA PET and bone scans.
Publication |
Total no of pats |
Sensitivity (%) |
||||
PSMA PET |
mpMRI |
|||||
Year |
Author |
Reference |
P/L |
|||
2024 |
Mai |
[31] |
P |
70 |
93 |
NR |
Prive |
[35] |
P |
75 |
91 |
95 |
|
2022 |
Arslan |
[52] |
P |
39 |
18 |
37 |
Bodar |
[55] |
L |
30 |
50 |
54 |
|
Ferraro |
[57] |
P |
39 |
67 |
61 |
|
Skawran |
[68] |
P |
49 |
58 |
61 |
|
Sonni |
[69] |
L |
74 |
35 |
35 |
|
Szigeti |
[70] |
P |
81 |
62 |
50 |
|
2021 |
Franklin |
[80] |
P |
233 |
18 |
9.4 |
Malaspina |
[91] |
P |
79 |
87 |
45 |
|
2020 |
Celen |
[102] |
P |
30 |
100 |
100 |
2018 |
Al-Bayati |
[131] |
P |
22 |
80 |
59 |
Berger |
[132] |
L |
50 |
100 |
94 |
|
2017 |
Tulsyan |
[145] |
P |
36 |
100 |
66 |
Note: Some studies reported the sensitivity to diagnose lymph node metastases.
L : lesion- based analysis, NR : not reported, P : patient-based analysis.
Table 3B: Comparison of sensitivity with pretreatment PSMA PET and mpMRI.
Lanfranchi [157] compared oligometastatic PCa diagnosed with [18F]F-fluorocholine PET/CT and [68Ga]Ga-PSMA PET/CT. All patients were treated with Metastasis-Directed Therapy (MDT) for the positive sites on the PET/CT. 26 patients given [68Ga]Ga-PET/ CT-guided MDT lived significantly longer without progression than 11 patients given [18F]F-fluorocholine PET/CT-guided MDT. The European Association of Urology (EAU) guidelines for PCa [10] reported that HRPC patients may undergo ePLND as part of the RP. Qiu [98] developed a risk model for the 2-year risk of BCR after the initial treatment. The risk model included the SUVmax in PSMA PET.
Many patients with localized advanced PCa were treated with EBRT, brachytherapy, or with both. The FLAME trial [158] showed that EBRT for the whole prostate given with cumulative dose of 77 Gy cured most LRPC patients, whereas most HRPC patients risked recurrence unless the EBRT also included a boost to DIL. mpMRI delineated the DIL, whereas recent publications used pretreatment PSMA PET to delineate the DIL [159].
The HypoFocal trial of dose escalated EBRT of 77 Gy for the whole prostate for PCa patients [159,160] showed that mpMRI and PSMA PET delineated the Gross Tumor Volume (GTV) and the Planned Target Volume (PTV) for the radiation therapy. The ongoing PATRON RCT [161] compares staging with conventional imaging with a combination of both conventional imaging and pretreatment PSMA PET
Change of Stage
Table 4 and Figure 5 show how pretreatment PSMA PET changed the primary staging and treatment. In a previous review, Saad [162] summarized that 30-40% of the patients were upstaged and 20-30% were downstaged relative to conventional imaging. Pretreatment PSMA PET increased diagnosis of LNM with 5 – 30%, and of bone metastases with 10 - 40%.
Klingenberg [163] found of 137 patients staged with conventional imaging that more patients developed BCR compared with 247 staged with PSMA PET (49.6%, versus 25.5%. HR = 0.58, p = 0.004). Bauckneht [22] found that PSMA PET upstaged 27% of the patients and downstaged 6%. da Silva [43] found that PSMA PET changed the stage for more than 60% of the patients: 43% of the patients were downstaged, for instance by not confirming bone metastases, and 23% were upstaged by diagnosis of LNM and bone metastases. Zheng [51] found that PSMA PET upstaged 27% of the patients and downstaged 23%.
Figure 5A: Downstaging by PSMA PET.
Figure 5B: Upstaging with PSMA PET.
Study |
Stage change |
No with
positive sites |
Endpoints |
|||||
Year |
Author |
Reference |
Down (%) |
Up (%) |
LN |
Bones |
Change of
treatment (%) |
Rate of BCR
(%) |
2025 |
Incesu |
[20] |
NR |
10 |
10 |
NR |
10 |
10 |
|
Madsen |
[21] |
NR |
27.5 |
NR |
27.5 |
NR |
NR |
2024 |
Bauckneht |
[22] |
6 |
26 |
NR |
NR |
0 |
26.5 |
|
Donswijk |
[23] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Gauthaman |
[24] |
NR |
23 |
19 |
9 |
NR |
NR |
|
Heetman |
[25] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Huebner |
[26] |
NR |
NR |
5 |
NR |
NR |
7 |
|
Karpinsky |
[27] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Li |
[28] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Luining 68Ga |
[29] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Luining 18F-DCF |
[29] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Luining 18F-1007 |
[29] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Luning 18F-JK |
[29] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Madendere |
[30] |
NR |
NR |
7 |
NR |
NR |
NR |
|
Mai |
[31] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Mookerji |
[32] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Patel |
[33] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Prive |
[34] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Qiao |
[35] |
NR |
NR |
21 |
37 |
NR |
NR |
|
Rajwa |
[36] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Shanmugasundaram |
[37] |
NR |
3 |
NR |
67 |
NR |
NR |
|
Woo |
[38] |
NR |
NR |
NR |
NR |
NR |
NR |
2023 |
Adiyat |
[39] |
NR |
NR |
NR |
NR |
NR |
MR |
|
Bodar |
[40] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Chaloupka |
[41] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Chandekar |
[42] |
NR |
NR |
NR |
NR |
NR |
NR |
|
da Silva |
[43] |
44 |
37 |
NR |
NR |
3 |
NR |
|
Djaileb |
[44] |
NR |
NR |
60 |
NR |
NR |
NR |
|
Du |
[45] |
NR |
NR |
20 |
18 |
NR |
NR |
|
Hope |
[46] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Kubilay |
[47] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Pepe |
[48] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Seifert |
[49] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Weitzer |
[50] |
21 |
15 |
13 |
7 |
39 |
NR |
|
Zheng |
[51] |
NR |
27 |
90 |
NR |
NR |
NR |
2022 |
Arslan |
[52] |
NR |
4 |
0 |
NR |
NR |
NR |
|
Baas |
[53] |
NR |
NR |
60 |
