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Abstract

In 2025, it is estimated that in the United States about 84,870 new cases of Bladder Cancer (BC) will be diagnosed and 17,420 deaths
will result from BC. Among the newly diagnosed cases, 70-75% will be Non-Muscle Invasive Bladder Cancers (NMIBC), typically
treated with cystoscopic Transurethral Resection (TUR) combined with intravesical therapy and placed on surveillance. However,
NMIBC continues to be characterized by significant patient burden due to numerous recurrences and disease progression, requiring
frequent cystoscopies, intravesical drug therapies and/or surgery. With the potential to optimize local exposure of promising agents
to the bladder urothelium and the availability of BC cells obtained from periodical cystoscopies during surveillance that can be used
to evaluate efficacy of interventions, these closely monitored patients represent an ideal cohort for the evaluation of chemopreventive
agents. Currently, other than smoking cessation, there is a paucity of research that systematically examines specific agents relevant
for secondary chemoprevention of BC. More recently, several epidemiological, in vitro, preclinical and early phase trials, including
our preliminary studies, have shown that Sulforaphanes (SFN) are potent inhibitors of BC carcinogenesis. The goal of the current
review is to provide a comprehensive review of these early findings that establishes the rationale to evaluate sulforaphanes as
promising agents for secondary chemoprevention for non-muscle invasive bladder cancer.

Introduction
Bladder Cance

In 2025, it is estimated that in the United States about 84,870 new
cases of Bladder Cancer (BC) will be diagnosed and 17,420 deaths
will result from BC [1]. Among the newly diagnosed cases, 70-
75% will be Non-Muscle Invasive Bladder Cancers (NMIBC),
typically treated with cystoscopic Transurethral Resection (TUR)
combined with intravesical therapy and placed on surveillance
[1-5]. NMIBC is typically treated with endoscopic Transurethral
Resection (TUR), combined with intra-vesical therapy with
Bacillus Calmette-Guerin (BCG) or chemotherapeutic agents
(e.g., mitomycin C), delivered via a urethral catheter, to prevent
or delay recurrence after TUR [3,4-7]. Risk of recurrence is 50-
60% for grades 1 and 2 tumors and 80% for grade 3 tumors, with a

median time to first recurrence of 2.7 years [5]. A dramatic decline
in survival is reported as cancer progresses from NMIBC to MIBC
[6-8]. Given the high risk of recurrence and disease progression
specifically in TO and T1 NMIBC, careful surveillance with
periodic cystoscopy is currently the standard clinical practice.
With the potential to optimize local exposure of promising
agents to the bladder urothelium and the availability of BC cells
obtained from periodical cystoscopies during surveillance that
can be used to evaluate efficacy of interventions, these closely
monitored patients represent an ideal cohort for the evaluation of
chemopreventive agents. Currently, other than smoking cessation,
there is a paucity of research that systematically examines
specific agents relevant for secondary chemoprevention of BC
[9-11]. Secondary Chemoprevention is a prevention strategy that
focuses on individuals who have been diagnosed with cancer that
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may progress to invasive cancer. This strategy aims to limit the
development and progression of malignant lesions to metastatic
cancer [12].

Current Strategies for BC Chemoprevention

Primary and secondary chemoprevention strategies in BC have
primarily relied upon smoking cessation since cigarette smoking
(mainly exposure to aromatic amines) accounts for 50% of BCs
[13]. Non-tobacco related occupational exposure to amines,
4-aminobiphenyl & anilines (10% of all cases), as well as
phenacetin derived analgesics have also been known to contribute
to the etiology of BC [13]. Others have focused on vitamin and
minerals including selenium, vitamin C, Vitamin B6 and Vitamin E.
However, the majority of these studies failed to identify promising
agents for primary or secondary chemoprevention of BC. Other
chemopreventive efforts have explored the role of selective COX-
2 inhibitors suggesting a potential correlation between COX-2
expression and prognosis [14,15]. In subgroup analysis of a phase
IITI clinical trial in NMIBC patients treated with standard therapy
and celecoxib suggested that time to recurrence was longer in
pT1 NMIBC patients treated with celecoxib compared with those
receiving placebo. However, the increased risk of cardiovascular
events has limited clinical translation [14]. Additionally, research
is being conducted with erlotinib, the highly selective, reversible
inhibitor of epidermal growth factor receptor (HERI1/EGFR)
tyrosine kinase which is overexpressed in more than 75% of BCs
[16]. A phase II clinical trial involving neoadjuvant administration
of erlotinib in patients before undergoing radical cystectomy
showed a complete response rate in 25% of patients. However,
substantial skin toxicity was noted, especially in patients who
experienced complete response [17]. A phase Ila randomized
multi-institutional trial (NCT02169284) is ongoing to investigate
the role of erlotinib as well as with genistein [18] in pre-surgical
Radical Cystectomy (RC) or TURBT patients. However, to date,
there is paucity of evidence of any one agent that has been found
to be effective for primary or secondary chemoprevention of BC.
The goal of the current review is to provide the rationale and report
early findings that establishes the need to evaluate sulforaphanes as
promising agents for secondary chemoprevention for non-muscle
invasive bladder cancer [19-22].

