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Abstract
While histopathological examination remains the gold standard, integration of clinical, cytological, and virological parameters 
may enable non-invasive prediction of cervical intraepithelial neoplasia (CIN) through machine learning (ML) approaches. 
The aim of this study was to evaluate the performance of multiple machine learning algorithms in predicting CIN1, CIN2, 
and CIN3 using routinely collected clinical and laboratory data. This retrospective study included 98 women who underwent 
colposcopy-guided cervical biopsies at a tertiary care center in Romania between January 2022 and December 2024. Features 
analyzed included age, smoking, sexual behaviour, HPV genotype, cytological findings, and CINtec® (p16/Ki-67) dual 
staining status. Data were balanced using SMOTE, and models were trained using five-fold cross-validation. Predictive 
performance was assessed using accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic 
curve (ROC AUC) for each ML model. Among 98 women, 53 (54.1%) had CIN1, 36 (36.7%) CIN2, and 9 (9.2%) CIN3. 
Random Forest achieved the best performance in predicting CIN1 (accuracy 63%, F1-score 0.67, ROC AUC 0.658). Logistic 
Regression with L2 regularization outperformed other models in predicting CIN2 (accuracy 89%, F1-score 0.77, ROC AUC 
0.839). For CIN3 prediction, Logistic Regression again showed the highest performance (accuracy 96%, F1-score 0.80, ROC 
AUC 0.98). CatBoost and XGBoost showed competitive performance in predicting CIN2 and CIN3, while Naive Bayes and 
SVM exhibited variable performance depending on the CIN grade. Machine learning models, particularly Logistic Regression 
and ensemble-based classifiers, demonstrated promising performance in predicting CIN grades using readily available clinical 
and laboratory data.
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Introduction

Cervical intraepithelial neoplasia (CIN) represents a spectrum 
of premalignant changes, and stratification into CIN1, CIN2, 
and CIN3 informs both surveillance and treatment strategies. 
However, current diagnostic pathways heavily rely on colposcopy 
and histopathology, which are invasive and resource-intensive. In 
Eastern Europe, the prevalence of HPV infection is estimated at 
21%, with the region showing the highest global rates of high-
grade cervical dysplasia (~4.3% overall in Europe) [1-3]. Among 
women with normal cytology in Central and Eastern Europe, HPV 
prevalence remains substantial at 12.6%, with HPV16 being the 
most frequently detected genotype, particularly in high-grade 
lesions [3]. 

Interobserver variability remains a major challenge in the 
histopathological diagnosis of cervical intraepithelial neoplasia 
(CIN), particularly in the evaluation of lower-grade lesions. 
Substantial disagreement among pathologists has been well-
documented, especially in differentiating between CIN I and CIN 
II. In contrast, diagnostic agreement tends to be higher for invasive 
carcinoma and CIN III. This is quantitatively reflected in reported 
kappa (κ) values, which measure interrater reliability: κ = 0.496 
for CIN III, compared with κ = 0.172 and κ = 0.175 for CIN II and 
CIN I, respectively [4-6]. A key contributor to this variability is 
the morphological overlap between reactive epithelial changes and 
low-grade neoplastic processes, particularly CIN I. Histological 
features can often mimic one another, and even among experienced 
observers, the distinction may be ambiguous. As a result, both 
overdiagnosis and underdiagnosis of CIN I are common, which 
has implications for both patient anxiety and resource utilization 
[4-6].

To address these challenges, several emerging technologies have 
shown promise. Biomarker-based profiling—particularly the use 
of immunocytochemical markers such as p16, Ki-67, and DNA 
methylation signatures—has demonstrated the ability to enhance 
risk stratification and improve the specificity of CIN grading 
[7, 8]. These tools offer the potential to reduce overtreatment 
by identifying lesions with low malignant potential. In parallel, 
advances in artificial intelligence have introduced new diagnostic 
approaches. Deep learning models have achieved diagnostic 
accuracies as high as 90.8%, offering a reproducible and scalable 
method to support pathologist decision-making [9]. 

