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Abstract

Background: Peripheral Nerve Stimulation (PNS) is an effective treatment for chronic peripheral neuropathic pain. Accurate
lead placement traditionally relies on patient feedback, which may be unreliable under sedation. Intraoperative Neuromonitoring
(IONM), long used in spinal cord stimulation, offers an alternative for guiding PNS implantation. The objective of this study was to
demonstrate that PNS can be implanted accurately and safely under general anesthesia with IONM. Methods: This single-center,
retrospective case series evaluated consecutive patients with chronic lower back pain who underwent permanent PNS implantation
with the micro-implantable pulse generator (Nalu™ Neurostimulation System [Carlsbad, CA]) between April 2024 and February
2025. All procedures were performed under general anesthesia with fluoroscopic guidance and IONM. Pain outcomes were assessed
using a numeric rating scale (NRS) at baseline and 3 months post-implant. Safety was evaluated by monitoring for intraoperative and
postoperative adverse events through 3 months of follow-up. Results: A total of 30 patients (mean age 76.7 years, 66.7% female)
were included and underwent successful implantation targeting the cluneal (90%) or lumbar medial branch nerves (10%). Mean NRS
pain scores decreased from 8.9 at baseline to 2.6 at 3 months, representing a 70.5% mean reduction. All patients met responder criteria
(>50% pain reduction), and 16.7% were high responders (>80% reduction). No adverse events were reported. Conclusions: PNS
implantation guided by IONM under general anesthesia was safe, accurate, and effective in this case series. These findings support
IONM as a valuable adjunct in neuromodulation and warrant further prospective study.

Keywords: Chronic pain; Electromyography; General anesthesia;
Monitored anesthesia care; Neuromodulation; Micro-IPG

Introduction

Chronic nerve pain, including pain of peripheral nerve origin, is
difficult to treat [1], and is a substantial burden for patients, who
commonly experience reduced physical activity, compromised
daily functioning, decreased productivity, sleep disturbances,
depression, anxiety, and diminished health-related quality of life
[2-11]. Only 30% to 40% of patients with chronic nerve pain
achieve adequate response to conventional stepwise treatment,
primarily pharmacotherapy [1]. For patients who fail to receive
sufficient relief with conventional medical management, clinical
guidelines now recommend interventional strategies, including

neuromodulation via Peripheral Nerve Stimulation (PNS) [12,13].
A substantial clinical and real-world evidence base supports the
ability of PNS to treat chronic pain of peripheral nerve origin [14-
18]. Similar to spinal cord stimulation (SCS) [19], PNS delivers
targeted electrical impulses to modulate neural activity and reduce
pain, using implanted leads and a pulse generator [20]. Recent
technologic advances have enabled PNS to provide the broad,
complex programming capabilities and sophisticated stimulation
protocols once only available with SCS systems [17,21,22].

PNS systems are inserted using a minimally invasive procedure,
with successful implantation requiring precise lead placement
proximal to the target peripheral nerve, facilitated by image
guidance using ultrasound and/or fluoroscopy [12]. PNS
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implantation under local anesthesia alone is uncommon [23],
and is generally limited to the temporary placement of small
devices [24]. Currently, most PNS procedures are performed
with the patient awake (conscious) but sedated under Monitored
Anesthesia Care (MAC), or with the patient asleep (unconscious)
under general endotracheal anesthesia [23,25,26]. Confirmation
of PNS-induced paraesthesia over the area of pain is typically
elicited by intraoperative verbal feedback from the sedated patient
during awake procedures, or by arousing patients during asleep
procedures [12,27]. However, reliance on verbal patient feedback
during lead implantation can be unreliable due to factors including
patient stress, sedative-related confusion, impaired ability to
communicate, and hearing or language difficulties [25,27-29].
Patients woken from general anesthesia may become acutely aware
of pain, increasing their risk for agitation, medication-related
disorientation, and impaired ability to communicate [27]. There
are also safety concerns with MAC, as accidental oversedation
can cause central respiratory depression, airway obstruction (due
to an unprotected airway), brain damage, and death [28,30,31]. In
cases of respiratory distress, the patient’s prone position during the
PNS procedure can also delay resuscitation [31]. Additional risks
include patient movement during the procedure [29,32], and MAC
may be contraindicated in individuals with sensitivity to sedatives
or local anaesthetics [27].