Sulforaphanes as a Promising Agent for Chemoprevention of
BC

Several epidemiological, in vitro, preclinical, and early phase
trials have shown that the phytochemicals, isothiocyanates (ITCs),
specifically allyl isothiocyanate and SFN present in Brassicaceae
or- “cruciferous” vegetables as their precursor glucosinolates —
sinigrin, glucotropaeolin, gluconasturtiin and glucoraphanin [2-23]
respectively may have specific effects at different stages of tumor
progression.  SFN,(-)-1-isothiocyanato-(4R)-  (methylsulfinyl)

butane CH3-SO-(CH2)4-NCS is an isothiocyanate found in
high concentrations in broccoli sprouts, first isolated and shown
as a potent anti-carcinogenic agent in 1992 by Zhang, et al [24].
Broccoli accumulates significant amounts of the phytonutrient
glucoraphanin (4-methylsulfinylbutyl glucosinolate), which is
metabolized in vivo to the biologically active SFN. This conversion
requires myrosinanse, which is present in the plant as well as the
gastrointestinal tract [21].

Evidence from Epidemiological studies

Epidemiological studies have shown the potential role of increased
fluid intake and consumption of cruciferous vegetables, particularly
broccoli in reducing risk of BC [25-27]. In a large prospective
study, 39% reduction in BC risk was observed with an intake of
2 servings or more of broccoli compared to <1 serving per week
(p=0.0009) [26]. In a prospective population study of nearly
50,000 men, cruciferous vegetable intake was shown to reduce
BC risk [27-29]. In a case control study, a significant inverse
association was observed between mortality from BC and broccoli
intake. Additionally, a significant reduction of disease specific
death (57% reduction) and overall mortality (43% reduction) was
also observed [23]. In another case control study, [22] a reduced
risk of BC was observed when raw cruciferous vegetables were
consumed. In a meta-analysis of population studies reported to
date, cruciferous vegetable intake has been demonstrated to be
chemopreventive for BC [30]. However, other studies have failed
to observe these protective effects. In an epidemiological study
with a 10 year follow up, no association between cruciferous
vegetable intake and BC was observed. However, the result was
based on a one-time data collection [19] at baseline and a 10 year
follow up. In another pooled analysis, higher intakes of total and
non-starchy vegetable was associated with reduced risk of bladder
cancer for women but not in men [31]. In a meta-analysis [32],
the highest cruciferous vegetables intake was not significantly
associated with a lower risk of bladder cancer, compared with the
lowest cruciferous vegetables intake category. Taken together, the
epidemiological evidence pertaining to consumption of CV and
BC risk is mixed due to significant variations in research designs,
methods used to quantify CV consumption, including CV storage
and preparation methods. Abbaoui et al notes that the method
of consumption of CV can significantly change the amount of
isothiocyonates and other bioactives an individual is exposed to
[33-39]. For example, quantities of isothiocyanates in vegetables
are significantly reduced by cooking and storage processes
[29,30]. Therefore, the amount of isothiocyanates an individual
consumes through CV intake via food intake may not be enough
to ever reach therapeutic levels to protect against BC. On the other
hand, standardized, stable formulations of SFN-rich BSE may be
ideal to use in early phase chemoprevention trials to determine this
association.
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Evidence from in vitro studies

