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Abstract

This study investigates the feasibility of estimating Ground Reaction Forces (GRFs) during various exercises using a wearable 
GPS sensor vest, combined with Artificial Neural Network (ANN) modelling. Traditional biomechanical assessments often 
rely on cumbersome optical motion capture systems and force platforms that limit real-world applicability. In contrast, 
this research leverages lightweight technology to gather kinematic data in natural training environments. A total of 6191 
observations for the left leg and 5981 for the right leg were recorded, with the ANN trained to correlate GPS sensor data with 
GRFs. The results demonstrate predictive solid performance, evidenced by high R² scores and low Root Mean Squared Error 
(RMSE) in both the development and hold-out datasets. While the left leg’s predictions were slightly less accurate than those 
for the right leg, the model proved effective overall in estimating GRFs. These findings suggest that wearable technology, 
when paired with ANN techniques, can provide reliable biomechanical insights outside controlled laboratory settings, paving 
the way for further research involving larger participant groups and diverse exercises. This study investigates the validity 
of using a wearable GPS sensor vest to estimate Ground Reaction Forces (GRFs) during various exercises, employing an 
Artificial Neural Network (ANN) model. Traditional methods for measuring GRFs, such as force platforms, are limited to 
controlled laboratory settings, hindering real-world applications in sports. Our research aims to bridge this gap by leveraging 
kinematic data obtained from the GPS vest, allowing for real-time monitoring in dynamic environments. A comprehensive 
experimental setup involving a professional athlete performing a series of exercises was established, utilizing both force 
platforms and wearable sensors. The ANN was trained to correlate the sensor data with GRFs, yielding promising results. 
Validation metrics, including R² and RMSE, demonstrated satisfactory accuracy of the model, particularly in predicting GRFs 
across different axes. The findings indicate that the proposed method can effectively estimate GRFs, providing valuable 
insights for performance optimization and injury prevention in sports. Future studies are recommended to expand the model’s 
applicability across a broader range of athletes and exercise types.
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Introduction

Motion analysis is increasingly gaining interest in the scientific 
community, especially in supporting the medical and performance 
teams around professional athletes. Understanding and applying 
biomechanics in sports brings objectivity in areas where decisions 
were traditionally governed by personal experience and intuition 
[1].

Among the most popular and well-established tools employed 
in sports environments for biomechanical analyses are optical 
motion capture systems, whereby camera arrays track passive or 
active markers placed on specific anatomical positions of the body 
to provide a full-body capture. Despite been extensively used in 
research for sports science applications, optical systems have the 
insurmountable problem of being confined to indoor laboratory 
settings [2,3].

In consideration of the need to overcome set-up limitations and 
to be able to set up limitations and conduct real-life monitoring in 
the actual training and game environment, wearable technology 
is becoming more and more increasingly available. Elite athletes 
have been the early adopters of such technologies, but the niche 
segment is ever growing and today, several sports in national 
and international associations are using wearable sensors. 
Athletes, coaches, performance, and medical teams have access 
to information on range of motion, accelerations, impacts, or other 
indicators, such as biometric markers, which, if properly interpreted 
and assessed, can assist them in maximizing performance and 
minimizing injury risk for their athletes [4,5].

The increased availability of wearable movement sensors, their 
small and lightweight design, and the advantage of providing real-
time feedback, contrary to motion capture or force plate systems, 
gives rise to the potential of an ever-increasing number of athletes 
to be monitored in their natural training and game environment 
[6,7]. Apart from physiological biometric characteristics, the 
possibility of monitoring the external biomechanical stresses is of 
immense value as it is the means to shift to the loads imposed on 
the body’s soft tissues, further offering a more direct assessment of 
injury risks for the individual motor units.

Regarding injury risk, ground reaction forces (GRFs) are 
indispensable as they provide a measure of the external forces 
applied, further breaking down to different internal stresses on the 
hard and soft tissues of the body’s construction. GRFs as the starting 
point of a series of internal organismic responses constituting the 
musculoskeletal adaptations [8,9]. In this respect, GRFs become a 
primary parameter of interest, whereby the external biomechanical 
loadings can be related to the responses of the tissue construction 
of the human body. These responses may be beneficial but may 
also significantly increase the risk for injury. The gold-standard 
measurement of GRFs is through the use of force platforms, 

which are nowadays highly accurate and can provide output for 
3-axis force and momentum components. However, they have the 
limitation of being cumbersome and practically not applicable to 
real environment field measurements.

