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Abstract

The concept of oligometastatic disease has evolved into a clinically relevant entity, particularly in non—small cell lung cancer
(NSCLC), where a subset of patients with limited metastatic burden may benefit from aggressive local treatment. Radiotherapy,
and especially stereotactic body radiotherapy (SBRT), allows delivery of ablative doses with high precision and acceptable toxicity,
making it a central modality in this setting. This review evaluates the available evidence supporting the use of radical radiotherapy
in oligometastatic NSCLC, with particular emphasis on tumors harboring targetable mutations, especially epidermal growth factor
receptor (EGFR) alterations. A comprehensive review of the published literature and ongoing clinical trials was performed, focusing
on synchronous oligometastatic, oligopersistent, and oligoprogressive disease states. In unselected NSCLC populations, randomized
data demonstrate heterogeneous results, with benefits highly dependent on patient selection, disease biology, and treatment context,
particularly in the immunotherapy era. In contrast, evidence in EGFR-mutant NSCLC is more consistent. Multiple prospective and
randomized studies indicate that local ablative therapy can significantly prolong progression-free survival and, in several settings,
overall survival when combined with tyrosine kinase inhibitors. Benefit has been observed in oligoresidual, oligoprogressive, and
upfront treatment strategies, with increasing support for inclusion of the primary tumor in the radiotherapy field. Ongoing trials are
expected to further define optimal timing, patient selection, and integration with contemporary systemic therapies.
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Introduction

Since the introduction of the term oligometastatic disease by
Weichselbaum and Hellman, much has been written on the
subject. Although a clear and universally accepted definition
of oligometastatic disease in solid tumors has not yet been
established, it appears that it indeed represents a distinct clinical
entity, characterizing the intermediate stage between localized and
widely disseminated systemic disease, for which there is clear
therapeutic benefit from the application of local ablative treatment,
mainly surgery or radiotherapy.

Among malignancies in which the concept of oligometastatic
disease is highly relevant is non—small cell lung cancer (NSCLC).
In both squamous cell carcinoma and, more commonly, lung
adenocarcinomadiagnosedatanoligometastatic oroligoprogressive
stage, extensive international literature demonstrates a clear benefit
from the application of local ablative therapy, mainly surgical
metastasectomy or stereotactic body radiotherapy (SBRT).

The aim of this article is to review the relevant literature in order
to assess whether mature data now exist supporting the application
of radical radiotherapy in the context of oligometastatic disease,
both for NSCLC in general and more specifically for cancers
harboring oncogenic driver mutations, particularly mutations of
the Epidermal Growth Factor Receptor (EGFR).

Materials and Methods

A search of the published literature was conducted across the
PubMed database, employing the keywords “oligometastases”,
“oligoprogression”, “non-small cell lung cancer”, “stereotactic
body radiotherapy or SBRT”, “stereotactic ablative radiotherapy or
SABR?”, “local ablative therapy or LAT” and “local consolidative
therapy or LCT” in order to identify studies relevant to the use
of local ablative treatment strategies. Only articles published in
English were included, and no filters regarding study design or
country of origin were applied. In addition, the ClinicalTrials.gov

database was reviewed to identify ongoing relevant studies.
Results

Definitions

Biologic Effective Dose

A fundamental parameter in radiation oncology is the Biologic
Effective Dose (BED), which is primarily determined by the
intrinsic radiosensitivity of tissues, indicating tissue and tumor
sensitivity to fraction size in radiotherapy. BED is calculated using
a specific mathematical formula and depends on the number of
radiation fractions, the dose per fraction, and most importantly on

the radiosensitivity of the tissue, expressed as the o/f ratio (Figure
1).

Without delving into radiobiological details beyond the scope of
this article, it should be noted that BED differs for each tissue
type, whether malignant or normal, and also varies depending on
whether the total dose is delivered in a small number of fractions
with a high dose per fraction or in many fractions with a lower
dose per fraction [1, 2].