NR |
NR |
NR |
|
Barbosa |
[54] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Bodar |
[55] |
NR |
NR |
123 |
NR |
NR |
NR |
|
Erdem |
[56] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Ferraro |
[57] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Hermsen |
[58] |
NR |
NR |
23 |
NR |
NR |
NR |
|
Hoffmann |
[59] |
NR |
NR |
12 |
6 |
NR |
NR |
|
Ingvar |
[60] |
NR |
NR |
7 |
NR |
NR |
NR |
|
Karagiannis |
[61] |
NR |
NR |
NR |
6 |
29 |
NR |
|
Langbein |
[62] |
NR |
NR |
52 |
21 |
NR |
NR |
|
Lenis |
[63] |
7,1 |
22 |
45 |
10 |
NR |
NR |
|
Meissner |
[64] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Moreira |
[65] |
NR |
NR |
27 |
17 |
NR |
NR |
|
Nuo |
[66] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Parathihasan |
[67] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Roberts |
[68] |
NR |
NR |
NR |
NR |
NR |
70 |
|
Skawran |
[69] |
NR |
NR |
5 |
NR |
NR |
NR |
|
Sonni |
[70] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Szigeti |
[71] |
NR |
NR |
9 |
NR |
NR |
NR |
|
Zacho |
[72] |
NR |
NR |
13 |
5 |
38 |
NR |
|
Zhang |
[73] |
NR |
NR |
1 |
NR |
NR |
NR |
2021 |
Amiel |
[74] |
NR |
NR |
NR |
NR |
46.5 |
50.4 |
|
Anttinen |
[75] |
NR |
NR |
4 |
16 |
NR |
NR |
|
Aydos |
[76] |
NR |
NR |
31 |
86 |
NR |
NR |
|
Bodar |
[77] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Chikatamarla |
[78] |
NR |
NR |
36 |
40 |
30 |
NR |
|
Emmett |
[79] |
NR |
NR |
10 |
NR |
NR |
NR |
|
Esen |
[80] |
NR |
8 |
9 |
NR |
NR |
3 |
|
Franklin |
[81] |
NR |
NR |
42 |
NR |
NR |
NR |
|
Harsini |
[82] |
NR |
NR |
NR |
4 |
NR |
NR |
|
Hope |
[83] |
NR |
NR |
8 |
5 |
NR |
NR |
|
Jansen |
[84] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Jiao |
[85] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Klingenberg |
[86] |
NR |
NR |
217 |
116 |
NR |
NR |
|
Koerber |
[87] |
NR |
NR |
81 |
82 |
NR |
NR |
|
Koseoglu |
[88] |
NR |
NR |
6 |
NR |
NR |
NR |
|
Kwan |
[89] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Liu |
[90] |
NR |
NR |
2 |
NR |
NR |
NR |
|
Lopci |
[91] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Malaspina |
[92] |
NR |
NR |
27 |
NR |
NR |
NR |
|
Margel |
[93] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Meijer |
[94] |
NR |
NR |
58 |
NR |
NR |
NR |
|
Meijer |
[95] |
NR |
NR |
104 |
NR |
NR |
NR |
|
Onal |
[96] |
NR |
NR |
121 |
NR |
NR |
NR |
|
Pienta |
[5] |
NR |
NR |
62 |
NR |
NR |
NR |
|
Prive |
[97] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Qiu |
[98] |
NR |
NR |
NR |
NR |
NR |
37.7 |
|
Scobioala 68Ga |
[99] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Scobioala 18F |
[99] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Wondergam |
[100] |
0 |
37 |
81 |
NR |
37 |
1 |
|
Zhang |
[101] |
NR |
NR |
NR |
NR |
NR |
NR |
2020 |
Braucli |
[102] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Celen |
[103] |
NR |
NR |
1 |
NR |
NR |
NR |
|
Chandra |
[104] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Chen |
[105] |
NR |
NR |
NR |
NR |
18 |
NR |
|
Cytawa |
[106] |
NR |
NR |
17 |
14 |
NR |
NR |
|
Donswijk |
[107] |
23 |
13 |
NR |
NR |
22 |
NR |
|
Frumer |
[108] |
NR |
NR |
5 |
0 |
NR |
NR |
|
Gultekin |
[109] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Hinsenveld |
[110] |
NR |
NR |
228 |
NR |
NR |
NR |
|
Hofman |
[3] |
NR |
NR |
3 |
32 |
NR |
NR |
|
Kopp |
[111] |
NR |
NR |
7 |
NR |
NR |
NR |
|
Kroenke |
[112] |
NR |
NR |
18 |
NR |
NR |
NR |
|
Kulkarni |
[113] |
NR |
NR |
9 |
NR |
NR |
NR |
|
Liu |
[114] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Madsen |
[115] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Pallawi |
[116] |
NR |
NR |
5 |
NR |
NR |
NR |
|
Van Kalmthout |
[117] |
0 |
4 |
22 |
4 |
12.6 |
NR |
2019 |
Abufaraj |
[118] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Dekalo |
[119] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Demirci |
[120] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Donato |
[121] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Dyrberg |
[122] |
NR |
NR |
NR |
20 |
NR |
NR |
|
El Hajj |
[123] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Muehlematter |
[124] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Nandurkar |
[125] |
NR |
NR |
15 |
5 |
NR |
NR |
|
Uslu-Besli |
[126] |
NR |
NR |
6 |
NR |
NR |
NR |
|
Van Leeuwen |
[127] |
NR |
NR |
38 |
NR |
NR |
27.5 |
|
Yaxley |
[128] |
NR |
NR |
107 |
NR |
NR |
25.7 |
|
Yaxley |
[129] |
NR |
NR |
152 |
NR |
NR |
NR |
|
Yilmaz |
[130] |
NR |
NR |
2 |
NR |
NR |
NR |
2018 |
Al-Bayati |
[131] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Berger |
[132] |
NR |
NR |
6 |
NR |
NR |
NR |
|
Gorin |
[133] |
NR |
NR |
7 |
NR |
NR |
NR |
|
Grubmutter |
[134] |
NR |
NR |
10 |
NR |
NR |
NR |
|
Gupta |
[135] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Hruby |
[136] |
NR |
NR |
25 |
11 |
NR |
NR |
|
Lengana |
[137] |
NR |
NR |
NR |
25 |
NR |
NR |
|
Park |
[138] |
NR |
NR |
5 |
NR |
NR |
NR |
|
Rogasch |
[139] |
NR |
NR |
28 |
19 |
NR |
NR |
|
Taneja |
[140] |
NR |
NR |
NR |
NR |
NR |
0.03 |
|
Thalgott |
[141] |
NR |
NR |
15 |
2 |
NR |
NR |
2017 |
Hoffmann |
[142] |
NR |
NR |
3 |
4 |
NR |
NR |
|
Meyrick |
[143] |
NR |
NR |
12 |
12 |
NR |
NR |
|
Obek |
[144] |
NR |
NR |
15 |
NR |
NR |
NR |
|
Tulsyan |
[145] |
0 |
41 |
25 |
20 |
NR |
NR |
|
Uprimny |
[146] |
NR |
NR |
24 |
NR |
NR |
NR |
|
Van Leuwen |
[147] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Von Klot |
[148] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Zhang |
[149] |
NR |
NR |
14 |
NR |
NR |
NR |
2016 |
Budaus |
[150] |
NR |
NR |
12 |
NR |
NR |
NR |
|
Eiber |
[151] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Fendler |
[152] |
NR |
NR |
NR |
NR |
NR |
NR |
|
Maurer |
[153] |
NR |
NR |
41 |
NR |
NR |
NR |
Table 4: Changes after staging PSMA PET.