Hence, for the past few years, researchers have been investigating 
techniques to estimate GRFs using wearable sensors. Several 
published works employ methods based on biomechanical 
modelling [10]. The number of interacting factors and complexity 
of these models make it more difficult to depict the whole dynamics, 
thus giving rise to modelling errors.

On the other hand, artificial neural network (ANN) algorithms are 
emerging as an attractive alternative to unveiling the correlations 
accompanying such complex systems. ANNs have been widely 
adopted to successfully simulate the relationships between selected 
inputs and outputs in many studies of human locomotion [11]. 
There is no “golden rule” for defining a proper neural network. A 
trial-and-error approach is quite common to arrive at an adequate 
description of the underlying phenomena. 

This study aims to assess the validity of a method to estimate 
GRFs during different exercises using a wearable GPS sensor vest. 
An ANN is defined and trained to depict the relationship between a 
component of acceleration and its corresponding component of the 
ground force, taking into consideration the interactions between 
the components on the different axes. 

Materials & Methods

Experimental Set-Up

The gait and movement analysis laboratory of ELEPAP Athens 
has:

10 3D recording cameras (3D Vicon Cameras)

2 2D recording digital cameras (Pentax & Panasonic digital 
Cameras)

2 power recording force platforms (AMTI)

3 portable electromyographs (Noraxon 8 channel)

1 footprint device (Medicapture)

1 portable muscle strength meter (Hoogan)

1 adjustable clinical examination bed

5 computers

7 different types of software for analysis of the above data

Measurements that can be performed on a case-by-case basis are 
3D Kinematic Analysis, 3D Kinetic Analysis, Muscle Strength 
Analysis, Walking Electromyogram, Footprint (static / equilibrium 
and dynamic), Clinical Examination, Equilibrium Analysis, etc.
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3D Kinematic Analysis

Kinematic Analysis records the joints’ angular track during 
movement on all three levels of the body. Furthermore, it records 
the spatio-temporal elements of movement, such as speed, distance, 
pacing pace, periods of support and swing, etc. It compares all 
joints, at each level for the right and left half, and at the same time 
compare them with the normal values.

3D Kinetic Analysis

Kinetic Analysis explains why the body moves this way. It analyzes 
the reaction forces from the ground to each joint at every level. In 
addition, it captures the torques applied to each joint, which results 
in the movement itself. Finally, it analyzes the power generation 
for each joint.

Electromyographic Examination

The electromyogram measures the electrical activity of muscles. It 
gives information about muscle activation during the execution of 
complex movements, and it is able to compare the right with the 
left half, at the same time simultaneously with the normal values.

Equilibrium Analysis

In Equilibrium Analysis, the body oscillation above the support 
base is evaluated. The pressure points and the magnitude of its 
deviation from the normal data are measured. The most valid tests 
are the conservation of balance with eyes open and closed. It can 
also assess whether there is an asymmetric charge between the 
lower extremities.

Method followed

The force plates were embedded in the laboratory floor. The 
athletes participating wore a vest consisting of GPS sensors and 
a gyroscope while performing a series of exercises. These sensors 
recorded a multi-dimensional input corresponds corresponding to 
the linear acceleration on the three axes of motion (x,y,z), three 
gyroscope measures, one for each axis (x,y,z), the speed and the 
instantaneous acceleration impulse. The output consists of the 
three-dimensional force components on the three spatial axes. 
Meanwhile the athletes were performing the exercises on the force 
plates measuring the GRFs.

Measurements from the GPS sensors were used as input data 
for the ANN, and the GRFs were the model’s outputs. Linear 
interpolation was applied to the data recorded by the GPS sensors 
in order for the input data to match the 10-fold lower sampling 
frequency of the force plate output data.

Experimental protocol

1 healthy professional athlete voluntarily participated in this 
research. The athletes were instructed to perform a series of 
exercises. Those exercises derive from 10 simple movements, which 

were selected from the NSCA Basics of Strength and Conditioning 
Manual [12], based on the assumption that all complex movements 
are the algebraic summary of those simple ones. When jumps were 
included, the exercise was performed on the center of the force 
plate to ensure consistency of the measurements.

The exercises were the following:

Exercise 1: The athlete, while standing on one foot, pushed off 
at maximal capacity to achieve a maximal-height vertical jump. 
He landed on the same foot, step stepped forward onto the second 
force plate with the other foot, and then immediately maneuvered 
to the other side. The exercise was executed two times, once for 
each leg. Figure 1 shows a series of still images of the key events 
of exercise 1.