In vitro studies in BC, [28,30-33] breast [31] lung, [35] prostate,
[36,37] colorectal [38] and leukemia cells lines [39] have
shown SFN to be a potent inhibitor of carcinogenesis through
several molecular mechanisms [20]. We recently reported the
identification of the first inhibitors (called CMGi/MCMi) of the
CMG helicase (Cdc45-MCM-GINS) that block ATPase function
of the MCM core and cause loss of the MCM/CMG proteins from
DNA/chromatin [33]. The CMG is required for DNA replication,
recovery from replicative stresses, and maintaining genome
stability [34]. Loss of CMGs from chromatin by CMGi causes
increased DNA damage, apoptosis, and loss of viability selectively
in tumor cells driven by mutant-Ras (K- or H-Ras) [33]. Mutant
Ras alleles are known to shorten G1 length (via Cyclin E elevation
downstream), which prevents complete loading of all required
MCM/CMG complexes onto DNA necessary for a healthy S-phase
[35], creating a CMG helicase vulnerability in tumor cells relative
to non-tumor cells [34]. This is compounded by the fact that loss
of p53 function (in tumor cells) is synthetically lethal if MCMs
are simultaneously reduced on chromatin [34]. Thus, our results
indicate that compounds/drugs that further reduce MCM/CMG
function (presence on DNA) in tumor cells will cause selective
loss of tumor viability, a novel anti-cancer approach in the future
clinic [33].

NMIBC are often driven by mutant H-Ras, acquire pS3 mutations/
LOF as BC progresses [3], and SFN exposure to tumor cells
(including BC) is known to cause loss of viability and DNA damage
[33-35]. Intriguingly, the target of SFN, Keapl, is known to bind
not only NRF2 (discussed below) but also to the MCM3 subunit
of the CMG helicase % . Binding of Keapl to the CMG does not
degrade the CMG but instead appears to be involved in proper
CMG function in some unknown manner [36]. Based on these
observations, we predict that the CMG might be a vulnerability
in BC [33-35], and that SFN might (at least indirectly) target the
CMG and further reduce its function in some way in BC treated
with SFN. Such SFN effects on the CMG/MCM could derive
from SFN-Keapl interactions, which may abrogate an important
function of Keapl in maintaining/allowing CMG function on
DNA, as suggested by others [38]. Clearly, such a mechanism for
potential SFN inhibitory effects on the CMG will require further
validation. SFN-Keapl interaction brings up another question:
what is the fate of NRF2 in BC treated with SFN? To date, there
are no reports of the action of SFN on Nrf2 in BC cells. Keapl
normally ubiquitinylates NRF2, leading to Nrf2 degradation in
cells.

SFN-Keapl interactions abrogate this, allowing NRF2
accumulation and activation of NRF2 transcriptional programs
involved suppressing oxidative damage. SFN/NRF2 are potent

inducers of phase I/Il detox enzymes (AKRI1B10, NQO1) and
antioxidant proteins (GPX2). As such, SFN treatment typically
causes NRF2 gain and cytoprotection (protection against
carcinogenesis, mutagenesis, and other forms of toxicity of
electrophiles and reactive forms of oxygen [39-41]. Studies have
shown that the Nrf2 activation by SFN in the bladder occurred
primarily in the epithelium, which is the primary area for BC
development [42]. Thus, activating Nrf2 by SFN might be a means
to prevent cancer initiation in non-tumor tissue [43]. However, in
other cancer models, SFN activated Nrf2 in normal cells, but not in
cancer cells [44,45]. Such opposing results, taken together, suggest
SFN effects on precancerous or non-cancerous cell types would be
cytoprotective against tumor formation, while SFN effects on tumor
cells would not be cytoprotective due to poor NRF2 induction by
SFN.As another anti-BC mechanism, SFN has been shown to
prevent BC progression by downregulating NF-kB, resulting in
induction of cell cycle arrest and apoptosis, [38] while selectively
targeting abnormal/malignant cells [46,47] compared to normal
bladder cells [28] for these NF-kB effects. It has been shown that the
NF-«xB pathway is critical in ROS related pro-tumorigenic effects
in BC [48,49], and NF-«B signaling correlates with aggressive
BC behavior and poor clinical outcomes [50]. BC is also highly
associated with inflammation where hydrogen peroxide, cytokines
(Il 1-alpha, I1-6 and TNF-alpha), pro-inflammatory factors (I 8, I1-
18, Cox-2, PGE2), as well as some chemokines, accumulate during
bladder carcinogenesis [51,52]. SFN has been shown to inhibit
such inflammatory responses, including downregulation of Cox-2
and reduction of PGE2 levels [51,52]. In a preliminary pilot study,
we identified 20 high-grade NMIBC patients who had progressed
from NMIBC and those who remained stable during surveillance,
admitted and treated at our Cancer Center and performed RNA
sequencing of the BC tissue to contrast differentially expressed
genes (DEGs) between the two groups. RNA sequencing revealed
a higher expression of genes associated with TNF-a signaling via
NF-«B in the recurrent tumors compared to non-recurrent tumors
[53-74]. The ability of SFN to suppress NF-kB and inflammatory
responses, which promote BC aggressiveness, supports SFN use
as a novel therapeutic agent in BC intervention in future trials.