The use of Intraoperative Neuromonitoring (IONM) with PNS can
provide continuous, objective feedback on neural function. [IONM
involves Electromyography (EMG), Somatosensory Evoked
Potentials (SSEP), and motor-evoked potentials (MEP) to ensure
accurate lead placement [25,29] while facilitating procedural safety
through continuous surveillance [25,29,33]. This added layer of
monitoring may support safer and more efficient procedures and
improved patient comfort and satisfaction. These advantages
are clinically relevant because inaccurate or incomplete patient
feedback can contribute to device-related problems; for example,
in a 2023 analysis of PNS from the Manufacturer and User Facility
Device Experience (MAUDE) database, 8.6% of 1012 device-
related Adverse Events (AEs) were related to reports of “unwanted
stimulation” [34].

IONM has been used with SCS for over two decades, with
increasing frequency [26,35,36] and with studies showing its
safety and efficacy to be comparable, if not superior, to awake
implantation [26,27,35,37-39]. A 2023 systematic review identified
a substantial body of Level II evidence indicating superior pain
relief, less extraneous paraesthesia, fewer postoperative neurologic
deficits, and a 27% shorter operating time with IONM versus
asleep placement for SCS [26]. To mitigate the complications of
neurostimulation, the most recent evidence-based guidance from
the International Neuromodulation Society (INS) recommends
IONM for procedures performed under general anesthesia [25].

However, the use of IONM during PNS procedures remains under-
evaluated, with no published reports of IONM in PNS surgery.

In this manuscript, we report the first known case series of
standardized use of IONM for permanent PNS therapy using
the micro-implantable pulse generator (micro-IPG; Nalu™
Neurostimulation System [Carlsbad, CA]). The micro-IPG has
shown high treatment efficacy, effectiveness, and safety across two
randomized controlled clinical trials [17,40] and one large-scale
real-world registry study in patients with chronic neuropathic pain
[18]. The objective of this study was to demonstrate that PNS can
be implanted accurately and safely under general anesthesia with
IONM.

Materials and Methods

This observational, retrospective real-world study was conducted
at a single, outpatient private practice pain clinic (Expert Pain,
Houston, TX). All patients who initially presented with chronic
peripheral neuropathic pain and numbness over the lower back and
superior buttock area, had successful PNS trial procedures (i.e.,
achieved >50% pain reduction during the 7-day trial period), and
were permanently implanted with PNS targeting the cluneal or
lumbar medial branch nerves between April 2024 and February
2025 were included in this case series. The same surgeon (study
author IS) performed all trial and permanent implantation
procedures; IS is a double board-certified anaesthesiologist and
interventional pain management specialist who has completed
more than 2,000 implant procedures over the last 25 years.

To ensure ethical compliance and patient safety, Institutional
Review Board (IRB) approval was obtained from WCG IRB,
Puyallup, WA (IRB reference: 1331269), and all participants
provided informed consent following standards of Good Clinical
Practice [41] and Committee of Publication Ethics (COPE)
guidelines [42]. The study followed IRB guidelines for data
confidentiality and regulatory adherence. Data used herein were
collected per usual clinical practice and stored in the patient
records at the clinic. The PROCESS guidelines for case series
reporting were used to draft this manuscript [43].

Permanent PNS implantation procedures were performed in
accordance with the clinic’s standard of care, with patients under
general endotracheal anesthesia in a prone position, utilizing
fluoroscopy to guide anatomic lead placement and IONM (Cadwell
Cascade Pro, Cadwell Industries, Kennewick, WA) to ensure
accurate electrode placement. Anesthesia consisted of midazolam,
fentanyl, and propofol for induction and a volatile agent for
maintenance, typically sevoflurane. Trained and experienced
technicians operated the IONM device. IONM feedback alone
was used to determine if PNS coverage was appropriate; patients
were not woken during the surgery. All patients were administered
intraoperative antibiotics, and all incisions were closed using Vicryl
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and Monocryl sutures. American Society of Regional Anesthesia
and Pain Medicine (ASRA) guidelines for anticoagulation were
followed for any patients on antithrombotic therapy [44].