Figure 1: Series of still images of exercise 1.

Exercise 2: The athlete, while standing on both feet, pushed off at 
maximal capacity to achieve a maximal-height vertical jump. He 
landed on both feet and then stepped forward on the second force 
plate with one foot and immediately maneuverer to the other side 
direction. The exercise was executed two times for each direction. 

Exercise 3: The athlete performed a rapid acceleration up to 
the center of the second force plate, where they abruptly made 
a sidestep-cutting manoeuvre with one leg stopping followed by 
sidestepping. The exercise was executed twice for each side.

Exercise 4: The athlete performed maximal acceleration efforts 
over the corridor of X m length where the force plates were 
embedded. 
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Exercise 5: The athlete performed maximal acceleration until 
they reached the second force plate, where they abruptly tried to 
decelerate as fast as possible.

Artificial neural network

Artificial neural networks consist of computational units that 
are interconnected to each other and distributed in layers. A 
feedforward network with backpropagation was utilized. The 
connections between units of continuous layers are weights. Input 
data is presented to the units of the first layer. From this layer, 
the data is forwarded to the units in the hidden layer while the 
data is forwarded to the units in the hidden layer while the data is 
forwarded to the units in the hidden layer, and the data is multiplied 
by the weight factor. In each receiving unit, the weighted data of all 
incoming connections is summed, and a bias term is added. Then, 
the summed input plus the bias term is processed by an activation 
function. This is the output value, which is then forwarded to the 
units of the next layer. By adjusting the weights, the network can 
be trained. In this study, it can find relationships between input and 
output patterns, which is the relationship between GPS sensor data 
and GRFs. To train a neural network, we provide data from both 
GRF measurements and GPS sensors for several conditions [13].

After the training is complete, the network can use one specific 
pattern. The power of an ANN is its ability to generalize 
`knowledge’ obtained during training for a selected set of 
situations to new situations for which it has not been trained. The 
quality of the predictions of a network is influenced by of several 
factors: the number of units within the network, the pre-defined 
error within the output, and also the relative amount of knowledge 
within the training set. A network cannot be appropriately trained 
to map patterns when it does not contain enough units. When the 
level of the minimum error is set too high, the network will not 
converge enough to learn the mapping of the pattern. When the 
level is set too low, there is a risk of overtraining the network, thus 
obstructing the network from generalizing and predicting output 
signals for data it has not been trained with. In this study, both 
the number of units in the network and the number of iterations, 
which are directly related to the pre-defined error, were assessed 
in a pilot study by optimizing the quality of the predictions. The 
independent variable in this study was the amount of information 

provided to an ANN. In general, a network is strained and a data 
set encompassing a wider range of information will incorporate 
a better mapping of a relationship than a network trained with a 
narrower range of information [14-16]. 

ANN Implementation

The dataset had 6191 observations for the left leg and 5981 for the 
right leg. The datasets were partitioned into a development and a 
hold-out sample, respectively. The hold-out samples consisted of a 
random sample of 495 observations (circa 8%) for the left leg and 
478 observations (circa 8%) for the right leg. For the development 
dataset, a 5cross-validation methodology was employed to get an 
unbiased estimate of model performance when making predictions 
on new data.

The ANN in this study was configured to model the relationship 
between training and testing data. Its flexible structure and many 
configurable internal parameters offered the additional value of 
capturing not only linear but also complex non-linear relationships. 
Calculations were carried out using Python (version 3.7). For the 
implementation, the NumPy [17], Pandas [18], Matplotlib [19], 
Sklearn [20], TensorFlow [21,22], and Keras [23] libraries were 
used from the Python environment.

An ANN architecture consisting of an input layer of 8 artificial 
neurons, 2 hidden layers of 32 neurons each, and an output layer, 
consisting of 3 neurons, was developed (Figure 2). To confront 
the regression problem and to avoid the output constraints of the 
sigmoidal activation function, a ReLU (Rectified Linear Units) 
activation function for the 2 hidden layers and a Linear activation 
function for the output layer were used. A ReLU activation 
function is a piecewise linear function that will output the input 
directly under the condition that it is positive or it will output 
zero otherwise. The aforementioned hyperparameters, as well 
as the choice of scalar, batch size, and number of epochs, were 
obtained via a 4:1 random sampling process on the development 
dataset into training and test datasets, with N=10 iterations for 
each combination of hyperparameters. The evaluation metric used 
, hence, to derive the optimum combination of hyperparameters 
and, hence, the optimum ANN architecture was the Mean Squared 
Error (MSE).
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Figure 2: Artificial Neural Network with 2 hidden layers.