Change of Treatment
Pretreatment PSMA PET often permitted a change of treatment from what was based on conventional imaging [164]. Also selection of patients for active surveillance may be strengthened if PSMA PET only diagnosed local PCa [165,166]. The FLAME trial [158] showed that increased radiation therapy to DIL improved the survival free of BCR. The same trend was found in three singlearmed trials, DELINEATE, 5STAR, and 2SMART [167,168]. The trials studied moderate to ultra-fractionated EBRT radiation therapy that included a boost to the DIL. The three trials also used mpMRI to delineate DIL and pelvic LNM. Another trial used proton radiation for the boost for DIL [169]. Two other trials used a high dose rate brachytherapy boost to DIL [170,171]. New trials of boosting DIL may delineate the DIL by using a combination of pretreatment PSMA PET and mpMRI [159]. An adequate delineation of DIL also helps to de-escalate radiation therapy for the non-DIL zone of the prostate.
For patients undergoing ePLND, a per operative [111In]-In PSMA PET could detect positive sites in regional lymph nodes outside the standard template for the ePLND [172]. The finding motivates a more personalized removal of pelvic lymph nodes. Thus a per operative PSMA PET increased the extent of the primary surgery. In contrast, a study did found that patients did not live longer after ePLND if pelvic lymph nodes were negative for metastases by pretreatment PSMA PET [20].
Corresponding to the changes in staging with pretreatment PSMA PET staging in the da Silva publication [43], 60% of the patients had a changed treatment. Most changes were shifts from a palliative systemic treatment for patients with cM1 to a potentially curative treatment of the primary tumor for patients with miM0. Karagiannis [61] found that PSMA PET changed the planned EBRT for 61% of the patients, as shown in Figure 7. Changes of the EBRT may be regarding both the extent of the target field for the radiation therapy and the radiation dose.
Patients with oligometastatic PCa diagnosed by PSMA PET can be treated with MDT with or without systemic therapy and with or without local treatment [173,174]. An ongoing trial METANOVA (ClinicalTrials NCT06150417) studies radiation therapy for the prostate and up to ten metastatic sites. In the STAMPEDE trial of patients with metastatic PCa [175], local radiation therapy improved OS for patients with low volume-metastatic PCa but not for patients with high volume-metastatic PCa.
In the ORIOLE trial [176], 95% of the patients treated for all positive lesions diagnosed by PSMA PET lived 6 months without progression whereas only 62% of the patients who had at least one untreated lesion lived 6 months without progression (HR = 0.25, p = 0.006). The trial points out that treatment should be based on metastases diagnosed with PSMA PET. Li [28] studied patients with metastatic lesions, and found that a large tumor volume significantly increased the risk of progression. Patients with polymetastatic PCa diagnosed by PSMA PET should be treated with effective systemic therapy [171].
Figure 6: Change of treatment after pretreatment PSMA PET.
Discussion
The pretreatment PSMA PET often results in a change of the initial stage and the primary treatment for many patients with PCa. In the real world, pretreatment PSMA PET is increasingly used for patients with PCa because the scan is a more sensitive imaging modality than conventional imaging. Pretreatment PSMA PET met the challenge both regarding change of stage and change of primary treatment. The changes may have a positive impact on survival.
Pretreatment PSMA can lead to a more personalized primary treatment relative to that based on conventional imaging. The change of treatment after pretreatment PSMA PET is essential for a positive impact on survival. Downstaging to loco-regional PCa makes the patients candidates for primary treatment with a curative intent, and upstaging to metastatic PCa makes the patients candidates for MDT and systemic treatment. But it remains to be shown whether the more sensitive staging and the following adequate modifications of the primary treatment reduce recurrence and deaths of PCa.
Conclusion
Many centers use pretreatment PSMA PET for patients with HRPC. Many ongoing trials study the clinical efficacy of primary treatment that often is changed based on pretreatment PSMA PET. References
- von Eyben FE, Kairemo K, Kapp DS (2024) Prostate-Specific Antigen as an Ultrasensitive Biomarker for Patients with Early Recurrent Prostate Cancer: How Low Shall We Go? A Systematic Review. Biomedicines 12: 822.
- von Eyben R (2022) A Risk Model for Patients with PSA-Only Recurrence (Biochemical Recurrence) Based on PSA and PSMA PET/ CT: An Individual Patient Data Meta-Analysis. Cancers 15: 1035.
- Hofman MS (2020) Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395: 1208-1216.
- DAPROCA (2020) (Imaging of prostate cancer v 1.0) (Billiediagnostik ved prostatacancer version 1.0, in Danish). wwww daproca:billeddiagnostik_v20_admgodk091220pdf 2020: 1-27.
- Pienta KJ (2021) A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate Specific Membrane Antigen PET/CT with (18)F-DCFPyL in Prostate Cancer Patients (OSPREY). J Urol 206: 52-61.
- Surasi DS (2023) Diagnostic Performance and Safety of Positron Emission Tomography with (18)F-rhPSMA-7.3 in Patients with Newly Diagnosed Unfavourable Intermediate- to Very-high-risk Prostate Cancer: Results from a Phase 3, Prospective, Multicentre Study (LIGHTHOUSE). Eur Urol 83: 361-370.
- Vogel MME (2021) A survey among German-speaking radiation oncologists on PET-based radiotherapy of prostate cancer. Radiat Oncol 16: 82.
- Sundahl N (2021) When What You See Is Not Always What You Get: Raising the Bar of Evidence for New Diagnostic Imaging Modalities. Eur Urol 79: 565-567.
- Hoffmann MA, von Eyben F (2024) To see clearly is not enough. It is the action that counts. Transl Androl Urology 13: 454-457.
- Cornford P (2024) EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol 86: 148-163.
- Schaeffer EM (2023) Prostate Cancer, Version 4.2023, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 21: 10671096.
- Page MJ (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Rev Esp Cardiol 74: 790-799.
- van Leenders G (2020) The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am J Surg Pathol 44: e87-e99.
- von Eyben FE (2015) Radiotherapy Boost for the Dominant Intraprostatic Cancer Lesion-A Systematic Review and Meta-Analysis. Clin Genitourin Cancer 3: 189-197.
- Gabriele D (2016) Beyond D’Amico risk classes for predicting recurrence after external beam radiotherapy for prostate cancer: the Candiolo classifier. Radiat Oncol 11: 23.
- Chin J (2024) “Seeing Is Belieing”: Additive Utility of (68)Ga-PSMA-11 PET/CT in Prostate Cancer Diagnosis. Cancers 16: 1777.
- Fendler WP (2023) PSMA PET/CT: joint EANM procedure guideline/ SNMMI procedure standard for prostate cancer imaging 2.0. Eur J Nucl Med Mol Imaging 50: 1466-1486.
- Seifert R (2023) Second Version of the Prostate Cancer Molecular Imaging Standardized Evaluation Framework Including Response Evaluation for Clinical Trials PROMISE V2). Eur Urol 83: 405-412.
- Nyaga VN, Arbyn M, Aerts M (2014) Metaprop: a Stata command to perform meta-analysis of binomial data. Arch Public Health 72: 39.
- Incesu RB (2025) Negative PSMA PET can be used to avoid unnecessary pelvic lymph node dissection in intermediate risk prostate cancer. Prostate Cancer Prostatic Dis, published ahead of print 2025.
- Madsen C (2025) Prospective Head-to-Head Comparison of (18) F-PSMA PET/CT and (18)F-NaF PET/CT for Assessing Bone Metastases in 160 Patients with Newly Diagnosed High-Risk Prostate Cancer. J Nucl Med, published ahead of print 66: 223-229.