A characteristic example is NSCLC, for which the o/p ratio is
generally assumed to be approximately 10 Gy. If the conventional
dose for radical radiotherapy of 64 Gy is delivered in 32 fractions,
the biologically effective dose is 76.8 Gy. If almost the same
total dose of 60 Gy is delivered stereotactically in 3 fractions
of 20 Gy each, the resulting BED is 180 Gy. This increase in
biologically effective dose confers a clear therapeutic advantage,
as demonstrated in multiple studies. Indicatively, in the study by
Onishi et al., patients with stage I NSCLC treated with stereotactic
radiotherapy, a BED greater than 100 Gy was associated with
statistically significant improvements in both local control and
survival [3].

_da
(of)

Figure 1: Biologic Effective Dose (BED); N: number of fractions;
d: daily dose, o/p: ratio of radiosensitivity index Stereotactic Body
Radiotherapy or Stereotactic Ablative Radiotherapy.

BED = Nd |1 +

—

A widely accepted definition of stereotactic body radiotherapy
(SBRT) or stereotactic ablative radiotherapy (SABR) is that it
involves the delivery of a high radiation dose with stereotactic
precision over a small number of fractions. More specifically,
stereotactic radiotherapy refers to external beam radiotherapy that
delivers a very high radiation dose with high precision in one or
very few fractions [4-7].

Technically, treatment is considered stereotactic when the
BED exceeds 100 Gy, with a high radiation dose and a steep
dose gradient beyond the target volume. The goal is to treat the
entire tumor volume with an extremely efficient and biologically
destructive therapy while simultaneously sparing the surrounding
normal tissues, achieving high local tumor control with minimal
severe toxicity.
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Oligometastatic NSCLC

According to the European Organisation for Research and
Treatment of Cancer (EORTC), synchronous oligometastatic
NSCLC is defined as disease with a maximum of five (5) metastatic
lesions in a maximum of three (3) involved organs, provided that all
lesions are amenable to radical ablative treatment with acceptable
minimal toxicity [8].

A more detailed definition is provided by the joint consensus of
the American Society for Radiation Oncology (ASTRO) and the
European Society for Radiotherapy and Oncology (ESTRO),
which also describes the various subtypes of oligometastatic
disease. In general, oligometastatic disease refers to patients
with up to five (5) metastases detected by appropriate imaging,
all of which can be treated with curative intent, provided that
this is technically feasible and clinically safe. The consensus
further specifies that in cases of synchronous, metachronous, or
oligopersistent oligometastatic disease, definitive ablative therapy
should be applied to all disease sites in addition to standard-of-
care systemic therapy, whereas in oligoprogressive disease, the
application of local stereotactic therapy to all progressing sites
allows continuation of the current line of systemic therapy [9].

Oligometastatic NSCLC In General
Synchronous Oligometastatic Disease

The rationale for upfront definitive local therapy in synchronous
oligometastatic disease is that even combination systemic therapy
with optimal targeted agents or immunotherapy remains imperfect.
Positive trials such as KEYNOTE-189 have demonstrated that
the addition of immunotherapy, specifically pembrolizumab,
to chemotherapy provides statistically significant benefits in
disease progression and overall survival, however, there remains
considerable room for improvement in therapeutic outcomes [10].

When this is combined with the increased detection of
oligometastatic disease due to modern imaging modalities such as
PET/CT, the question arises as to whether there exists a subset
of patients with NSCLC who may benefit from upfront or early
definitive local therapy in addition to contemporary standard-of-
care systemic therapy.

The well-known SABR-COMET trial by Palma et al., including
updated results published in 2020, demonstrated a clear benefit
from the addition of stereotactic radiotherapy to standard systemic
therapy. The 5-year overall survival (OS) rate was 17.7% with
standard-of-care therapy alone versus 42.3% with the addition of
definitive local therapy (arm 2) (95% CI, 28%—56%; stratified log-
rank P =.006). No new grade 2—5 adverse events were observed,
and there were no differences in quality of life between treatment
arms. Despite the relatively small patient cohort, extended follow-

up confirmed that the impact of SBRT on OS was clear and durable
over time [11].

This critical question has prompted the development of trials
specifically addressing synchronous oligometastatic NSCLC,
such as the SARON trial, which examines the combination of
chemotherapy with SABR, and the TRAP-OLIGO study, which
evaluates the combination of local ablative therapy (LAT),
stereotactic radiotherapy or surgery with chemotherapy and
immunotherapy [12, 13].