Evidence from Preclinical studies

Preclinical evidence using animal models have demonstrated
bioavailability of SFN with metabolites distributed to all tissues,
including the bladder, suggesting the potential for systemic benefits
[39-53,54]. Administration of a freeze-dried aqueous extract of
broccoli sprouts to Sprague-Dawley rats significantly and dose-
dependently inhibited BC development induced by N-butyl-N-(4-
hydroxybutyl) nitrosamine [54]. The incidence, multiplicity, size,
and progression of BC were all inhibited by the extract, while
the extract itself caused no histologic changes in the bladder.
Moreover, the inhibition of bladder carcinogenesis by the extract
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was associated with significant induction of phase II detoxification
enzymes in the bladder. Over 70% of the isothiocyanates present
in the extract were excreted in the urine as isothiocyanate
equivalents (isothiocyanates + dithiocarbamates) in 12 h after a
single p.o. dose, indicating high bioavailability and rapid urinary
excretion. Urinary concentrations in extract-treated rats were 2 to
3 orders of magnitude higher than those in plasma, indicating that
the bladder epithelium, the major site of bladder carcinogenesis, is
most exposed to p.o. dosed isothiocyanate.

Inamurine UMUCS3 xenograft model, semi purified diets containing
4% broccoli sprouts, or 2% broccoli sprout isothiocyanate extract
or gavaged pure SFN or erucin (each at 295 pmol/kg, similar to
dietary exposure) produced tumor weight reduction of 42% (p =
0.02), 42% (p = 0.04), 33% (p = 0.04), and 58% (p < 0.0001),
respectively. SFN and erucin metabolites were present in mouse
plasma (micromolar range) and tumor tissue, with N-acetylcysteine
conjugates as the most abundant [39]. Other preclinical trials have
demonstrated positive results using murine models with SFN for
breast, [55] skin, [56] and pancreatic [57] cancers. In preclinical
models, SFN metabolites were detected systemically in tissues
including the small intestine, prostate, kidney and lung, bladder,
as well as, in bladder tumor tissue [39,53,57]. Evidence from
preclinical studies demonstrates that SFN delivered orally are
selectively delivered to bladder via urinary excretion, in contrast
to currently available intravesical agents that are delivered via
urethral catheter. Additionally, sustained urinary storage in the
bladder in humans (unlike in rodents that are prone to frequent
urination) may facilitate the disassociation of SFN metabolites
and increase the exposure of BC cells to the SFN in urine [28].
These preclinical data provide robust evidence of organ-specific
bioavailability and effectiveness of SFN in modulating bladder
carcinogenesis and carcinogenesis at other sites, ideal to be tested
for BC chemoprevention.

Evidence from Clinical Trials

Several clinical trials have been conducted to evaluate the
effectiveness of SFN for chemoprevention, most of which have
investigated bioavailability in healthy, disease-free subjects [18-
59,60-66]. The method of ingestion in these clinical trials has
varied from pure SFN, broccoli soups/pill forms, and broccoli
as a food item. Glucoraphanin (GRR) in broccoli is converted
to SFN either by plant myrosinases, or if the plant myrosinases
have been denatured by cooking, by bacterial myrosinases in the
human colon. SFN is passively absorbed and rapidly conjugated
with glutathione by Glutathione S-Transferases (GSTs), then
metabolized sequentially by y-Glutamyl-Transpeptidase (GTP),
Cysteinyl-Glycinease (GCase) and N-Acetyltransferase (NAT).
The conjugates are actively transported into the systemic
circulation where the merapturic acid and its precursors are urinary