- Bauckneht M (2024) The prognostic role of next-generation imagingdriven upstaging in newly diagnosed prostate cancer patients. Eur J Nucl Med Mol Imaging 51: 864-870.
- Donswijk ML (2024) The accuracy and intra- and interobserver variability of PSMA PET/CT for the local staging of primary prostate cancer. Eur J Nucl Med Mol Imaging 14: 99.
- Gauthaman DK, Luthra K, Lele V (2024) Comparison of Ga-68 PSMA PET/CT and Multiparametric MRI for Initial Detection and Staging of Prostate Cancer. World J Nucl Med 23: 79-87.
- Heetman JG (2024) The additional value of (68)Ga-PSMA PET/CT SUVmax in predicting ISUP GG >/= 2 and ISUP GG >/= 3 prostate cancer in biopsy. Prostate 84: 1025-1032.
- Huebner NA (2024) Clinical parameters for the prediction of occult lymph node metastasis in patients with negative PSMA-PET. Urol Oncol 42: 115e9-115e16.
- Karpinski MJ (2024) Combining PSMA-PET and PROMISE to redefine disease stage and risk in patients with prostate cancer: a multicentre retrospective study. Lancet Oncol 25: 1188-1201.
- Li Y (2024) Initial [18F]DCFPyL PET/CT in treatment-naive prostate cancer: correlation with post-ADT PSA outcomes and recurrence. Eur J Nucl Med Mol Imaging 51: 2458-2466.
- Luining WI (2024) The Probability of Metastases Within Different Prostate-specific Antigen Ranges Using Prostate-specific Membrane Antigen Positron Emission Tomography in Patients with Newly Diagnosed Prostate Cancer. Eur Urol Open Sci 59: 55-62.
- Madendere S (2024) Rational use of Ga-68 PSMA PET-CT according to nomograms and risk groups for the detection of lymph node metastasis in prostate cancer. Urol Oncol 42: 29e9-29e15.
- Mai Z (2024) Comparisons of mpMRI, (68)Ga-PSMA PET/CT and mpMRI combined with (68)Ga-PSMA PET/CT in diagnosing prostate cancer based on tumor detection, localization and staging. World J Urol 42: 29.
- Mookerji N (2024) Fluorine-18 Prostate-Specific MembraneAntigen-1007 PET/CT vs Multiparametric MRI for Locoregional Staging of Prostate Cancer. JAMA Oncol 10: 1097-1103.
- Patel KS (2024) A comparison study of 68gallium-prostate-specific membrane antigen positron emission tomography-computedtomography and multiparametric magnetic resonance imaging for locoregional staging of prostate cancer. Urol Sci 35: 36-41.
- Prive BM (2024) Multiparametric MRI and (18)F-PSMA-1007 PET/CT for the Detection of Clinically Significant Prostate Cancer. Radiology 311: e231879.
- Qiao Z (2024) Diagnostic capability of 18F-PSMA PET-MRI and pelvic MRI plus bone scan in treatment-naive prostate cancer: a singlecenter paired validating confirmatory study. Int J Surg 110: 87-94.
- Rajwa P (2024) The diagnostic accuracy of (68) Ga-PSMA-PET/CT in primary staging of patients with high-risk nonmetastatic prostate cancer treated with radical prostatectomy: A single-center cohort analysis. Prostate 84: 74-78.
- Shanmugasundaram R (2024) Intra-individual comparison of prostatespecific membrane antigen positron emission tomography/computed tomography versus bone scan in detecting skeletal metastasis at prostate cancer diagnosis. BJU Int 133 Suppl 3: 25-32.
- Woo HH (2023) Multiparametric Magnetic Resonance Imaging of the Prostate and Prostate-specific Membrane Positron Emission Tomography Prior to Prostate Biopsy (MP4 Study). Eur Urol Open Sci 47: 119-125.
- Adiyat KT (2023) Negative predictive value of PSMA PET scan for lymph node staging in patients undergoing robotic radical prostatectomy and pelvic lymph node dissection. Int Urol Nephrol 55: 1453-1457.
- Bodar YJL (2023) Using prostate-specific membrane antigen positronemission tomography to guide prostate biopsies and stage men at high-risk of prostate cancer. BJU Int 132: 705-712.
- Chaloupka M (2023) Radical Prostatectomy without Prior Biopsy in Patients with High Suspicion of Prostate Cancer Based on Multiparametric Magnetic Resonance Imaging and Prostate-Specific Membrane Antigen Positron Emission Tomography: A Prospective Cohort Study. Cancers 15: 1266.
- Chandekar KR (2023) Comparison of 18 F-PSMA-1007 PET/CT With 68 Ga-PSMA-11 PET/CT for Initial Staging in Intermediate- and HighRisk Prostate Cancer. Clin Nucl Med 48: e1-e8.
- da Silva ACB (2023) Impact of Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography on the Therapeutic Decision of Prostate Carcinoma Primary Staging: A Retrospective Analysis at the Brazilian National Public Health System. Ann Surg Oncol 30: 4541-4549.
- Djaileb L (2023) Presurgical (68)Ga-PSMA-11 Positron Emission Tomography for Biochemical Recurrence Risk Assessment: A Followup Analysis of a Multicenter Prospective Phase 3 Imaging Trial. Eur Urol 84: 588-596.
- Du X (2023) Baseline PSMA-PET/CT as a predictor of PSA persistence following radical prostatectomy in high-risk nonmetastatic prostate cancer patients receiving neoadjuvant therapy. Prostate 83: 11121120.
- Hope TA (2023) Do Bone Scans Overstage Disease Compared with PSMA PET at Initial Staging? An International Multicenter Retrospective Study with Masked Independent Readers. J Nucl Med 64: 1744-1747.
- Kubilay E (2022) Significance of metabolic tumor volume and total lesion uptake measured using Ga-68 labelled prostate-specific membrane antigen PET/CT in primary staging of prostate cancer. Urol Oncol 40: 408e19-408e25.
- Pepe P (2023) (68)Ga-PSMA PET/CT and Prostate Cancer Diagnosis: Which SUVmax Value? In Vivo 37: 1318-1322.
- Seifert R (2023) A Prognostic Risk Score for Prostate Cancer Based on PSMA PET-derived Organ-specific Tumor Volumes. Radiology 307: e222010.
- Weitzer F (2023) Diagnostic value of two-time point [(68)Ga]GaPSMA-11 PET/CT inthe primary staging of untreated prostate cancer. Sci Rep 13: 8297.
- Zheng A (2023) The prognostic value of (18)F-PSMA-1007 PET/ CT in predicting pathologicl upgrading of newly diagnosed prostate cancer from systematic biopsy to radical protatectomy. Front Oncol 13: 1169189.
- Arslan A (2022) Comparing the Diagnostic Performance of Multiparametric Prostate MRI Versus 68Ga-PSMA PET-CT in the Evaluation Lymph Node Involvement and Extraprostatic Extension. Acad Radiol 29: 698-704.
- Baas DJH (2022) Preoperative PSMA-PET/CT as a predictor of biochemical persistence and early recurrence following radical prostatectomy with lymph node dissection. Prostate Cancer Prostatic Dis 25: 65-70.