Oligopersistent Disease

In the contemporary era of optimal systemic therapy, especially
with the addition of immunotherapy, most patients with stage
IV NSCLC achieve either a response or stable disease. Multiple
studies have demonstrated that, following initial response, disease
progression often occurs at sites present prior to the initiation of
first-line systemic therapy [14, 15]. This observation raises the
question of whether the application of LAT to oligometastatic
lesions as consolidation after initial response could enhance
therapeutic outcomes.

Iyengar et al., in a well-designed prospective phase II study
involving a small patient cohort, investigated the application of
SABR prior to maintenance therapy versus maintenance therapy
alone in patients with limited metastatic NSCLC. Consolidative
SABR demonstrated a clear benefit by tripling PFS, with no
significant difference in toxicity. The investigators concluded that
irradiation prevented local failures at original disease sites, which
are the most likely locations of first recurrence [16].

Similarly, in a study by Gomez et al., patients with three or fewer
metastases and no disease progression after at least three months
of front-line systemic therapy were randomized to either local
consolidative therapy (LCT), radiotherapy or surgery followed
by standard maintenance or observation (LCT arm) or to standard
maintenance or observation alone (MT/O arm). The trial was
terminated early due to impressive results, demonstrating a clear
PFS benefit in the LCT arm. With a median follow-up of nearly 40
months, the PFS benefit remained durable (14.2 months versus 4.4
months), and an OS benefit was also observed, without additional
grade >3 toxicities [17].

To date, the only randomized phase III data come from the
NRG-LUO002 trial, which presented preliminary results in 2024.
This trial represents one of the largest prospective randomized
studies in oligometastatic NSCLC assessing the value of adding
LCT (radiotherapy or surgery) after initial systemic therapy in
the immunotherapy era. Patients with oligometastatic NSCLC
(<3 extracranial metastases) who achieved at least stable disease
after four cycles of first-line systemic therapy (chemotherapy and/
or immunotherapy) were randomized to maintenance systemic
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therapy alone versus LCT plus maintenance systemic therapy.
Contrary to earlier studies, the addition of LCT did not confer a
benefit in either PFS or OS (reported hazard ratios 0.93 and 1.05,
respectively), while an increased incidence of significant (grade
>3) pneumonitis was also observed in the LCT arm [18].

Oligoprogressive Disease

Oligoprogressive disease represents another distinct clinical entity
within the spectrum of oligometastatic disease. After an initial
response to systemic therapy, which is now a frequent occurrence
in the immunotherapy era, patients may eventually develop
progression in a limited number of sites. The key clinical question
is whether to continue the same line of therapy, switch to the next
line, add another systemic agent, or apply LAT to the progressing
lesions.

The STOP trial investigated the benefit of adding SABR to
standard-of-care systemic therapy in patients with <5 sites of
oligoprogression. Initially limited to NSCLC, the trial was later
expanded to include other malignancies meeting accrual criteria.
Ninety patients with 127 oligoprogressive metastases (44% of
cases NSCLC) were randomized to SABR plus continuation
of the same systemic therapy versus standard of care, which
included continuation of the same agent, switching to a new
agent, or observation. After a median follow-up of 31 months, no
difference in PFS or OS was observed. SABR was well tolerated,
with excellent toxicity profiles (no grade 4-5 adverse events), and
clearly improved lesional control, but with PFS or OS benefit [19].

Another recent trial is the CURB study, which included patients
with oligoprogressive disease with up to five extracranial
metastases from NSCLC or breast cancer. Patients were
randomized to continuation or change of systemic therapy versus
SBRT to all oligoprogressive lesions with continuation of the same
systemic therapy. While no benefit was observed in breast cancer
patients, NSCLC patients demonstrated a clear benefit from SBRT,
with a median PFS of 10 months versus 2.2 months in the control
arm (p = 0.0039). Investigators concluded that oligoprogression
in metastatic NSCLC can be effectively treated with SBRT plus
standard-of-care systemic therapy, leading to more than a four-fold
increase in progression-free survival [20].