excretion products. Deconjugation may also occur to yield the
parent isothiocyanate, SFN. The mercapturic acid and cysteine
conjugate forms are the major urinary metabolites of SFN. In
interventions with glucosinolate-containing brussel sprouts for 1-3
weeks, increased GST enzyme activity with increased GST-alpha
induction in plasma and tissues such as rectum, liver and small
intestine [41,50,61,67]. Bioavailability, as measured by urinary
excretion of SFN and its metabolites (in approximately 12-hour
collections after dosing), was substantially greater with the SFN-
rich (mean = 70%) than with GRR-rich (mean = 5%) beverages.
Inter-individual variability in excretion was considerably lower
with SFR than with GRR beverage [68]. These studies have also
corroborated the critical role of myrosinanse in metabolizing
SFN in patients taking food sources vs. extract of SFN without
myrosinanse had four times elevated urinary concentration [67].
Based on the bioavailability data, early clinical trials with SFN
have focused on prostate cancer [60,65,68,69] and breast cancer
chemoprevention [70]. In a study evaluating 60 mg (340 umol
Prostaphane®) vs. placebo for 12 months in men with biochemical
recurrence of prostate cancer, a reduction in serum PSA was
observed in 8/20 (40%) of prostate cancer patients in the treatment
arm with no toxicities. Targeting a similar population with 200
umol SFN daily for 20 weeks, Alumkal et al., [68] reported that
1 of 20 patients had a 50% decline in serum PSA at 5 months.
Using 400 g broccoli/week versus 400g peas/week targeting men
with High-Grade Prostate Intraepithelial Neoplasia) (HGPIN)
for 6 months, Traka, et al., [65] showed significant changes in
TGF, Insulin signaling and EGF receptor pathways. In a recent
randomized, placebo controlled clinical trial among 98 men
scheduled for a prostate biopsy, a significantly higher level of SFN
and metabolites were found in urine and plasma after being treated
with broccoli sprout extract (200 umol daily for 4-8 weeks) when
compared to placebo [71]. A recent double blinded randomized
trial in women scheduled for breast cancer surgery compared
SFN(Glucoraphanin (30 mg GFN BroccoMax™) vs.

Placebo,[70] administered for 2-8 weeks prior to women undergoing
breast biopsy, reported bioavailability (urinary metabolites and
plasma) and safety. Comparing pre- and post-treatment levels
within each treatment group, Ki-67 (P = 0.003) and HDAC3 (P =
0.044) levels significantly decreased in benign tissues, but not in the
invasive ductal carcinoma tissue [70]. Non-resectable pancreatic
ductal adenocarcinoma patients receiving palliative chemotherapy,
who were randomized to receive 90 mg (508 pumol SFN) Dieers
Broccoraphan® daily for up to one year, did not experience an
impact on their self-care and overall abilities with the use of SFN
vs placebo [72]. More recently, results of a phase II randomized
clinical trial (NCT03232138) targeting former smokers showed
that supplementation of sulforaphane did not demonstrate a
significant impact on bronchial histopathology. However, SFN
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significantly reduced the Ki-67 index with a 20% decrease in the
sulforaphane group and a 65% increase in the placebo (P =0.014).
The difference was even greater in high-density (3+) positive Ki-
67, with a 44% decrease in the sulforaphane group compared with
a 71% increase in the placebo (P = 0.004). Higher bioavailability
of sulforaphane was correlated with greater reduction of the Ki-67
index (P for trend = 0.019). Sulforaphane treatment had no impact
on the caspase-3 or TUNEL index in bronchial biopsies. No
severe adverse event was observed in the study participants [73].
The early work in other cancer patient populations are critical to
establish feasibility, compliance, safety, bioavailability as well as
initial effectiveness to modulate intermediate endpoint biomarkers
of SFN relevant to bladder carcinogenesis. To date, there are no
clinical trials targeting bladder cancer patients (Figure 1).

Figure 1: Mechanisms by which Sulforaphane modulates

Bladder Carcinogenesis
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f Bladder cancer Patients

Suppresses
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Figure 1: Mechanisams by which suloraphane modulates bladder
carcinogenesis.

