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Short Summary
Sepsis is a serious medical condition characterized by a severe systemic inflammatory response caused by a microbial 

infection. This review evaluates a novel approach to therapy, which targets serotonin (5-HT) and its transporter, SERT.

Abstract
Sepsis is characterized by a severe systemic inflammatory response caused by hyperpermeability of the endothelial barrier 

resulting microvascular leakage, which is a leading factor to multiorgan failure. In sepsis, the hyperpermeable endothelial 
cells contribute to the activation of platelets, which release numerous mediators that affect coagulation, inflammatory 
response and are believed to directly or indirectly affect the integrity of the endothelial barrier. One such mediator is serotonin 
(5-hydroxytryptamine, 5-HT), a signaling molecule which mediates a number of cellular functions including regulation of 
cytoskeletal dynamics associated with barrier function of endothelial cells. The actions of 5-HT are mediated by different 
types of receptors and terminated via an uptake mechanism of a 5-HT transporter (SERT) on the platelet and endothelial 
cell. Earlier studies revealed unexpected discoveries concerning the impact of 5-HT signaling on the permeability of the 
endothelial barrier. These findings have been supported by the clinical reports on the anti-inflammatory property of 5-HT 
reuptake inhibitor, SSRIs in treating sepsis-related morbidity and mortality. This review focuses on a wide-range of literature 
to pinpoint cellular and molecular mechanisms that mediate 5-HT-induced microvascular injury in sepsis pathogenesis.
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Introduction
Sepsis is a medical condition characterized by a severe 

systemic inflammatory response caused by a microbial infection. 
In the U.S., sepsis causes ~270,000 deaths annually and a health 
care burden of ~$41.8 billion [1-3]. Sepsis is an important cause 
of morbidity and mortality in the older population (greater than 80 
years) [2,3]. Patients with severe sepsis have a poor prognosis with 
mortality rates of 40%-60% when one or more organs are affected 
[2-4]. Yet, there are no effective therapies to treat sepsis [4-6], 
and clinicians rely only on supportive care [6-9] usually initiated 
after the presence of symptoms, and not necessarily improve the 

microcirculatory function [9].

Clinical studies reported the anti-inflammatory property 
of SSRIs, the serotonin (5-hydroxytryptamine, 5-HT) reuptake 
inhibitors [10-14], in treating infectious disease-related morbidity 
and mortality [15-18]. The traditional view of the SSRIs invokes 
a functional stratification of serotonin transporter, SERT which is 
responsible for accumulation of 5-HT by neurons, platelets, and other 
cells. SSRIs reduces the reuptake rates of 5-HT into serotonergic 
neurons through acting on SERT and to increase the synaptic 5-HT 
levels. Because, the downregulation of 5-HT in synaptic cleft is 
the foundation of a variety of neuropsychiatric disorders, including 
affective disorder, anxiety disorders, obsessive-compulsive 
disorder, and autism [19-21]. Due to these characteristics, SSRIs 
have been used to treat the neuropsychiatric disorders [20].
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5-HT can involve in numerous biological processes in 
the cell cytoplasm, and in extracellular compartments through 
receptor-dependent and receptor-independent (transporter, SERT-
dependent) signaling pathways (Figure 1); for the stability of 
cellular events, extracellular vs cytoplasm ratio of 5-HT should be 
regulated [22-24].

Receptor-dependent pathway is related with the plasma 
5-HT signaling, which is initiated by an interaction between 
plasma 5-HT and 5-HT receptors such as 5- HT2A, or 5-HT2B, 
on platelets or endothelial cells, respectively. 5-HT signaling 
transduced by 5-HT2A mobilizes calcium from intracellular 
stores to trigger the vesicular release of pro-coagulant molecules 
from granules [24-26]. SERT- dependent (receptor-independent) 
pathway is related the free level of 5-HT in cell cytoplasm which 
binds to small GTPases, such as Rab4 and regulates the membrane 
trafficking of granules as well as SERT [22,27-31]. Thus, SSRIs 
downregulate the cellular 5-HT uptake rates which elevates the 
plasma 5-HT concentration [29,30]. These studies emphasize the 
importance of plasma vs. platelet 5-HT ratio in platelet physiology 
[32].

As in neuropsychiatric disorders, the level of 5-HT becomes 
an important factor in development of various diseases. Once SSRIs 
are in the system, they target all the SERT proteins at neuronal and 
peripheral systems and SSRIs change the ratio of 5-HT in blood 
plasma vs cell cytoplasm. Therefore, any attempt to build a link 
between the anti-inflammatory role of SSRIs and sepsis must start 
with a detail analysis of cellular mechanisms to learn more about 
the mechanism if it is through elevating the extracellular 5-HT, or 
reducing the cytoplasmic 5-HT levels. Here, the reader is referred 
to a number of publications on detail background and additional 
perspective on 5-HT signaling pathway and the hyperpermeability 
of the endothelial barrier [33-39].