Oligometastatic NSCLC with Oncogenic Driver Mutations

Since the early 2000s, it has become evident that specific
oncogenic mutations play a crucial role in NSCLC biology and
progression. The most clinically relevant involve genes encoding
the Epidermal Growth Factor Receptor (EGFR) and Anaplastic
Lymphoma Kinase (ALK). A major therapeutic breakthrough was
achieved with the development of EGFR tyrosine kinase inhibitors
(EGFR-TKIs), which resulted in significant clinical responses
and generally lower toxicity compared with platinum-based

chemotherapy [21].

A well-recognized clinical challenge in TKI therapy is the gradual
development of resistance, which may arise from EGFR-dependent
or EGFR-independent mechanisms [22]. In order to delay or
prevent resistance and prolong clinical benefit, combination
strategies have been explored, including mainly combinations with
chemotherapy, other targeted agents, and ionizing radiation [23].

Numerous preclinical studies have investigated the combination
of TKIs with radiotherapy and have demonstrated a clear benefit,
suggesting a synergistic effect mediated through multiple
mechanisms that enhance radiobiological response [24-27].
Baumann described the key mechanisms including direct killing
of cancer stem cells, cellular radiosensitization, inhibition of DNA
damage repair, reduced tumor repopulation, and improved tumor
reoxygenation [28].

These findings prompted clinical studies evaluating combined TKI
and radiotherapy in NSCLC. A critical issue in this context is the
optimal timing of radiotherapy, which has been explored mainly
in oligoprogressive and oligoresidual disease, with emerging data
supporting upfront radiotherapy in EGFR-mutant oligometastatic
NSCLC.

SBRT for oligoprogressive metastatic EGFR-mutant NSCLC

In a retrospective analysis, Schuler et al. examined progression
patterns in EGFR-mutant NSCLC patients treated with first-line
TKIs, specifically osimertinib. Up to 47% of patients developed
oligoprogressive disease. Compared with patients experiencing
systemic progression, oligoprogressive patients had significantly
longer median time to treatment failure (23 vs 11 months; p
< 0.001) and better OS (52 vs 26 months; p = 0.004). Notably,
approximately 40% of oligoprogressive patients had disease
amenable to SBRT. This raises the question of whether SBRT to
oligoprogressive lesions could enhance treatment outcomes apart
from continuation of same TKI [29].

Although mature data are still limited, most studies evaluating
SBRT in oligoprogressive disease with driver mutations have
demonstrated a clear benefit [30-34]. A2024 review study including
theserelevant data, confirmed that LAT for oligoprogressive disease
provides clear therapeutic benefit by prolonging continuation of
the same TKI by 6 to 14 months [35]. Results from the HALT
trial, a randomized phase II/III study evaluating SBRT to <3
oligoprogressive sites in combination with continued TKI therapy,
are expected to clarify whether this approach improves PFS [36].

SBRT for Oligoresidual Metastatic EGFR-Mutant NSCLC

Miyawaki et al. in a retrospective analysis of 207 patients
investigated the association between oligoresidual disease and
patterns of failure in EGFR-mutant NSCLC patients. Oligoresidual
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disease was defined as the presence of 14 lesions (including
the primary tumor) at three months after treatment initiation. In
73% of patients with oligoresidual disease, progression occurred
predominantly at residual sites, providing a strong rationale for
LAT to all residual lesions [37].

Data are mostly limited to small series or single-arm studies, such
as the recent phase II trial by Sabath et al., which demonstrated
that consolidative SBRT plus TKIs is safe, effective, and prolongs
clinical benefit. With a median follow-up of 35.7 months, median
PFS was 32.3 months, median OS 45 months, and median duration
of osimertinib administration 32.4 months [38].

Randomized data are provided by the phase II trial of Peng et al.,
in which patients with EGFR-mutant metastatic NSCLC with up
to five metastases who achieved stable disease or partial response
after three months of TKI therapy were randomized to SBRT plus
TKI versus TKI alone. After a median follow-up of nearly 30
months, PFS was 17.3 months in the SBRT arm versus 9 months
in the TKI-alone arm (p = 0.015), and OS was 33.6 versus 23.2
months, respectively (p = 0.033). The investigators concluded that
SBRT significantly prolonged both PFS and OS [39].