Recent advancements in machine learning (ML) and deep learning 
have markedly improved the diagnostic performance for cervical 
intraepithelial neoplasia, surpassing traditional approaches in 
many contexts. Diagnostic accuracy is influenced by multiple 
factors, including the nature of the input data, model architecture, 
and the robustness of the validation technique employed.

Ensemble convolutional neural networks (CNNs) trained on 
digital histopathological images have achieved exceptionally 
high accuracy, with reported rates up to 94.6% for CIN grading, 
underscoring their potential as decision-support tools in pathology 
workflows [10, 11]. 

Multimodal models combining clinical variables with colposcopic 
imaging data have further enhanced prediction capabilities. For 
instance, a convolutional neural network, which integrated both 
visual and clinical information, achieved a diagnostic accuracy 
of 92.3%, highlighting the value of contextual clinical data in 
improving classification outcomes [12]. In the context of high-
grade squamous intraepithelial lesions (HSIL), the Swin-B model 
reached an accuracy of 91.4%, supporting its use in triaging 
potentially severe lesions [13].

Beyond imaging, ML models trained on molecular data have also 
shown strong discriminatory power. A Random Forest algorithm 
applied to DNA methylation profiles for identifying CIN2+ 
lesions achieved an area under the ROC curve (AUC) of 0.90, 
outperforming traditional methods such as HPV genotyping and 
cytological screening [14]. Similarly, a Naive Bayes classifier using 
methylation data demonstrated an AUC of 0.88 and a specificity 
of 93.9%, reflecting its utility in high-specificity applications 
[14]. Moreover, a recent meta-analysis of 77 studies evaluating 
artificial intelligence–assisted cytology reported pooled diagnostic 
accuracies ranging from 90% to 94%, further confirming the 
consistency and reliability of AI-enhanced diagnostic systems in 
cervical cancer screening programs [15].

The present study aimed to evaluate the predictive performance 
of various supervised machine learning models in differentiating 
between CIN1, CIN2, and CIN3 lesions, utilizing a dataset 
comprising HPV genotyping, cytology findings, and p16/Ki-67 
dual staining.

Materials and methods

Sampling

Study Population

This retrospective study included 98 women who underwent 
colposcopy-guided cervical biopsies at tertiary care centers from 
Romania between January 2022 and December 2024. Patients were 
eligible for inclusion if they were adult women (aged ≥18 years) 
who underwent colposcopic evaluation and had histopathological 
confirmation of cervical intraepithelial neoplasia (CIN1, CIN2, 
or CIN3). Inclusion required availability of complete clinical 
data, including HPV genotyping results, cytological findings, and 
immunocytochemical staining (CINtec® for p16/Ki-67). Patients 
were excluded if they had a history of cervical cancer, previous 
hysterectomy, immunosuppressive disorders, or incomplete 
clinical or histopathologic data. Additionally, pregnant women 
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and individuals with co-existing gynecologic malignancies were 
excluded to reduce confounding. The final dataset comprised 
98 patients who met all eligibility criteria and were included in 
the analysis. Patients were classified into three histologically 
confirmed groups: CIN1 (n = 53), CIN2 (n = 36), and CIN3 (n 
= 9). Demographic and clinical variables, including smoking 
status, sexual history, HPV infection, cytological findings, and 
immunocytochemical markers, were collected from their medical 
records. 