At elevated levels, 5-HT in blood plasma are associated 
with increases in G protein-coupled receptors signaling and 
serotonylation of small GTPases [25-28], which in turn lead to 
remodeling of cytoskeletal elements to enhance granule secretion 
and promote unique expression of sialylated N-glycan structures on 
smokers’ platelets [30-33]. In receptor-dependent pathway, 5-HT 
signaling elevates resting concentrations of intracellular Ca2+ and 
transglutaminase (TGase) activity which in turn accelerates the 
cellular trafficking dynamics and remodels the surface proteins 
and glycans [25-28]. MALDI/MS and LC/MS/MS analyses of 
the membrane proteins and glycans identified an elevation in the 
number of sialylated N-glycans [31], as well as the appearance of 
certain enzymes and proteins on the plasma membrane [32-34], 
included in membrane trafficking of secretory vesicles (via altering 
the actin-myosin network), that bind G-protein–coupled receptors, 
or that activate small GTPases [28]. These studies suggest a link 

between 5-HT signaling and its downstream effectors—including 
phospholipase C (PLC) and inositol-1,4,5-triphosphate (IP3) 
pathways, in receptor-dependent pathways (Figure 1). When the 
blood plasma 5-HT concentration is elevated, the 5-HT receptor 
on the endothelial cells, 5-HT2B sends the signal to activate 
PLC and produce IP3 (Figure 1). Rac-GTP is formed when 
TGase transamidates 5-HT. Binding to Rac-GTP activates PAK1, 
which phosphorylates vimentin. PAK1 is a Rac1 effector and its 
activation leads to multiple phosphorylations that commonly occur 
at the plasma membrane [35].

Additionally, 5-HT-induced permeability of endothelial 
cells was associated with the phosphorylation of p21 activating 
kinase (PAK1), PAK1-dependent phosphorylation of 
vimentin (P-vimentin) filaments [22,28,29,36,37]. Following 
phosphorylation, the curved filamentous structure of vimentin 
undergoes reorganization and straightens [22,28,29]. These 
findings need to be confirmed by further investigations with 
preclinical and in vitro study models, for example, if SSRI 
application restores internal organ damage in preclinical sepsis-
induced mouse model. What is the mechanism that SSRI rescue the 
sepsis-associated endothelial hyperpermeability? Does SSRI act 
as an anti-inflammatory agent through elevating the extracellular 
5-HT, or reducing the cytoplasmic 5-HT levels? Addressing 
these issues will advance our understanding of the mechanisms 
underlying cellular responses to refine current views of 5-HT 
signaling processes during sepsis.

While all in vitro models of sepsis have essential limitations, 
it is still necessary to investigate molecular mechanisms to 
develop effective therapies to treat sepsis. For these purposes, 
the preclinical models were developed to study sepsis mediate 
microvascular injury [38,47]. These include intravascular 
infusion of endotoxin or live bacteria, soft tissue infection, 
cecal ligation and puncture (CLP)-induced murine, rats or rabbit 
models. In lipopolysaccharide (LPS)-induced sepsis mouse 
model [43-47], Huang et al showed that the elevated 5-HT in 
blood plasma aggravated sepsis-induced acute lung injury by 
promoting neutrophil extracellular trap formation in the lungs of 
LPS-sepsis mouse [48]. LPS murine model uses younger mice 
which do not mimic the age of the human population that incurs 
sepsis [48,49]. In contrast, CLP murine model [43-47] uses older 
mice to more closely mimic the age of the human population 
that incurs sepsis, and the mice receive fluids and antibiotics to 
mimic the basic supportive therapy afforded patients with sepsis 
[50]. In between all other sepsis-induced animal models, CLP is 
generally accepted to be a relevant rodent model of bacterial sepsis 
because it exhibits many of the key pathogenic features observed 
in humans with severe sepsis during the hypotensive periods of 
cold shock [46]. Additionally, CLP-model is easy to monitor the 
steps in the development of sepsis such as the early failure of the 
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renal microcirculation [45,47]. In CLP-sepsis mice, the decreased 
perfusion and leakage, which are a leading acute kidney injury 
and directly related to changes in organ function were observed by 
intravital microscopy [45,47]. Based on all these characteristics, 
CLP-induced sepsis mice model is accepted as a good model to 
learn more about sepsis.