Early or upfront SBRT for EGFR-mutant oligometastatic
NSCLC

In a recent systematic review and meta-analysis, Seong et
al. evaluated the efficacy and safety of LAT in combination
with first-line EGFR-TKIs prior to disease progression. Local
therapies included radiotherapy, surgery, and ablation, with SBRT
accounting for 91% of included studies. The combination of LAT
with TKIs resulted in statistically significant improvement in both
PFS and OS, without an increase in grade >3 toxicity. The authors
concluded that early application of LAT during first-line TKI
therapy and prior to progression is clearly meaningful in EGFR-
mutant NSCLC [40].

The most well-known randomized study included in the above
mentioned meta-analysis is the SINDAS trial. EGFR-mutant
NSCLC patients receiving first-line TKI were randomized to
upfront radiotherapy versus no radiotherapy. Eligibility criteria
included treatment-naive synchronous oligometastatic disease
with <5 metastases in <2 lesions per organ. Interim analysis
published in 2023 demonstrated significant benefits in both PFS
(20 vs 12.5 months, p < .001) and OS (25.5 vs 17.4 months, p <
.001). The combination was well tolerated, with no grade 5 toxicity
and symptomatic pneumonitis observed in only 6%. Based on
these clear results, the trial’s ethics committee recommended early
termination [41].

Another highly relevant study is the NORTHSTAR trial. Patients
with locally advanced or metastatic EGFR-mutant NSCLC, TKI-
naive or with acquired T790M mutation but without prior third-
generation TKI therapy, were randomized after 6-12 weeks of
osimertinib and absence of progression to either continuation of
osimertinib alone or osimertinib combined with local therapy
(surgery or SBRT). Early results presented at ESMO 2025
demonstrated a clear benefit in median PFS (17.5 vs 25.3 months;
hazard ratio 0.66), corresponding to a 34% reduction in progression
risk. Subgroup analyses showed benefit across mutation subtypes
(exon 19 deletion, L858R) and in patients with multiple metastatic
sites. Notably, patients receiving comprehensive LCT targeting all
detectable disease exhibited particularly strong PFS benefit [42,
43].

The provocative issue of treating the primary tumor in
oligometastatic EGFR-mutant NSCLC

Important insights regarding the value of irradiating the primary
tumor even in the oligometastatic setting emerged from the
SINDAS trial. A critical feature of this study was that SBRT was
mandated to all disease sites, explicitly including both the primary
lung tumor and all synchronous oligometastatic lesions (<5).
Therefore, the observed PFS and OS benefit cannot be attributed
solely to metastasis-only ablation [41].

Although SINDAS did not publish a failure-pattern subanalysis,
its results are biologically consistent with multiple observations
indicating that the primary tumor is often the largest and most
heterogeneous lesion, harboring resistant subclones. Even under
TKI therapy, the primary tumor frequently becomes the dominant
site of first progression if left untreated. In this context, an
uncontrolled primary tumor may reseed metastatic sites [44, 45].

Other randomized data also support the value of treating the
primary tumor. In the aforementioned study by Peng et al., a
subgroup analysis of patients receiving treatment to the primary
tumor demonstrated clear benefit in both median PFS and OS [39].

Finally, results from the phase III NROG China-002 trial were
recently published. Patients with oligo-organ metastatic EGFR-
mutant NSCLC were randomized to TKI therapy alone with
icotinib versus TKI plus radiotherapy to the primary tumor and
regional lymph nodes. Compared with TKI alone, the TKI plus
thoracic radiotherapy group achieved significantly improved PFS
(hazard ratio 0.57; p = .004) and OS (hazard ratio 0.62; p =.029).
Median PFS was 10.6 months versus 17.1 months, and median OS
was 26.2 versus 34.4 months, respectively [46].
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Abbreviations: 10: immunotherapy; LCT: local consolidative therapy; OPD: oligoprogressive disease; PFS: progression-free survival; OS: overall
survival; QoL: quality of life; SABR/SBRT: stereotactic ablative/body radiotherapy; SOC: standard of care.