Procedures lasted approximately 1.5 hours. Afterward, patients
were given detailed postoperative instructions, prescribed a 7-day
course of antibiotics, and were instructed to return for evaluation
72 hours after the procedure. After sufficient site healing, all PNS
devices were programmed to alternate every 3 minutes between
tonic and sub-paraesthesia stimulation.

To evaluate treatment effectiveness, pain scores were obtained
from patients using a standard numeric rating scale (NRS, 0 to
10) prior to the PNS trial (i.e., at baseline) and at 3 months after
permanent PNS implantation. Response and high response were
defined as >50% and >80% reductions in pain scores from baseline,
respectively. To evaluate procedure safety, patients were evaluated

immediately post-operation, before discharge, and via phone call
within 24 hours. Descriptive statistics were used to calculate and
summarize outcomes, including change from baseline in pain
scores and response rate.

Results

A total of 30 patients received permanent PNS implantation
targeting the cluneal nerve (27/30; 90.0%) or lumbar medial
branch nerves (3/30; 10.0%) for chronic intractable lower back
pain. Patients were a mean 76.7 years of age (range, 66-89) and
66.7% were female (Table 1). Table 2 provides detailed clinical
profiles for each patient, including treatment muscle group targets.
The majority (66.7%) had previous back surgery and 83.3%
had previously implanted, operating SCS devices. Mean patient
baseline pain score was 8.9 (range, 8-10).

Characteristic

N=30

Age, mean (range)

76.7 (66-89) years

Median 77 years

Sex, female 66.7% (20/30)
Mean baseline NRS pain score (range), pre-PNS 8.9 (8-10)
Mean NRS pain score (range), 3 months post-PNS 2.6 (1-4)

Mean pain percent reduction (range), 3 months post-PNS

70.5% (55.6%-88.9%)

Responder rate” 3 months post-PNS

100.0% (30/30)

High responder rate™ 3 months post-PNS

16.7% (5/30)

"Defined as >50% pain reduction. ** Defined as >80% pain reduction.

Abbreviation: NRS: numeric rating scale; PNS: peripheral nerve stimulation.

Table 1: Patient Characteristics (N=30).