- Barbosa ARG (2022) Accuracy of 68Ga-PSMA PET-CT and PETMRI in lymph node staging for localized prostate cancer. Einstein 20: eAO6599.
- Bodar YJL (2022) Prospective analysis of clinically significant prostate cancer detection with [(18)F]DCFPyL PET/MRI compared to multiparametric MRI: a comparison with the histopathology in the radical prostatectomy specimen, the ProStaPET study. Eur J Nucl Med Mol Imaging 49: 1731-1742.
- Erdem S (2022) How accurate is (68)Gallium-prostate specific membrane antigen positron emission tomography / computed tomography ((68)Ga-PSMA PET/CT) on primary lymph node staging before radical prostatectomy in intermediate and high risk prostate cancer? A study of patient- and lymph node- based analyses. Urol Oncol 40: 6 e1-6 e9.
- Ferraro DA (2022) (68)Ga-PSMA-11 PET/MRI versus multiparametric MRI in men referred for prostate biopsy: primary tumour localization and interreader agreement. Eur J Hybrid Imaging 6: 14.
- Hermsen R (2022) Lymph node staging with fluorine-18 prostate specific membrane antigen 1007-positron emission tomography/ computed tomography in newly diagnosed intermediate- to high-risk prostate cancer using histopathological evaluation of extended pelvic node dissection as reference. Eur J Nucl Med Mol Imaging 49: 39293937.
- Hoffmann MA (2022) Primary Staging of Prostate Cancer Patients with [(18)F]PSMA-1007 PET/CT Compared with [(68)Ga]Ga-PSMA-11 PET/CT. J Clin Med 11: 5064.
- Ingvar J (2022) Assessing the accuracy of [(18)F]PSMA-1007 PET/ CT for primary staging of lymph node metastases in intermediate- and high-risk prostate cancer patients. EJNMMI Res 12: 48.
- Karagiannis V (2022) Radiotherapy treatment modificaton for prostate fancer patients based on PSMA PET/CT. Radiat Oncol 17: 19.
- Langbein T (2022) Utility of (18)F-rhPSMA-7.3 PET for Imaging of Primary Prostate Cancer and Preoperative Efficacy in N-Staging of Unfavorable Intermediate- to Very High-Risk Patients Validated by Histopathology. J Nucl Med 63: 1334-1342.
- Lenis AT (2022) Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography Compared with Conventional Imaging for Initial Staging of Treatment-naive Intermediate- and Highrisk Prostate Cancer: A Retrospective Single-center Study. Eur Urol Oncol 5: 544-552.
- Meissner VH (2022) Radical Prostatectomy Without Prior Biopsy Following Multiparametric Magnetic Resonance Imaging and Prostatespecific Membrane Antigen Positron Emission Tomography. Eur Urol 82: 156-160.
- Moreira LF (2022) Accuracy of (68)Ga-PSMA PET/CT for lymph node and bone primary staging in prostate cancer. Urol Oncol 40: 104 e17-e21.
- Nuo Y (2022) Efficacy of (68)Ga-PSMA-11 PET/CT with biparametric MRI in diagnosing prostate cancer and predicting risk stratification: a comparative study. Quant Imaging Med Surg 12: 53-65.
- Parathithasan N (2022) Combination of MRI prostate and 18F-DCFPyl PSMA PET/CT detects all clinically significant prostate cancers in treatment-naive patients: An international multicentre retrospective study. J Med Imaging Radiat Oncol 66: 927-935.
- Roberts MJ (2022) Primary tumour PSMA intensity is an independent prognostic biomarker for biochemical recurrence-free survival following radical prostatectomy. Eur J Nucl Med Mol Imaging 49: 3289-3294.
- Skawran SM (2022) Primary staging in patients with intermediate- and high-risk prostate cancer: Multiparametric MRI and (68)Ga-PSMAPET/MRI - What is the value of quantitative data from multiparametric MRI alone or in conjunction with clinical information? Eur J Radiol 146: 110044.
- Sonni I (2022) Head-to-Head Comparison of (68)Ga-PSMA-11 PET/ CT and mpMRI with a Histopathology Gold Standard in the Detection, Intraprostatic Localization, and Determination of Local Extension of Primary Prostate Cancer: Results from a Prospective Single-Center Imaging Trial. J Nucl Med 63: 847-854.
- Szigeti F (2022) Incremental Impact of [(68) Ga]Ga-PSMA-11 PET/CT in Primary N and M Staging of Prostate Cancer Prior to Curative-Intent Surgery: a Prospective Clinical Trial in Comparison with mpMRI. Mol Imaging Biol 24: 50-59.
- Zacho HD (2022) The clinical consequences of routine (68)GaPSMA-11 PET/CT in patients with newly diagnosed prostate cancer, ISUP grade 5 and no metastases based on standard imaging - preliminary results. Scand J Urol 56: 353-358.
- Zhang T (2022) Role of (18)F-DCFPyL PET/CT in patients with suspected prostate cancer. Hell J Nucl Med 25: 11-18.
- Amiel T (2021) Regional Lymph Node Metastasis on Prostate Specific Membrane Antigen Positron Emission Tomography Correlates with Decreased Biochemical Recurrence-Free and Therapy-Free Survival after Radical Prostatectomy: A Retrospective Single-Cente Single-Arm Observational Study. J Urol 205: 1663-1670.
- Anttinen M (2021) A Prospective Comparison of (18)F-prostate-specific Membrane Antigen-1007 Positron Emission Tomography Computed Tomography, Whole-body 1.5 T Magnetic Resonance Imaging with Diffusion-weighted Imaging, and Single-photon Emission Computed Tomography/Computed Tomography with Traditional Imaging in Primary Distant Metastasis Staging of Prostate Cancer (PROSTAGE). Eur Urol Oncol 4: 635-644.
- Aydos U (2021) The role of histopathological and biochemical parameters for predicting metastatic disease on (68) Ga-PSMA-11 PET in prostate cancer. Prostate 81: 1337-1348.
- Bodar YJL (2021) Detection of prostate cancer with (18)F-DCFPyL PET/CT compared to final histopathology of radical prostatectom1y specimens: is PSMA-targeted biopsy feasible? The DeTeCT trial. World J Urol 39: 2439-2446.
- Chikatamarla VA (2021) Risk of metastatic disease using [(18)F] PSMA-1007 PET/CT for primary prostate cancer staging. EJNMMI Res 11: 128.
- Emmett L (2021) The Additive Diagnostic Value of Prostate-specific Membrane Antigen Positron Emission Tomography Computed Tomography to Multiparametric Magnetic Resonance Imaging Triage in the Diagnosis of Prostate Cancer (PRIMARY): A Prospective Multicentre Study. Eur Urol 80: 682-689.
- Esen T (2021) (68)Ga-PSMA-11 Positron Emission Tomography/ Computed Tomography for Primary Lymph Node Staging Before Radical Prostatectomy: Central Review of Imaging and Comparison with Histopathology of Extended Lymphadenectomy. Eur Urol Focus 7: 288-293.
- Franklin A (2021) Histological comparison between predictive value of preoperative 3-T multiparametric MRI and (68) Ga-PSMA PET/CT scan for pathological outcomes at radical prostatectomy and pelvic lymph node dissection for prostate cancer. BJU Int 127: 71-79.