In a recent study, Zhang, et al. used 5-HT deficient mouse 
model, TPH1-knockout (KO) mice in to develop sepsis [43]. TPH1 
is the rate-limiting enzyme in the biosynthesis of 5-HT [25,51]. 
TPH1-KO mice do not have 5-HT in their blood system Zhang 
et al., the survival rates of CLP-induced wild-type with the CLP- 
induced TPH1-KO mice [43]. Interestingly, the CLP-induced 
wild-type mice had a significantly lower survival rate than the 
CLP-induced TPH1-KO group. The tissue histopathology analysis 
revealed that 5-HT markedly exacerbated histological damages in 
the peritoneum, lung, liver, kidney, intestinal tissue, and heart in 
sepsis. In this study, Zhang, et al. proposed that the initial elevation 
of plasma 5-HT promoted serum cytokines and bacteria as well as 
facilitating oxidative stress in sepsis [43]. It will be interesting to 
investigate if SSRI treatment will be able to recover the elevated 
5-HT-associated damages.

There is a growing appreciation to the importance of 
microcirculatory failure in the development of organ injury during 
sepsis [52,53]. Indeed, microvascular dysfunction, increased 
microvascular permeability is a hallmark of sepsis and recognized 
now as a strong predictor of death among patients with severe sepsis 
[54,55]. We observed the declined renal microcirculation in mice 
few hours after CLP was induced [42]. Using CLP-induced mice 
model, we investigated the mechanism by which 5-HT regulates 
the microvascular permeability in development of sepsis [42]. 
Additionally, these studies addressed if clinically relevant delayed 
therapy with a SERT inhibitor restore microcirculatory perfusion 
and renal function [42]. When the CLP was induced on mice that 
lack the SERT gene (SERT-KO mouse [34]), the impact of CLP-
sepsis on microvascular perfusion of these mice were much better 
than the only CLP-induced wild-type mice [42]. Also, mice treated 
with the SERT inhibitor, paroxetine, had better microvascular 
perfusion following CLP. Overall, reducing the 5-HT uptake rates 
via targeting SERT, either genetically or through SSRI could 
reduce sepsis induced microvascular leakage and help restore 
microvascular perfusion [42]. These findings appear to agree with 
the clinical reports on anti-inflammatory role of SSRIs in sepsis 
through reducing the cytoplasmic 5-HT levels.

The relationship between platelets and the endothelia is 
another case of the chicken-and-egg paradox. While the platelets 
are one of the major contributors to the endothelial damage 
[56-59], the hyperpermeable endothelial cells contribute to the 
activation of platelets [54]. There are several studied proposing 

the role of platelets in this major issue. Specifically, in vitro studies 
in the absence of tissue and endothelial wall injury demonstrated 
platelets responses to systemic immune complexes [56]. Based 
on these, platelets were proposed as a crucial mediator of the 
inflammatory response in sepsis [56]. Once it is activated, platelets 
release numerous mediators that affect coagulation, inflammatory 
response and are believed to directly or indirectly affect the 
integrity of the endothelial barrier [60]. One such mediator is 5-HT 
because platelets are the major storage for 5-HT in blood [39,61-
63]. Therefore, in sepsis the initial elevation of plasma 5-HT is 
associated with the elevation of the serum cytokines, bacteria and 
oxidative stress. CLP-sepsis mice showed a significant elevation 
in 5-HT concentration in blood plasma [64,65]; furthermore, the 
5-HT uptake rates of the renal endothelial cells exposed to septic 
serum or 5-HT showed an elevation in cellular 5-HT uptake rates 
[42].

In contrast to the relationship between the blood plasma 
5-HT levels and the cellular 5-HT uptake rates in sepsis, our earlier 
studies reported that the cellular 5- HT uptake rates depended on the 
number of SERT molecules on the plasma membrane [22-24,27-
31]. Moreover, an increase in extracellular 5-HT concentration 
reduced the cellular 5-HT uptake rates by decreasing the number 
of SERT molecules on the plasma membrane [22,29]. Like the 
other membrane proteins, SERT is translocated to the plasma 
membrane of the cells in a substrate- dependent manner [29]. Once 
5-HT is removed from the extracellular matrix into the cytoplasm, 
SERT is rerouted from the plasma membrane to the cytoplasmic 
compartments. 5-HT signaling accomplishes this by altering 
membrane trafficking of small GTPases and the structure of 
cytoskeletal proteins [27]. Interestingly, in CLP-sepsis mouse, the 
relationship between the blood plasma 5-HT level and the cellular 
5-HT uptake rates did not agree with these earlier reports [28]. 
The impact of the elevated serum cytokines, bacteria and oxidative 
stress on structure and function of SERT must be investigated to 
learn about the upregulation of 5-HT uptake rates in sepsis.