Feature Selection and Data Pre-processing
Clinical and laboratory variables with potential relevance to 
cervical neoplasia were extracted for analysis. These included 
age, residence (urban or rural), smoking history, number of sexual 
partners, age at sexual debut, parity, combined oral contraceptive 
(COC) use, sexually transmitted disease (STD) history, prior 
cervical treatment, HPV genotype (16/18, other high-risk, or low-
risk), CINtec® dual-staining status (p16/Ki-67), and Pap smear 
results (ASCUS, LSIL, HSIL, NILM). Continuous variables such 
as age were normalized, while categorical variables were one-
hot encoded. Missing data were imputed using median values for 
continuous variables and the most frequent category for categorical 
variables.
Machine Learning Models
To evaluate the predictive capacity of clinical and laboratory 
features in classifying CIN grade, supervised machine learning 
models were developed separately for each CIN category (CIN1, 
CIN2, CIN3). The following classifiers were employed: Logistic 
Regression, Random Forest, Support Vector Machine (SVM), 
Naive Bayes, k-Nearest Neighbors (KNN), Extreme Gradient 
Boosting (XGBoost), and CatBoost. Model development was 
performed using the scikit-learn and xgboost libraries in Python 
(version 3.11).
Handling Class Imbalance
Given the class imbalance—especially the low number of CIN3 
cases—Synthetic Minority Oversampling Technique (SMOTE) 
was applied to the training data within a stratified k-fold cross-
validation framework (k = 5). The oversampling was applied only 
on the training set in each fold to avoid data leakage.
Hyperparameter Tuning
Hyperparameters for each model were optimized using grid 
search with cross-validation. For logistic regression, L2 and L1 
regularization parameters (C values) were tuned. For random 
forest, the number of estimators and tree depth were varied. SVM 
models were optimized for the penalty term (C) and kernel type 
(linear or radial basis function). KNN models were tuned by 
varying the number of neighbors (k). Gradient boosting models 
(XGBoost and CatBoost) were optimized for learning rate, depth, 
number of estimators, and iterations as appropriate.

Evaluation Metrics

Model performance was evaluated on a hold-out test set, with 
metrics including precision, recall, F1-score, overall accuracy, 
and area under the receiver operating characteristic curve (ROC 
AUC). Metrics were calculated for each class (0 and 1), with 
particular focus on the performance for the positive class (presence 
of the respective CIN grade). Macro and weighted averages were 
also computed. The best-performing parameters and metrics for 
each classifier were recorded and are presented alongside visual 
representations.

Ethical Approval

This study was conducted in accordance with the principles of 
the Declaration of Helsinki. Institutional Review Board (IRB) 
approval was obtained from the Institutional Ethics Committee 
of Clinical Hospital of Obstetrics and Gynecology ,,Buna vestire” 
Galati (No. 115/05.01.2021). No financial incentives were 
provided for participation, and patient care was not influenced by 
study involvement.

Results

Patient characteristics 

Ninety eight patients were included in the study and their clinical 
characteristics are presented in Table 1. The presence of multiple 
sexual partners showed a statistically significant association with 
higher CIN grades (p = 0.022). Only 1 patient (1.9%) in the CIN1 
group reported multiple partners, whereas 6 (16.7%) in CIN2 and 2 
(22.2%) in CIN3 reported the same behaviour. Early sexual debut 
(defined as ≤15 years) was more frequently reported in CIN2 and 
CIN3 groups, though the difference was not statistically significant 
(p = 0.165). 

A significant association was observed between sexually 
transmitted disease history and CIN grade (p < 0.001). No patients 
in the CIN1 group had a history of STD, whereas 1 (2.8%) in CIN2 
and 3 (33.3%) in CIN3 did.

HPV 16/18 infection was significantly more common in higher-
grade lesions (p < 0.001). Twelve patients (22.6%) with CIN1 had 
HPV 16/18, compared with 18 (50.0%) in CIN2 and 8 (88.9%) in 
CIN3. Low-risk HPV types were not significantly associated with 
CIN severity (p = 0.367), found in 10 (19.2%), 3 (8.6%), and 1 
(11.1%) patients with CIN1, CIN2, and CIN3, respectively.

CINtec+ (p16/Ki-67 dual staining) positivity was strongly 
associated with higher CIN grade (p < 0.001). It was present in 
6 (11.32%) of CIN1 cases, 6 (16.7%) of CIN2, and 5 (55.6%) of 
CIN3. Low-grade squamous intraepithelial lesion (LSIL) findings 
were more common in higher CIN grades (p = 0.034), reported in 
24 (45.3%) CIN1 cases, 22 (61.1%) CIN2 cases, and 8 (88.9%) 
CIN3 cases. High-grade squamous intraepithelial lesion (HSIL) 
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results were significantly more common in CIN2 and CIN3 groups compared to CIN1 (p < 0.001). Only 2 patients (3.8%) in CIN1 had 
HSIL, while 16 (44.4%) in CIN2 and 5 (55.6%) in CIN3 did.