- Harsini S (2021) A Prospective Study on [(68)Ga]-PSMA PET/CT Imaging in Newly Diagnosed Intermediate- and High-Risk Prostate Cancer. Asia Ocean J Nucl Med Biol 9: 101-110.
- Hope TA (2021) Diagnostic Accuracy of 68Ga-PSMA-11 PET for Pelvic Nodal Metastasis Detection Prior to Radical Prostatectomy and Pelvic Lymph Node Dissection: A Multicenter Prospective Phase 3 Imaging Trial. JAMA Oncol 7: 1635-1642.
- Jansen BHE (2021) Pelvic lymph-node staging with (18)F-DCFPyL PET/CT prior to extended pelvic lymph-node dissection in primary prostate cancer - the SALT trial. Eur J Nucl Med Mol Imaging 48: 509520.
- Jiao J (2021) Establishment and prospective validation of an SUV(max) cutoff value to discriminate clinically significant prostate cancer from benign prostate diseases in patients with suspected prostate cancer by (68)Ga-PSMA PET/CT: a real-world study. Theranostics 11: 83968411.
- Klingenberg S (2021) (68)Ga-PSMA PET/CT for Primary Lymph Node and Distant Metastasis NM Staging of High-Risk Prostate Cancer. J Nucl Med 62: 214-220.
- Koerber SA (2021) Predicting the Risk of Metastases by PSMA-PET/ CT-Evaluation of 335 Men with Treatment-Naive Prostate Carcinoma. Cancers 13: 1508.
- Koseoglu E (2021) Diagnostic ability of Ga-68 PSMA PET to detect dominant and non-dominant tumors, upgrading and adverse pathology in patients with PIRADS 4-5 index lesions undergoing radical prostatectomy. Prostate Cancer Prostatic Dis 24: 202-209.
- Kwan TN (2021) Performance of Ga-68 PSMA PET/CT for diagnosis and grading of local prostate cancer. Prostate Int 9: 107-112.
- Liu Y (2021) Comparison between (18) F-DCFPyL PET and MRI for the detection of transition zone prostate cancer. Prostate 81: 13291336.
- Lopci E (2021) Prospective Evaluation of (68)Ga-labeled Prostatespecific Membrane Antigen Ligand Positron Emission Tomography/ Computed Tomography in Primary Prostate Cancer Diagnosis. Eur Urol Focus 7: 764-771.
- Malaspina S (2021) Prospective comparison of (18)F-PSMA-1007 PET/CT, whole-body MRI and CT in primary nodal staging of unfavourable intermediate- and high-risk prostate cancer. Eur J Nucl Med Mol Imaging 48: 2951-2959.
- Margel D (2021) Diagnostic Performance of (68)Ga Prostate-specific Membrane Antigen PET/MRI Compared with Multiparametric MRI for Detecting Clinically Significant Prostate Cancer. Radiology 301: 379386.
- Meijer D (2021) The Predictive Value of Preoperative Negative Prostate Specific Membrane Antigen Positron Emission Tomography Imaging for Lymph Node Metastatic Prostate Cancer. J Urol 205: 1655-1662.
- Meijer D (2021) External Validation and Addition of Prostate-specific Membrane Antigen Positron Emission Tomography to the Most Frequently Used Nomograms for the Prediction of Pelvic Lymph-node Metastases: an International Multicenter Study. Eur Urol 80: 234-242.
- Onal C (2021) Clinical parameters and nomograms for predicting lymph node metastasis detected with (68) Ga-PSMA-PET/CT in prostate cancer patients candidate to definitive radiotherapy. Prostate 81: 648-656.
- Prive BM (2021) Evaluating F-18-PSMA-1007-PET in primary prostate cancer and comparing it to multi-parametric MRI and histopathology. Prostate Cancer Prostatic Dis 24: 423-430.
- Qiu X (2021) Prediction of Biochemical Recurrence After Radical Prostatectomy Based on Preoperative (68)Ga-PSMA-11 PET/CT. Front Oncol 11: 745530.
- Scobioala S (2021) Diagnostic efficiency of hybrid imaging using PSMA ligands, PET/CT, PET/MRI and MRI in identifying malignant prostate lesions. Ann Nucl Med 35: 628-638.
- Wondergem M (2021) (18)F-DCFPyL PET/CT for primary staging in 160 high-risk prostate cancer patients; metastasis detection rate, influence on clinical management and preliminary results of treatment efficacy. Eur J Nucl Med Mol Imaging 48: 521-531.
- Zhang LL (2021) (68)Ga-PSMA PET/CT targeted biopsy for the diagnosis of clinically significant prostate cancer compared with transrectal ultrasound guided biopsy: a prospectiv randomized singlecentre study. Eur J Nucl Med Mol Imaging 48: 483-492.
- Brauchli D (2020)Tumour-capsule interface measured on 18F-DCFPyL PSMA positron emission tomography/CT imaging comparable to multiparametric MRI in predicting extra-prostatic extension of prostate cancer at initial staging. J Med Imaging Radiat Oncol 64: 829-838.
- Celen S (2020) Comparison of 68Ga-PSMA-I/T PET-CT and Multiparametric MRI for Locoregional Staging of Prostate Cancer Patients: A Pilot Study. Urol Int 104: 684-691.
- Chandra P (2020) Carcinomas with Prostate-Specific Antigen <50 ng/ ml. Indian J Nucl Med 35: 283-290.
- Chen M (2020) Comparison of (68)Ga-prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) and multi-parametric magnetic resonance imaging (MRI) in the evaluation of tumor extension of primary prostate cancer. Transl Androl Urol 9: 382-390.
- Cytawa W (2020) (68)Ga-PSMA I&T PET/CT for primary staging of prostate cancer. EurJ Nucl Med Mol Imaging 47: 168-177.
- Donswijk (2020) Clinical impact of PSMA PET/CT in primary prostate cancer compared with conventional nodal and distant staging: a retrospective single center study. BMC Cancer 20: 723.
- Frumer M (2020) A comparison between (68)Ga-labeled prostatespecific membrane antigen-PET/CT and multiparametric MRI for excluding regional metastases prior to radical prostatectomy. Abdom Radiol 45: 4194-4201.
- Gultekin MH (2020) The Role of 68GA-PSMA PET/CT Scan In Patients with Prostate Adenocarcinoma who Underwent Radical Prostatectomy. Urol J 18: 58-65.
- Hinsenveld FJ (2020) Prostate-Specific Membrane Antigen PET/CT Combined with Sentinel Node Biopsy for Primary Lymph Node Staging in Prostate Cancer. J Nucl Med 61: 540-545.
- Kopp J (2020) (68)Ga-PSMA PET/CT based primary staging and histological correlation after extended pelvic lymph node dissection at radical prostatectomy. World J Urol 38: 3085-3090.
- Kroenke M (2020) Histologically Confirmed Diagnostic Efficacy of (18) F-rhPSMA-7 PET for N-Staging of Patients with Primary High-Risk Prostate Cancer. J Nucl Med 61: 710-715.
- Kulkarni SC, Sundaram PS, Padma S (2020) In primary lymph nodal staging of patients with high-risk and intermediate-risk prostate cancer, how critical is the role of Gallium-68 prostate-specific membrane antigen positron emission tomography-computed tomography? Nucl Med Commun 41: 139-146.