The impact of 5-HT on weakening the endothelial barrier 
was first described in the late 1950’s [61,62]. In this line, studies 
demonstrated that 5-HT increases the permeability of blood 
vessels [61,62], microvascular leakage [45,47,66] or recruitment 
of neutrophils [67]. Lately, a strong link was built between the anti- 
inflammatory property of the SSRIs with the concentration of 5-HT 
in extracellular compartment [10-15]. What is the mechanism by 
which septic conditions upregulate platelet and endothelial SERT 
and lead to loss of the endothelial barrier?

The findings from various laboratories propose that elevated 
5-HT level activates PAK and disassembly and spatial reorientation 
of vimentin filaments [36,37,68-70] (Figure 1). Interestingly, these 
associations were found by an immunoprecipitation assay, only in 
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endothelial cells grown in CLP-mouse, not in SHAM-mouse serum 
[42]. These findings also confirm the impact of the level of 5- HT 
in extracellular compartment, which is elevated in CLP-sepsis 
serum. Vimentin is a type III intermediate filament involved in 
cytoplasmic trafficking in cells of mesenchymal (e.g., endothelium, 
fibroblasts, megakaryocytes) and myogenic origin [71,72]. 
Vimentin participates in a network of intermediate filaments that 
extends beneath the cell membrane and regulates the activity of 
PAK, which functions in the transduction of diverse extracellular 
signals to alter intracellular pathways [28,36,37]. Significantly, 
vimentin is a substrate of PAK, and PAK becomes activated in 
cells that are exposed to 5-HT. Following phosphorylation of 
the Serine at position 56, the curved filamentous structure of 
vimentin undergoes reorganization and straightens (37). As 
mentioned above, elevated 5-HT activates PAK to phosphorylate 
vimentin via changing the organization of this intermediate 
filament [22,29,36,37]. Following phosphorylation, the curved 
filamentous structure of vimentin undergoes reorganization and 
straightens. As a part of actin- myosin bundle, the structural 
change on P56-vimentin could also change the actin- myosin-
vimentin cytoskeletal network [22,72,73]. Based on these data, we 
propose that during sepsis increased endothelial uptake of platelet-
derived 5-HT together with 5-HT signaling leads to changes in 
the cytoskeletal network and its partner, endothelial (ve-cadherin), 
which in turn disrupts the endothelial barrier (Figures 1 & 2). Thus, 
agents targeting SERT could reduce sepsis induced microvascular 
leakage and help restore microvascular perfusion.

Figure 1: Proposed mechanisms by which 5-HT signaling and 
SERT-mediated increases in cytoplasmic 5-HT lead to weakening 
of the permeability barrier.

An association between P-vimentin and ve-cadherin involves 
in endothelial dysfunction during sepsis. This was deduced through 

our studies [42] where P- vimentin levels were highly increased in 
5-HT pretreated platelets of wild-type mice however, SERT-KO 
mice could not phosphorylate vimentin even after 5-HT treatment. 
These findings suggest that phosphorylation of vimentin requires 
5-HT uptake ability of SERT which upregulates the intracellular 
free 5-HT concentration [42] (Figure 2).

Figure 2: During sepsis, platelets release 5-HT which is taken 
up by endothelial SERT. Increased intracellular 5-HT along 
with extracellular 5-HT signaling lead to phosphorylation of 
vimentin and weakening of the tight junction. PAK1- dependent 
phosphorylation of vimentin produces a strong association 
between P-vimentin and ve-cadherin.

All these findings from clinical, preclinical, and in vitro 
studies build a strong link between blood plasma 5-HT level and 
sepsis-associated endothelial damage which suggest a facilitative 
role to the cytoplasmic 5-HT in sepsis-associated endothelial 
hyperpermeability. The following sections will summarize how 
SSRIs act an anti-inflammatory agent during sepsis. Addressing 
this gap is a crucial step in understanding of the existing body of 
knowledge in sepsis.
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SSRI Protects Endothelial Barrier against Cytoplasmic 5-HT- 
Associated Damage

The endothelial membrane - cytoskeletal interactions play 
important role in the integrity of endothelial barrier function [71-
75]. The interactions between complex sets of proteins that comprise 
tight junctions, adherens junctions, and gap junctions provide a 
barrier ability to the endothelial cells. Adherens junctions form 
pericellular zipperlike structures along the cell border through their 
transmembrane homophilic adhesion [73]. The adherens junctions 
in endothelial cells contain vascular endothelial (ve)-cadherin 
as the major structural protein that mediates homophilic binding 
and adhesion of adjacent cells in a Ca2--dependent manner. ve-
Cadherin is required for the proper assembly of adherens junctions 
and development of normal endothelial barrier function [71-75].