Discussion

Other than smoking cessation, there is a paucity of research
that systematically evaluates specific agents relevant for
chemoprevention of BCs. Early phase randomized phase II
clinical trials should examine the safety, effectiveness and
potential mechanism by which SFN perturbs the IEBs of bladder
carcinogenesis and impact recurrence-free survival, in a cohort of
men and women with a confirmed diagnosis of low-grade (TOT1)
NMIBC. Although several mechanisms by which SFN impacts
BC are identified, based on our provocative preliminary findings,
it may be critical to examine if a constant dose of SFN, (vs.
placebo) administered to a cohort of men and women diagnosed

with To and T1, NMIBC, will lead to inhibition of the function
of the replicative CMG helicase leading to reduction in markers
of proliferation (%Ki-67, MCM2 (CMG subunit biomarker)
increased DNA damage and apoptosis in the BC epithelial cells-
relevant to BC chemoprevention. Indeed, alternate molecular
mechanism to see if SFN downregulates NF-kB contributing to
reduction in proliferation and increasing apoptosis of cells should
be evaluated. Distinct biological factors have been identified as
likely to contribute to disparate incidence rates and outcomes for
male and female BC patients. Other critical covariates implied
in bladder carcinogenesis, such as metabolism differences
(NAT, GST polymorphisms), smoking status, Ki-67 and if
patient received intravesical therapy. These covariates must be
accounted for in the early phase trials. Most importantly, it may
be important to evaluate the clinical outcome of recurrence-free
survival, which has significant implications in disease progression
and reduction of patient burden. Additionally, correlating novel
intermediate endpoint biomarkers of disease progression (eg.Ki-
67, MCM2/GINS) with tumor recurrence will validate the potential
mechanism by which SFN targets bladder carcinogenesis, as
observed in previous studies. Preliminary studies provide several
important caveats to inform the future clinical trial designs: (a)
organ-specific bioavailability of SFN when delivered orally -
selectively delivered to bladder via urinary excretion. Sustained
urinary storage in the bladder in humans that may facilitate the
disassociation of SFN metabolites and increase the exposure of
BC cells to the SFN in the urine; (b) The dose of 120 mg (274
umol) glucoraphanin delivering a potential daily dose of 95 pmol
sulforaphane is bioavailable with no toxicities; (c) 274 umol
administered in a divided dose schedule can maximize and sustain
drug levels, while providing the best chance at prolonging certain
chemopreventive benefits associated with SFN consumption;
(d) although a minimum duration of intervention of 2-8 weeks
has been shown to be adequate to ensure bioavailability and
modulation of Ki-67 in breast, the 12 months intervention may be
recommended to ensure that a substantial duration of exposure will
have a reasonable likelihood of perturbing intermediate endpoint
biomarkers of bladder carcinogenesis, including biomarkers of
proliferation(% Ki-67/ MCM2) and ultimately preventing disease
recurrence; (e) evaluate response of SFN in TOT1 NMIBC tissue
to determine the best timing and disease stage that may influence
a cell’s response to SFN, in addition to determining the potential
to prevent the field cancerization effect seen in progressive, low-
grade superficial NMIBC.

Conclusion

Several epidemiological, in vitro, preclinical and early phase trials
completed by our team and others have shown that Sulforaphanes
(SFN) are potent inhibitors of bladder carcinogenesis inhibiting
the survival and proliferation of a wide array of animal and

5

J Urol Ren Dis, an open access journal
ISSN: 2575-7903

Volume 10; Issue 09



Citation: Kumar NB, Alexandrow M (2025) Sulforaphanes for Secondary Chemoprevention of Non-Muscle-Invasive Bladder Cancer.
J Urol Ren Dis 10: 1438. DOI: 10.29011/2575-7903.001438.

human BC through multiple molecular mechanisms and without
toxicities at these doses, supporting further development of SFN
in early phase human studies targeting BC. If the bioavailability,
safety, effectiveness, and the mechanism by which SFN modulates
recurrence free survival and biomarkers relevant to bladder
carcinogenesis are demonstrated in early phase trials, the effects
of SFN can be examined in a well-powered, phase III clinical trial
of SFN to prevent bladder tumor recurrence, improve QOL, and
ultimately BC progression from LG to HG, or of NMIBC to MIBC.
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