Figure 3 illustrates the phases of the ANN model implementation. The initial step of model execution involves the scaling of data 
collected for each repetition of each different exercise. This routine involves the linear interpolation of GPS data in order to match the 
dimensions of the force data frames.

Figure 3: Data preparation and model development phases of the Artificial Neural Network (ANN) implementation.

Neurons have activation functions and are arranged in different horizontal layers, with multiple vertical layers possible. Within 
the hyperparameter grid search cross-validation optimization process, six processes were included in the sequence of ANN model 
construction: splitting the data into training and test datasets, scaling of input and output data, network training, network recollection, 
rescaling of input and output data and evaluating the model fit. These processes were repeated N=10 times for each parameter selection. 
Regarding the value of N, there is a trade-off between accuracy and computational complexity; i.e., as N increases, so does the accuracy 
of the described methodology, but so does the computational time need. To ascertain a more generalized indication of model performance, 
a sufficient number of trials was performed.
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The feedforward ANN model built as part of this study falls into 
the category of supervised learning methodologies. Supervised 
learning refers to the fact that during the training process, the 
network is provided with data that hold both the input data (GPS 
sensor measurements) and the simultaneously recorded output 
signal (Force plate measurements). This way, the output generated 
by the network and the actual output can be compared. The network 
is trained via the backpropagation algorithm, which refers to the 
process by which the weight factors and bias terms are adjusted to 
map the predicted and actual output patterns. Initially, the weight 
and bias term are set to random values. A specific input shape of 
data that is propagated through the network will consequently 
generate a random output value. Subsequently, the error between 
the predicted output and the actual output is calculated. This error 
signal is transmitted from the output layer to each unit in the 
previous layer. Since each unit in the previous layer contributes 
only partly to the output signal, each unit also receives only a 
portion of the total error signal. This process continues for each 
layer until every unit has received its error signal. The weights 
and biases related to a unit are adjusted based on the error signals. 
Iteratively executing the cycle of forwarding an input signal and 
adjusting the weights and biases causes the network to converge; 
the error between the generated and actual output is then minimized. 
The optimizer used within the backpropagation algorithm in order 
to train the feed-forward ANN model is the Adam optimizer, an 
extension of stochastic gradient descent, and the loss function 
used was the MSE. The iterative process stops when the number of 
epochs is covered. The resulting number of optimum epochs of the 
hyperparameter grid search performed via random sampling of the 
development dataset was 500 epochs.

Data analysis

Experimental data across both legs for one athlete was used for 
training and validating the ANN. To evaluate the performance 
of the optimum ANN model, as derived through the grid search 
optimization process described above, a five-fold cross-validation 
process was employed on the development dataset. This approach 
involves randomly dividing the set of observations into k=5 
groups, or folds, of approximately equal size. The first fold is 
treated as a validation set, and the method fits the remaining k − 
1 folds (training set). The average validation scores (k validation 
folds) are saved. This procedure was executed 30 times, and for 
the ANN prediction performance to be quantified, numerous 
evaluation metrics were considered, such as Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE), Root Mean 
Squared Error (RMSE) and R2, were used. For the purposes of this 
study, the R2 (which is scale independent) and RMSE (which is 
scale-dependent) metrics are utilized to depict the ANN’s overall 
performance. 

 

Results

The 3D kinetics data during the exercises were estimated using the 
ANN model. The predicted kinetics data are the spatial dimensions 
of the GRFs. The cost function of the ANN models trained on 
the development dataset and validated on the hold-out sample is 
depicted in Figures 4 and 5 for the left and right leg, respectively.

Figure 4: Cost function of the ANN model for an athlete on the 
left leg.

Figure 5: Cost function of the ANN model for an athlete on the 
right leg.

Figures 6 & 7 represent the actual/observed and predicted GRFs 
on the development dataset in the three spatial axes for the left and 
right leg, respectively.
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Figure 6: The measured (red) and predicted (blue) GRF in each of three axes, performed on the left leg for the development dataset.