- Liu C (2020) (68)Ga-PSMA PET/CT Combined with PET/UltrasoundGuided Prostate Biopsy Can Diagnose Clinically Significant Prostate Cancer in Men with Previous Negative Biopsy Results. J Nucl Med 61: 1314-1319.
- Madsen C, Ostergren P, Haarmark C (2020) The Value of (68)GaPSMA PET/CT Following Equivocal (18)F-NaF PET/CT in Prostate Cancer Patients. Diagnostics 10: 352.
- Pallavi UN (2020) Incremental Value of Ga-68 Prostate-Specific Membrane Antigen-11 Positron-Emission Tomography/Computed Tomography Scan for Preoperative Risk Stratification of Prostate Cancer. Indian J Nucl Med 35: 93-99.
- van Kalmthout LWM (2020) Prospective Validation of Gallium-68 Prostate Specific Membrane Antigen-Positron Emission Tomography/ Computerized Tomography for Primary Staging of Prostate Cancer. J Urol 203: 537-545.
- Abufaraj M (2019) Prospective evaluation of the performance of [(68) Ga]Ga-PSMA-11 PET/CT(MRI) for lymph node staging in patients undergoing superextended salvage lymph node dissection after radical prostatectomy. Eur J Nucl Med Mol Imaging 46: 2169-2177.
- Dekalo S (2019) 68Ga-PSMA PET/CT: Does it predict adverse pathology findings at radical prostatectomy? Urol Oncol 37: 574 e19-e24.
- Demirci E (2019) Can SUVmax values of Ga-68-PSMA PET/CT scan predict the clinically significant prostate cancer? Nucl Med Commun 40: 86-91.
- Donato P (2019) Improved specificity with (68)Ga PSMA PET/CT to detect clinically significant lesions “invisible” on multiparametric MRI of the prostate: a single institution comparative analysis with radical prostatectomy histology. Eur J Nucl Med Mol Imaging 46: 20-30.
- El Hajj A (2019) Diagnostic performance of Gallium-68 prostatespecific membrane antigen positron emission tomography-computed tomography in intermediate and high risk prostate cancer. Medicine 98: e17491.
- Muehlematter UJ (2019) Diagnostic Accuracy of Multiparametric MRI versus (68)Ga-PSMA-11 PET/MRI for Extracapsular Extension and Seminal Vesicle Invasion in Patients with Prostate Cancer. Radiology 293: 350-358.
- Nandurkar R (2019) (68)Ga-HBEDD PSMA-11 PET/CT staging prior to radical prostatectomy in prostate cancer patients: Diagnostic and predictive value for the biochemical response to surgery. Br J Radiol 92: 20180667.
- Uslu-Besli L (2019) Comparison of Ga-68 PSMA positron emission tomography/computerized tomography with Tc-99m MDP bone scan in prostate cancer patients. Turk J Med Sci 49: 301-310.
- van Leeuwen PJ (2019) Gallium-68-prostate-specific membrane antigen ((68) Ga-PSMA) positron emission tomography (PET)/ computed tomography (CT) predicts complete biochemical response from radical prostatectomy and lymph node dissection in intermediate- and high-risk prostate cancer. BJU Int 124: 62-68.
- Yaxley JW (2019) Outcomes of Primary Lymph Node Staging of Intermediate and High Risk Prostate Cancer with (68)Ga-PSMA Positron Emission Tomography/Computerized Tomography Compared to Histological Correlation of Pelvic Lymph Node Pathology. J Urol 201: 815-820.
- Yaxley JW (2019) Risk of metastatic disease on (68) gallium-prostatespecific membrane antigen positron emission tomography/computed tomography scan for primary staging of 1253 men at the diagnosis of prostate cancer. BJU Int 124: 401-407.
- Yilmaz B (2019) Comparison of preoperative locoregional Ga68 PSMA-11 PET-CT and mp-MRI results with postoperative histopathology of prostate cancer. Prostate 79: 1007-1017.
- Al-Bayati M (2018) Integrated 68Gallium Labelled Prostate-Specific Membrane Antigen-11 Positron Emission Tomography/Magnetic Resonance Imaging Enhances Discriminatory Power of MultiParametric Prostate Magnetic Resonance Imaging. Urol Int 100: 164171.
- Berger I (2018) (68)Ga-PSMA PET/CT vs. mpMRI for locoregional prostate cancer staging: correlation with final histopathology. Prostate Cancer Prostatic Dis 21: 204-211.
- Dyrberg E (2019) (68)Ga-PSMA-PET/CT in comparison with (18) F-fluoride-PET/CT and whole-body MRI for the detection of bone metastases in patients with prostate cancer: a prospective diagnostic accuracy study. Eur Radiol 29: 1221-1230.
- Gorin MA (2018) Prostate Specific Membrane Antigen Targeted (18) F-DCFPyL Positron Emission Tomography/Computerized Tomography for the Preoperative Staging of High Risk Prostate Cancer: Results of a Prospective, Phase II, Single Center Study. J Urol 199: 126-132.
- Grubmuller B (2018) PSMA ligand PET/MRI for primary prostate cancer: Staging performance and clinical impact. Clin Cancer Res 24: 6300-6307.
- Gupta M (2018) Initial risk stratification and staging in prostate cancer with prostatic-specific membrane antigen positron emission tomography/computed tomography: A first-stop-shop. World J Nucl Med 17: 261-269.
- Hruby G (2018) (68) Ga-PSMA-PET/CT staging prior to definitive radiation treatment for prostate cancer. Asia Pac J Clin Oncol 14: 343346.
- Lengana T (2018) (68)Ga-PSMA PET/CT Replacing Bone Scan in the Initial Staging of Skeletal Metastasis in Prostate Cancer: A Fait Accompli? Clin Genitourin Cancer 16: 392-341.
- Park SY (2018) Gallium 68 PSMA-11 PET/MR Imaging in Patients with Intermediate. -or High-Risk Prostate Cancer. Radiology 288: 495-505.
- Rogasch JM (2018) Ga-68-PSMA PET/CT in treatment-naive patients with prostate cancer: Which clinical parameters and risk stratification systems best predict PSMA-poitive metastases? Prostate 14: 11031110.
- Taneja S (2018) Effect of Combined (68)Ga-PSMAHBED-CC Uptake Pattern and Multiparametric MRI Derived With Simultaneous PET/MRI in the Diagnosis of Primary Prostate Cancer: Initial Experience. AJR Am J Roentgenol 210: 1338-1345.
- Thalgott M (2018) One-stop shop whole-body (68)Ga-PSMA-11 PET/MRI compared to clinical Nomograms for preoperative T- and N-Staging of High-Risk Prostate Cancer. J Nucl Med 12: 1850-1856.
- Hoffmann MA (2017) Diagnostic performance of (68)Gallium-PSMA-11 PET/CT to detect significant prostate cancer and comparison with (18) FEC PET/CT. Oncotarget 8: 111073-111083.
- Meyrick DP (2017) The role of 68Ga-PSMA-I&T PET/CT in the pretreatment staging of primary prostate cancer. Nucl Med Commun 38: 956-963.