IONM Muscle Group NRS
Target
SCS . . Patient Diagnosis
Age Sex Implant Previous Spinal Surgery Summary
. 3 %
Baseline Mo Change
Left: Tliopsoas, vastus
. . lateralis, tibialis anterior,
Lumbar fusion, lumbar Bilateral cluneal, astrocnemius. abductor
74 F Yes decompression, cervical low back pain, leg & hallucis 8 2 75.0%
fusion pain, left side worse Right: Tliopsoas, vastus
lateralis
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Cervical fusion, cervical . .
. . . Left and right: Iliopsoas,
laminectomy, thoracic Bilateral cluneal, L.
78 Yes laminectomy, lumbar low back and VaS'[l.l.S lateralis, tlbla.hs 1 87.5%
laminectomy, L1 and L2 buttocks anterior, gastrocnemlus,
- abductor hallucis
fusion
Bilateral cluneal,
75 Yes Back surgery, back fusion L(;ngl;?;kg}(sns?éz Left ir;(:tzf?;t'elrgﬁgsoas’ 2 75.0%
worse
Bilateral cluneal, Left and right: Iliopsoas,
74 Yes Right hip replacement lgw ba.ck, starts on VaS'[l.l.S lateralis, tibiglis ’ 77.8%
right side, spreads anterior, gastrocnemius,
to left abductor hallucis
Bilateral cluneal,
39 Yes None lqw baf:k, starts on Left and righ_t: Tibialis ) 77 8%
right side, spreads anterior
to left
Left: Rectus abdominus,
Lumbar laminectomy and Bilateral cluneal, tibialis anter.ior,
78 Yes fusion low back, equal gastrocnemius 1 88.9%
pain on both sides Right: Tibialis anterior,
gastrocnemius
Left: Tliopsoas vastus
lateralis, tibialis anterior,
Back surgery, right SI Bilateral cluneal, gastrocnemius, abductor
79 Yes fusion, left SI fusion, total low back, equal hallucis 1 88.9%
hip replacement pain on both sides Right: Iliopsoas vastus
lateralis, tibialis anterior,
gastrocnemius
Left: Rectus abdominis,
vastus lateralis/medialis,
Bilateral cluneal, tibialis a nterior,
low back, equal gastrocnemlusz abductor
88 Yes None . L hallucis 4 55.6%
pain (;n bOtl.l sides, Right: Rectus abdominis,
cg pain tibialis anterior,
gastrocnemius, abductor
hallucis
Bi-lateral medial
73 Yes Unspecified lumbar branch, ¥0w back, Left and right: Iliqpsoas 1 88.9%
surgery equal pain on both vastus lateralis
sides, both leg pain
Lumbar laminectomy, Bilateral cluneal, Left and right: Rectus
76 Yes L4-5 SI fusion, right SI low back, across abdominis, iliopsoas vastus 3 66.7%
fusion back lateralis/medialis
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80 F Yes None low back, radiates . > . 9 3 66.7%
to both sides anterior, gastrocnemius,
abductor hallucis
Left: Iliopsoas, vastus
lateralis/medialis, tibialis
. . anterior, gastrocnemius,
81 | M No 3 lam‘srfrcfmy’ back Bﬂaltz;?lbcal;feal’ abductor hallucis 9 2 | 77.8%
ety Right: Iliopsoas, vastus
lateralis/medialis, abductor
hallucis
Left: Gluteus maximus,
Bi-lateral medial iliopsoas, vastus lateralis
76 F Yes None branch, mid/low Right: Iliopsoas, vastus 8 1 87.5%
back pain lateralis, tibialis anterior,
gastrocnemius
Bilateral cluneal, Left and right: Iliopsoas,
73 F Yes Cervical lamlnectomy, IOV.V back, both Vastl}s lateralis, tlbla:hS 9 ) 77.8%
lumbar laminectomy sides, down anterior, gastrocnemius,
buttocks and legs abductor hallucis
Left and right: Iliopsoas,
34 F Yes Lumbar fusion Bilateral cluneal, vastgs lateralis, t1b13:]13 9 4 55.6%
low back anterior, gastrocnemius,
abductor hallucis
Left and right: Iliopsoas,
69 M Yes C5-6 dlsc§ct0my, lumbar Bilateral cluneal, VaStl'lS lateralis, tlbla:hS 3 3 62.5%
laminectomy low back anterior, gastrocnemius,
abductor hallucis
Left and right: Iliopsoas,
31 8 Yes None Bilateral cluneal, vastgs lateralis, tlblH:]IS 10 3 70.0%
low back anterior, gastrocnemius,
abductor hallucis
Left and right: Iliopsoas,
68 F Yes None Bilateral cluneal, VaStl'lS lateralis, tlbla:hS 9 3 66.7%
low back anterior, gastrocnemius,
abductor hallucis
Left: Rectus abdominis,
vastus lateralis/medialis,
Bilateral cluneal tibialis anterior,
77 F Yes None low back > gastrocnemius 9 3 66.7%
Right: Rectus abdominis,
tibialis anterior,
gastrocnemius
Left: Vastus lateralis/
Bilateral cluneal, medialis, tibialis anterior
77 M Yes Right L4-5 discectomy low back, mostly Right: Vastus lateralis/ 9 4 55.6%
left side medialis, tibialis anterior,
abductor hallucis
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Left and right: Iliopsoas,
2 8 Yes Laminectomy Bilateral cluneal, VaS'[l.l.S lateralis, t1b13:118 9 3 66.7%
low back and legs anterior, gastrocnemius,
abductor hallucis
L5-S1 laminectom: Bilateral cluneal, L\Zf;t?lzciz:tlfr}:l:islllt(i)gis;?ss ’
79 M Yes . omy, low back, right side . i . 10 3 70.0%
posterior fusion ol anterior, gastrocnemius,
ony abductor hallucis
Left and right: Iliopsoas,
76 8 No None Me@lal b?anch, bra VaS'[l.l.S lateralis, t1b13:115 9 3 66.7%
line/mid back anterior, gastrocnemius,
abductor hallucis
Left: Rectus abdominis,
vastus lateralis/medialis,
tibialis anterior,
Bilateral cluncal gastrocnemius, abductor
78 F Yes Back surgery x3 low back ’ hallucis 9 2 77.8%
Right: Rectus abdominis,
tibialis anterior,
gastrocnemius, abductor
hallucis
Left and right: Iliopsoas,
73 M No None Bilateral cluneal, Vastl}s lateralis, tlbla:hS 9 3 66.7%
low back anterior, gastrocnemius,
abductor hallucis
Left and right: Iliopsoas,
71 F No Neck fusion Left cluneal{SI, low vastgs lateralis, t1b13:]18 9 4 55.6%
back/hip anterior, gastrocnemius,
abductor hallucis
. Bilateral cluneal, T
34 M No L4-5 dlS(': surgery, facet Jow back, across Left and right: Illqpsoas, 9 4 55.6%
rhizotomy vastus lateralis
back
Left and right: Iliopsoas,
70 F Yes Unspecified back surgery Bilateral cluneal, vastgs lateralis, tlblglls 9 3 66.7%
low back anterior, gastrocnemius,
abductor hallucis
Unspecified lumbar Bilateral cluneal, L\/eaf;t?lzciartleg:altl:isnlt(i)giszfl?ss ,
68 F Yes P low back and legs, . > . 9 4 55.6%
surgery left side worse anterior, gastrocnemius,
abductor hallucis
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Yes None