The endothelium of the vessel wall functions as a semi-
permeable barrier between the blood and interstitial space and is 
important for tissue/fluid homeostasis. The loss of barrier function 
is a hallmark of sepsis and contributes significantly to overall 
microvascular failure [45,47,66]. Based on the literature and our 
findings [42], we propose that sepsis-associated elevation in 5-HT 
level in blood plasma leads to endothelial barrier disruption once 
it is taken in the cells. In cytoplasm, free 5-HT causes a structural 
reorganization of the vimentin, actin-myosin cytoskeleton leads 
an alteration in the conformation of cadherin, this weakens the 
endothelial cell barrier. However, if the uptake of 5-HT from 
extracellular compartments to the cytoplasm is hampered via SERT 
inhibitors like SSRIs, this rescues cytoplasmic 5-HT-associated 
damage on the endothelial barrier (Figure 2).

The endothelial cell lining of the vessel wall is the first 
line of defense against organ injury and functions as a semi-
permeable barrier between the blood and interstitial space. As 
such, it is susceptible to injury from microbial virulence factors, 
proinflammatory mediators released from activated blood cells, 
and oxidative stress [44]. Briefly, microbial virulence factors, 
proinflammatory mediators in circulation, and oxidative stress 
promote the activation of endothelia in which the barrier function 
is impaired [54-56]. Endothelial hyperpermeability allows the 
neutrophil adhesion and infiltration into tissues [76], coagulation 
abnormalities [77], microvascular leakage [78], and hypoperfusion 
associated with sepsis- induced multiorgan failure [79] morbidity 
and mortality [80]; finally, endothelia cannot defense against organ 
injury anymore.

Based on the literature, it appears that the microbial 
virulence factors in circulation activates the endothelial cells 
which contributes to the activation of blood cells such as platelets. 
These white blood cells participate in the inflammatory response, 
hemostasis, host response, and microvascular permeability. Yet, 

a direct link between platelets and sepsis on an increased blood 
plasma 5-HT level has not been built until the clinical studies 
reported the advantageous of SSRIs in sepsis development [10-17]. 
Before this review, it was generally accepted that an environment 
favoring pathophysiological activation of platelets is related with 
the development of sepsis.

Platelets are derived from the fragmented cytoplasm of 
megakaryocytes and enter the circulatory system in an inactive 
form. In sepsis, the hyperpermeable endothelial cells contribute 
to the activation of platelets which accelerates the exocytosis of 
platelet cytoplasm located granules, dense and a-granules [9,10]. 
Notably, blood plasma 5-HT concentration is in the low nanomolar 
range, but the dense granules of resting platelets store millimolar 
concentrations of 5-HT [22-24,51,81]. Thus, platelets apparently 
are designed to tightly control the cytoplasmic free 5-HT 
concentration. However, secretion of dense granules from platelets 
increase the 5-HT concentration in the blood plasma several folds 
and in cytoplasm if SERT on platelet surface reuptake them [22-
24]. In summary, there is a biphasic relationship between blood 
plasma 5-HT elevation, loss of surface SERT, and depletion of 
platelet 5-HT [51]. Specifically, in platelets, plasma membrane 
SERT levels and platelet 5-HT uptake initially rise as plasma 5-HT 
levels are increased, but then fall below normal as the plasma 
5-HT level continues to rise. The actions of 5-HT are mediated 
by receptors, and terminated by a single 5-HT transporter, SERT, 
on the platelet and endothelial cell, through an uptake mechanism 
[28-34].

This Review summarizes the available literature on the 
anti-inflammatory roles of SSRIs in sepsis. Several evidences 
are provided demonstrating how sepsis- induced elevation in 
5-HT levels in blood plasma, or in cell cytoplasm reorganize 
the intracellular factors to produce hyperpermeable endothelial 
barrier through engaging in receptor-dependent and -independent 
signaling pathways. Also, a crosstalk between the platelet and 
endothelia in sepsis was depicted. Based on existing evidences 
and emerging mechanistic insights, novel therapeutics targeting 
to stabilize the 5-HT level in endothelial cell cytoplasm in sepsis 
should be designed.
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