Citation: Pomakidou S, Marmarinos C, Agrotou S, Moustogiannis A, Nikolopoulos A, et al. (2024) Wearable Motion Analysis in Sports: Advancing 
Biomechanical Insights Beyond the Laboratory. Chron Pain Manag 8: 165. DOI: 10.29011/2576-957X.100065

8 Volume 8; Issue 01
Chron Pain Manag, an open access journal
ISSN: 2576-957X

Figure 7: The measured (red) and predicted (blue) GRF in each of the three axes, performed on the right leg for the development dataset.

Numerical results for the R2 and RMSE scores across both models are presented in Tables 1 & 2 for the development dataset and in 
Tables 3 & 4 for the hold-out-sample. The R2 score, also known as the coefficient of determination, provides a statistical measure 
determining how close the fitted values are to the actual/target values. The RMSE is the standard deviation of the residuals (prediction 
errors). These measures give us an insight into the actual correlation between the predicted values and the actual values.

Left Leg Fx Fy Fz

5-fold CV average R2 score performed for N=30 iterations 0.971 0.919 0.991

5-fold CV average RMSE score performed for N=30 iterations 5.902 13.102 51.259

Table 1: R2 and RMSE scores of the development dataset for the GRF across the three axes of motion performed on the left leg.

Right Leg Fx Fy Fz

5-fold CV average R2 score performed for N=30 iterations 0.987 0.976 0.995

5-fold CV average RMSE score performed for N=30 iterations 5.133 8.803 41.768

Table 2: R2 and RMSE scores of the development dataset for the GRF across the three axes of motion performed on the right leg.

Tables 3 and 4 summarize the models’ overall performance for the hold-out sample. In addition, Figures 8 and 9 represent the actual/
observed and predicted GRFs on the hold-out sample in the three spatial axes for the left and right leg, respectively.
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Figure 8: The measured (red) and predicted (blue) GRF in each of the three axes, performed on the left leg for the hold-out sample.
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Figure 9: The measured (red) and predicted (blue) GRF in each of the three axes, performed on the right leg for the hold-out sample.

Left Leg Fx Fy Fz

R2 on the hold-out sample 0.954 0.865 0.995

RMSE on the hold-out dataset 6.157 14.854 36.029

Table 3: R2 and RMSE scores of the hold-out sample for the GRF across the three axes of motion performed on the left leg.

Right Leg Fx Fy Fz

R2 on the hold-out sample 0.966 0.953 0.991

RMSE on the hold-out dataset 7.588 11.675 55.159

Table 4: R2 and RMSE scores of the hold-out sample for the GRF across the three axes of motion performed on the right leg.

Discussion

So, has our claim that we found a valid method to estimate GRFs during different exercises using a wearable GPS sensor vest been 
verified? 

From the above results, we can make the following observations:

•	 From Figures 4 & 5, it can be verified that the training function and the validation loss functions (MSE) converge through time. 
This fact confirms that the model is accurate enough after completing the training process. It should be noted that the loss values of 
the left leg model, to the number of epochs utilized, appear to be higher and more volatile overall than the loss values of the right 
leg model.
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•	 From Figures 6 & 7, we notice that the forces on all three 
axes have little difference from the actual measurements. 
This means that the estimation accuracy of the model is 
satisfactory for predicting the forces since the estimated ones 
mostly coincide with the actual measurements. 

•	 From Tables 1, 2, 3 & 4, the R2 validation scores for the left 
leg were generally lower, and the RMSE scores were higher 
than the right leg across all axes, which agrees with the 
increased values and volatility of the left leg’s corresponding 
cost function (Figures 4 & 5). However, predictions for the 
left leg are sufficiently good, with an overall high R2 (Tables 
1 & 2) and a satisfactory fit to the observed values (Figure 6). 
These results confirm that the ANN models developed in this 
study can reflect the actual data measured by the force plate, 
namely the patterns between GPS sensors and GRFs. 

This work shows that, indeed, GRFs can be estimated using 
only the measurements supplied by a tracking vest. GRFs are a 
reliable source of data with the lowest calculation error, making 
these data ideal for motion analysis. However, they can only be 
acquired using a force platform, thereby being accompanied by 
space constraints. Such a limitation makes it impossible to conduct 
motion analyses outside of the lab. In this study, an artificial neural 
network is applied to predict GRFs during dynamic conditions 
using kinematic data obtained from a vest consisting of GPS 
sensors. ANN is one of the artificial intelligence techniques 
usually used when interrelationships between data are non-linear 
and complex.