Bilateral cluneal,
low back

Left and right: Iliopsoas,
vastus lateralis, tibialis
anterior, gastrocnemius,

abductor hallucis

66.7%

F: Female; M: Male; NRS: Numeric Rating Scale; PNS: Peripheral Nerve Stimulation; SCS: Spinal Cord Stimulation; SI, Sacroiliac

Table 2: Detailed Patient Profiles.

All PNS surgeries were performed and completed without incident.
All devices were activated within 10 days following surgery, with
programming optimized and tailored to patient preferences. All
patients’ postoperative courses were unremarkable, with no reports
of infection, site pain, electrode repositioning, lead migration, loss
of stimulation or unpleasant/unwanted stimulation, or serious AEs
through 3 months of follow-up.

At 3 months, mean patient pain score was 2.6 (range, 1-4),
indicating an average pain reduction of 70.5% (range, 55.6% to
88.9%) (Table 1). All (100%) patients met response criteria (=50%
pain reduction), and 16.7% were high responders (=80% pain
reduction).

Discussion

This case series confirms the effectiveness and safety of using
IONM during PNS implantation. All patients achieved meaningful
(i.e., >50%) pain relief. Notably, 16.7% were high responders with
>80% pain relief, while the overall reduction in pain intensity was
70.5%. These results align with published data from two large
randomized controlled trials (COMFORT and COMFORT 2)
evaluating the micro-IPG system for the treatment of peripheral
neuropathic pain, without any specified IONM use [40,45]. In
these studies, pooled 3-month data (N=103) indicated an 81%
responder rate with a 30% high responder rate and an average pain
reduction of 66% [40].

IONM used during PNS plays a distinct technical and physiologic
role from its use in SCS, but provides similar benefits in terms of
optimizing lead placement accuracy and reducing the risk of non-
target stimulation. In SCS, IONM is used to confirm appropriate
activation of the dorsal column pathways and ensure safe epidural
lead placement by avoiding the stimulation of ventral motor roots
or other non-target tracts. This process relies on monitoring central
conduction pathways, sometimes with the aid of fluoroscopic
guidance, to confirm dorsal column engagement [46]. In contrast,
PNS targets specific peripheral nerves corresponding to the
patient’s area of pain, typically involving local peripheral nerve
mapping under visualization and low-threshold stimulation
to ensure accurate lead placement within the intended nerve
distribution [47].