Table 1: Clinical Evidence for Local Ablative Therapy in Oligometastatic NSCLC.
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EGFR-TKI osimertinib) subset for SBRT on TKI

. . .. . . Prolongs TKI . ..
EGFR/driver- | Georgakopoulos | Review of clinical | LAT to OPD sites while continuation Consistent clinical
mutant NSCLC et al. [35] series continuing same TKI 614 months signal
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(HR ~0.66);
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+
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(thoracic RT) NSCLC
Abbreviations: 1L: first-line; LAT: local ablative therapy; LCT: local consolidative therapy; OPD: oligoprogressive disease; PD: progression of
disease; PFS: progression-free survival; OS: overall survival, RT: radiotherapy; SRT/SBRT: stereotactic radiotherapy/body radiotherapy; TKI:
tyrosine kinase inhibitor.

Table 2: Clinical Evidence for Local Ablative Radiotherapy in EGFR-Mutant Oligometastatic NSCLC.
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Discussion

The concept of oligometastatic disease has progressively evolved
from a theoretical issue to a clinically true state, particularly in
NSCLC. Accumulating evidence supports the concept that a
subset of patients with limited metastatic burden may derive
meaningful benefit from aggressive local therapy in addition to
systemic treatment. Radiotherapy, and especially stereotactic body
radiotherapy (SBRT/SABR), has emerged as a central modality
in this setting due to its ability to deliver ablative doses with high
precision and acceptable toxicity (Table 1).

Evidence supporting local consolidative radiotherapy is
heterogeneous. Early randomized phase II trials demonstrated
substantial improvements in PFS and, in some cases, OS when
LAT was added after initial response to systemic treatment.
However, these encouraging results were largely generated
before the widespread incorporation of immune checkpoint
inhibitors. The negative findings of the NRG-LU002 trial in the
immunotherapy era highlight the complexity of integrating local
therapies with modern systemic regimens and underscore the
importance of appropriate patient selection, careful assessment of
disease biology, and treatment-related toxicity. These discrepancies
suggest that oligometastatic NSCLC is not a uniform entity and
that radiotherapy benefit is likely confined to biologically favorable
subgroups.

As far as oligoprogressive disease it represents a more refined
clinical scenario in which radiotherapy appears particularly
attractive. The ability to ablate a limited number of progressing
lesions while maintaining effective systemic therapy aligns with the
biological rationale of delaying widespread resistance. Although
not all randomized trials have demonstrated survival benefits,
consistent improvements in lesion control and PFS in NSCLC
support the clinical relevance of this strategy, especially when
progression is limited and systemic disease remains controlled.

The strongest and most consistent evidence for the integration
of radiotherapy comes from studies in EGFR-mutant NSCLC.
In this population, multiple randomized and prospective studies
demonstrate that LAT can significantly prolong PFS and, in several
trials, OS (Table 2). Importantly, benefit has been observed across
different clinical scenarios, including oligoresidual disease after
initial TKI response, oligoprogressive disease during TKI therapy,
and even upfront treatment in synchronous oligometastatic disease.
These findings suggest that radiotherapy may delay the emergence
of resistant clones, extend the duration of effective targeted therapy,
and favorably alter the natural history of the disease.

A particularly relevant and increasingly supported concept is the
treatment of the primary tumor in the metastatic setting. Data from
randomized trials indicate that inclusion of the primary lesion

within the radiotherapy field contributes to improved outcomes,
supporting biological models of intratumoral heterogeneity and
tumor self-seeding. In EGFR-mutant disease, where long-term
disease control is achievable with targeted agents, uncontrolled
primary tumors may represent a critical source of resistance and
subsequent dissemination.

Despite these advances, several questions remain unresolved.
Optimal timing of radiotherapy, selection of appropriate candidates,
integration with third-generation TKIs and immunotherapy, and
long-term safety—particularly pulmonary toxicity—require
further clarification. Ongoing randomized trials and translational
studies are expected to refine patient stratification and define
standardized treatment algorithms.

Conclusion

Radiotherapy plays an increasingly important role in the
management of oligometastatic NSCLC, with its strongest and
most consistent benefit observed in EGFR-mutant disease. While
evidence in unselected NSCLC remains heterogeneous, carefully
selected patients—particularly those with limited, biologically
favorable disease—may derive meaningful benefit from local
ablative treatment. In EGFR-mutant NSCLC, integration of
radiotherapy with targeted therapy can prolong disease control and
survival, supporting a paradigm shift toward combined systemic
and definitive local treatment in appropriately selected patients.
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