To further analyze the relationship between the actual measured 
and the model estimates of GRFs, functional measures based on 
the R2 and RMSE scores in predicting common GRF variables 
across the dataset were also employed. The employed ANN led to 
efficient estimations of the forces across all tested exercises and 
for both legs. The z-axis, followed by the x-axis GRF, showed 
the highest accuracy across both models employed. The accuracy 
of both models on the y-axis was slightly lower. Moreover, the 
predictive performance, as demonstrated by the average cross-
validation R2 and RMSE scores, was generally higher across axes 
for the right leg.

Comparing the results of this study to earlier literature could not be 
straightforward; most previous studies focused on static postures 
and gait. One of the first works involving ANNs is the one by 
Leporace et al. [24], where two models were compared based 
on ANN to estimate GRFs while walking Then error analysis 
suggested that both the models adequately predicted the GRF on 
vertical, mediolateral, and antero-posterior projections. The size 
of the sample used to train the model was crucial to reaching an 
accurate result. However, the size of the sample was rather small 
in this study. However, accurate predictions were acquired for both 
models and across axes.

Predicting GRFs from GPS sensor data constitutes a multi-output 
regression problem with continuous features and target variables. 
Neural network models have the benefit of learning a continuous 
function that can model a relationship between changes in input 
and output in a more intuitive way compared to other machine 
learning methodologies, both from an implementation standpoint 
(within Python) and from a methodological standpoint [25,26]. 

Firstly, the convergence of the training and validation loss functions 
(MSE) for both legs indicates that the artificial neural network 
(ANN) model is effectively learning the underlying relationships 
between the input data from the GPS sensors and the output data 
from the ground reaction forces (GRFs). This convergence suggests 
that the model has achieved a satisfactory level of accuracy, which 
is crucial for its application in real-world sports contexts where 
precise measurements of force are necessary for performance 
analysis and injury prevention. However, it is worth noting that 
the volatility of the loss values for the left leg compared to the 
right leg might imply inherent differences in biomechanics or 
sensor performance that warrant further investigation. Moreover, 
the close alignment of predicted GRFs with actual measurements 
emphasizes the model’s reliability. This is particularly significant 
in the context of sports science, where traditional methods for 
measuring GRFs often require cumbersome laboratory setups 
that restrict athletes to controlled environments. The ability to 
estimate GRFs accurately through wearable technology could 
revolutionize how athletes train and compete, as it allows for 
continuous monitoring and real-time feedback in natural settings. 
The findings confirm that the ANN can serve as a viable alternative 
to conventional methods, potentially enhancing the practicality of 
biomechanical analysis in sports.

The observed differences in R² and RMSE scores between the 
left and right legs also highlight an important consideration for 
future applications of this technology. The lower R² values and 
higher RMSE scores for the left leg may reflect biomechanical 
asymmetries or differences in athletic performance that could be 
further explored. Understanding these discrepancies could lead 
to more personalized training regimens and injury prevention 
strategies tailored to individual athletes. In addition, the successful 
application of ANNs in this study aligns with emerging trends in 
sports science that leverage machine learning to analyze complex 
data relationships. This points to a broader potential for integrating 
artificial intelligence into sports analytics, extending beyond 
GRF estimation to encompass various performance metrics 
and physiological indicators. Future research could explore 
the integration of additional biometric data, such as heart rate 
variability or muscle activation patterns, to enhance the model’s 
predictive capabilities further [27,28].

Finally, the study’s limitations regarding the sample size and the 
diversity of exercises performed should be addressed in future 
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work. Expanding the dataset to include a broader range of athletes, 
exercises, and conditions will enhance the generalizability of the 
ANN model. This will not only validate the findings but also refine 
the model to account for variations in movement patterns across 
different sports and populations.

In conclusion, the promising results of this study underscore the 
potential of wearable technology and artificial intelligence in 
advancing the field of sports biomechanics. By facilitating real-
time monitoring of GRFs, this innovative approach could lead 
to significant improvements in athlete performance and injury 
prevention strategies. Future research endeavors should focus on 
validating and expanding the model to harness its full potential in 
diverse athletic contexts [29,30].

Conclusion and Future Work

Future work may include as applying the proposed model to more 
athletes and for more exercises performed further to verify the 
accuracy of the model’s predictive capabilities and extend the 
model’s scope. Indeed, the absence of a multitude of data sources 
is this study’s most significant limitation as far as its generalization 
capabilities are concerned. All things considered, the ANN model 
developed in this study appears to be effective as a mapping tool 
for estimating GRFs utilizing only vest GPS data sources.
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