By confirming nerve proximity and adequacy in real time,
IONM during PNS enhances the precision of lead positioning
and minimizes the likelihood of off-target activation. Evidence
from the current study and prior research [25,28,29] shows that
IONM offers valuable real-time assessment to guide safe and
accurate lead placement without the need for intraoperative
patient feedback. With IONM, SSEPs and MEPs monitor the
functional integrity of sensory and motor pathways, respectively,
during neurointerventional procedures, ensuring that these critical
structures are not compromised [29]. The accuracy of electrode
placement in anesthetized patients is achieved by eliciting and
capturing EMG responses from specific muscle groups innervated
by the targeted peripheral nerves [25,28,29]. In addition,
intraoperative SSEP collision testing may be used as a physiologic
marker of paraesthesia [25,28]. Figures 1 shows examples of the
IONM display in the operating room, demonstrating that individual
channels can be stimulated independently, and highlighting the
extent of therapeutic coverage. Figure 2 shows lead placement
along a patient’s iliac crest, along with the IONM display during
active stimulation.

Figure 1: Examples of IONM display, demonstrating that
individual channels can be stimulated independently (left and right
targets shown), highlighting the extent of therapeutic coverage for
the neuromodulation therapy.
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Figure 2: The upper left image shows the placement of the PNS
lead along the superior margin of the patient’s left Iliac crest (IC)
and the upper right image shows placement along the right IC.
The lower left image shows the bilateral configuration of the leads
along with the pre-existing spinal stabilization hardware. The
lower right image shows intraoperative neuromonitoring during
stimulation, in which the patient’s left side was being actively
stimulated showing adequate coverage (left side of image).

As IONM capabilities are increasingly being integrated directly
into device platforms [48,49], this is a timely moment for
physicians to consider the roles and application of this technology
in clinical practice. The potential exists for IONM to decrease
healthcare resource utilization related to PNS implantation by
increasing lead placement accuracy, leading to fewer revision or
repeat procedures [27], and decreasing intraoperative time [26,27].
IONM also eliminates the need for intraoperative wake-up testing,
which can otherwise add an average of 35 minutes to procedures
[25,27]. Despite these potential advantages, I[ONM has not been
widely adopted for use with PNS. Several factors contribute to
this situation, including resource availability, healthcare provider
experience, and reimbursement [29,50,51]. While support for
IONM is typically available in urban teaching hospitals, this is not
always the case in nonteaching hospitals, rural centers, or smaller
surgical centers [51]. Likewise, in some settings, [ONM has been
shown to reduce overall operating room and anesthesia time [27],
while in other cases, IONM setup and monitoring requirements
can lead to longer procedure durations [52]. Additionally, engaging
third-party neuromonitoring companies can present challenges
[53].

It is also essential for healthcare providers to be aware that there are
applicable reimbursement codes (Current Procedural Terminology

[CPT] 95940, 95941) when utilizing IONM services. Many
facilities will either directly contract with IONM companies or
reimburse them, subsequently billing insurance carriers for these
expenses. For facility administrators, effective communication and
a thorough understanding of the clinical benefits of IONM during
PNS are essential.

Limitations

This study lacked a comparison or control group, limiting the
ability to directly assess outcomes against alternative approaches.
However, selection bias was minimized by including all patients
who received a permanent PNS implant at the clinic during
the study period, with none excluded from analysis. This study
focused exclusively on patients who received the micro-IPG
PNS system; therefore, its findings may not be generalizable to
larger PNS devices. Additionally, this research was conducted
at a single center with a physician highly experienced in both
IONM and PNS permanent implants, which precludes drawing
conclusions regarding the learning curve for these procedures.
While these early (3-month) outcomes are expected to best reflect
the procedural benefits of IONM, all patients will be followed for
up to 12 months to assess durability of response.

Finally, only two nerve sites were tested in this study. Additional
research is warranted to investigate outcomes when IONM is used
during PNS procedures for chronic peripheral nerve pain affecting
the upper and more distal lower limbs.

Conclusion

The use of IONM in PNS procedures for chronic lower back pain
is safe and effective and can result in outcomes comparable or
superior to published PNS research without IONM. These positive
results warrant additional research and consideration.
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