- Obek C (2017) The accuracy of (68)Ga-PSMA PET/CT in primary lymph node staging in high-risk prostate cancer. Eur J Nucl Med Mol Imaging 44: 1806-1812.
- Tulsyan S (2017) Comparison of 68Ga-PSMA PET/CT and multiparametric MRI for staging of hig-risk prostate cancer68Ga-PSMA PET and MRI in prostate cancer. Nucl Med Commn 38: 1094-1102.
- Uprimny C (2017) (68)Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and leason score predict the intensity of tracer accumulation in the primary tumour. Eur J Nul Med Mol Imaging 44: 941-949.
- van Leeuwen PJ (2017) Prospective evaluation of 68Gallium-prostatespecific membrane antigen positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer. BJU Int 119: 209-215.
- von Klot CJ (2017) (68)Ga-PSMA PET/CT Imaging Predicting Intraprostatic Tumor Extent, Extracapsular Extension and Seminal Vesicle Invasion Prior to Radical Prostatectomy in Patients with Prostate Cancer. Nucl Med Mol Imaging 51: 314-322.
- Zhang Q (2017) Comparison of (68)Ga-PSMA-11 PET-CT with mpMRI for preoperative lymph node staging in patients with intermediate to high-risk prostate cancer. J Transl Med 15: 230.
- Budaus L (2016) Initial Experience of (68)Ga-PSMA PET/CT Imaging in High-risk Prostate Cancer Patients Prior to Radical Prostatectomy. Eur Urol 69: 393-396.
- Eiber M (2016) Simultaneous Ga-PSMA HBED-CC PET/MRI Improves the Localization of Primary Prostate Cancer. Eur Urol 69: 393-396.
- Fendler WP (2016) 68Ga-PSMA-PET/CT detects the location and extent of primary prostate cancer. J Nucl Med 11: 1720-1725.
- Maurer T (2016) Diagnostic Efficacy of (68)Gallium-PSMA Positron Emission Tomography Compared to Conventional Imaging for Lymph Node Staging of 130 Consecutive Patients with Intermediate to High Risk Prostate Cancer. J Urol 195: 1436-1443.
- Lisney AR (2022) The Role of PSMA PET/CT in the Primary Diagnosis and Follow-Up o Prostate Cancer - A Practical Clinical Review. Cancers 14: 3638.
- Bodar YJL, Donswijk ML (2022) Standardised uptake values as determined on prostate-specific membrane antigen positron emission tomography/computed tomography is associated with oncological outcomes in patients with prostate cancer. BJU Int 129: 768-776.
- Zhao G, Ji B (2022) Head-To-Head Comparison of (68)Ga-PSMA-11 PET/CT and (99m)Tc-MDP Bone Scintigraphy for the Detection of Bone Metastases in Patients With Prostate Cancer: A Meta-Analysis. AJR Am J Roentgenol 219: 386-395.
- Lanfranchi F (2023) Oligometastatic Prostate Cancer Treated with Metastasis-Directed Therapy Guided by Positron Emission Tomography: Does the Tracer Matter? Cancers 15: 323.
- Kerkmeijer LGW (2021) Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for Patients with With Localized Prostate Cancer: Results from the FLAME Randomized Phase III Trial. J Clin Oncol 39: 787-796.
- Gaudreault M (2022) Feasibility of bology-guided radiotherapy using PSMA-PET to boost to dominant intraprostatic tumour. Clin Trans Radiat Oncol 35: 84-89.
- Zamboglou C (2022) PSMA-PET- and MRI-Based Focal Dose Escalated Radiation Therapy of Primary Prostate Cancer: Planned Safety Analysis of a Nonrandomized 2-Armed Phase 2 Trial (ARO202001). Int J Radiat Oncol Biol Phys 113: 1025-1035.
- Menard C (2022) PSMA PET/CT guided intensification of therapy in patients at risk of advanced prostate cancer (PATRON): a pragmatic phase III randomized controlled trial. BMC Cancer 22: 251.
- Sood A (2024) The Impact of Positron Emission Tomography Imaging and Tumor Molecular Profiling on Risk Stratification, Treatment Choice, and Oncological Outcomes of Patients with Primary or Relapsed Prostate Cancer: An International Collaborative Review of the Existing Literature. Eur Urol Oncol 7: 27-43.
- Klingenberg S (2022) Recurrence rate after radical prostatectomy following primary staging of high-risk prostate cancer with (68)GaPSMA PET/CT. Acta Oncol 61: 1289-1294.
- Houshmand S, Lawhn-Heath C, Behr S (2023) PSMA PET imaging in the diagnosis and management of prostate cancer. Abdom Radiol 48: 3610-3623.
- Pozdnyakov A (2023) The impact of PSMA PET on the treatment and outcomes of men with biochemical recurrence of prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 26: 240-248.
- Deek MP (2022) Long-Term Outcomes and Genetic Predictors of Response to Metastasis-Directed Therapy Versus Observation in Oligometastatic Prostate Cancer: Analysis of STOMP and ORIOLE Trials. J Clin Oncol 40: 3377-3382.
- Tree AC (2023) Standard and Hypofractionated Dose Escalation to Intraprostatic Tumor Nodules in Localized Prostate Cancer: 5-Year Efficacy and Toxicity in the DELINEATE Trial. Int J Radiat Oncol Biol Phys 115: 305-316.
- Ong WL (2023) To Boost or Not to Boost: Pooled Analyses From 2-Fraction SABR Trials for Localized Prostate Cancer. Int J Radiat Oncol Biol Phys 117: 1153-1162.
- Wang T (2020) A planning study of focal dose escalations to multiparametric MRI-defined dominant intraprostatic lesions in prostate proton radiation therapy. Br J Radiol 93: 20190845.
- Helou J (2015) High dose-rate brachytherapy boost for intermediate risk prostate cancer: Long-term outcomes of two different treatment schedules and early biochemical predictors of success. Radiother Oncol 115: 84-89.
- Wegener E (2024) Prostate Virtual High-dose-rate Brachytherapy Boost: 5-Year Results from the PROMETHEUS Prospective Multicentre Trial. Eur Urol Oncol 7: 1042-1050.
- Schilham MGM (2024) Prostate-Specific Membrane Antigen-Targeted Radioguided Pelvic Lymph Node Dissection in Newly Diagnosed Prostate Cancer Patients with a Suspicion of Locoregional Lymph Node Metastases: The DETECT Trial. J Nucl Med 65: 423-429.
- Weiner AB (2024) Impact of PSMA PET on Prostate Cancer Management. Curr Treat Options Oncol 25: 191-205.
- Conde-Moreno AJ (2024) A Phase II Trial of Stereotactic Body Radiation Therapy and Androgen Deprivation for Oligometastases in Prostate Cancer (SBRT-SG 05). Pract Radiat Oncol 14: e344-e352.
- Parker CC (2018) Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet 392: 2353-2366.
- Phillips R (2020) Outcomes of Observation vs Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer: The ORIOLE Phase 2 Randomized Clinical Trial. JAMA Oncol 6: 650-659.
© by the Authors & Gavin Publishers. This is an Open Access Journal Article Published Under Attribution-Share Alike CC BY-SA: Creative Commons Attribution-Share Alike 4.0 International License. Read More About Open Access Policy.