Variable CIN1 (n=53 patients) CIN2 (n=36 patients) CIN3 (n=9 patients) p-value

Residence (Rural) 22 (41.5%) 15 (41.7%) 3 (33.3%) 0.891

Smoking (Yes) 14 (26.4%) 9 (25.0%) 1 (11.1%) 0.612

Multiple sexual partners 1 (1.9%) 6 (16.7%) 2 (22.2%) 0.022

Early Sexual Debut 1 (1.9%) 4 (11.1%) 1 (11.1%) 0.165

Multiparity 21 (39.6%) 14 (38.9%) 6 (66.7%) 0.779

COC Use (Yes) 5 (9.4%) 8 (22.2%) 2 (22.2%) 0.215

STD (Yes) 0 (0.0%) 1 (2.8%) 3 (33.3%) <0.0001

Previous cervical treatment 38 (79.2%) 22 (61.1%) 5 (55.6%) 0.125

HPV 16/18 12 (22.6%) 18 (50.0%) 8 (88.9%) <0.0001

Other HR HPV 23 (43.4%) 22 (61.1%) 2 (22.2%) 0.070

Low-risk HPV 10 (19.2%) 3 (8.6%) 1 (11.1%) 0.367

CINtec+ 6 (11.32%) 6 (16.7%) 5 (55.6%) <0.0001

LSIL 24 (45.3%) 22 (61.1%) 8 (88.9%) 0.034

HSIL 2 (3.8%) 16 (44.4%) 5 (55.6%) 0.000

ASCUS 18 (33.9%) 6 (16.7%) 3 (33.3%) 0.185

NILM 4 (7.5%) 0 (0.0%) 0 (0.0%) 0.170

CIN: Cervical Intraepithelial Neoplasia; COC: Combined Oral Contraceptives; STD: Sexually Transmitted Disease; HPV: Human Papillomavirus; 
HR HPV: High-Risk Human Papillomavirus; HPV 16/18: Human Papillomavirus types 16 and 18; CINtec+: Positive p16/Ki-67 dual staining test 
(CINtec®); LSIL: Low-grade Squamous Intraepithelial Lesion; HSIL: High-grade Squamous Intraepithelial Lesion; ASCUS: Atypical Squamous 
Cells of Undetermined Significance; NILM: Negative for Intraepithelial Lesion or Malignancy.

Table 1: RT-PCR kits used for the diagnosis of COVID-19included in this study.

The distribution of age across the three categories of cervical intraepithelial neoplasia is presented in Figure 1. Among patients with 
CIN1, the median age was 35 years (interquartile range [IQR], 30–45 years). A similar age distribution was observed in the CIN2 group, 
with a median age of 34 years and an IQR of 30–45 years. In contrast, patients diagnosed with CIN3 were younger, with a median age 
of 28 years (IQR, 24–35 years), indicating a shift toward younger age in those with higher-grade lesions. There was no statistically 
significant difference between groups regarding age distribution (p= 0.12).

Figure 1: The distribution of age across the three categories of cervical intraepithelial neoplasia (CIN).
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The performance metrics of the evaluated algorithms for CIN1 
prediction is presented in Table 2 and in Figure 2. In evaluating 
the performance of machine learning algorithms for the prediction 
of CIN1, the Random Forest model demonstrated the highest 
overall performance. It achieved a precision of 0.67, recall of 
0.67, and F1-score of 0.67 for the positive class (CIN1), with an 
overall accuracy of 63% and a ROC AUC of 0.658. The optimized 
model used no maximum depth restriction and 100 estimators. 
The K-nearest neighbors (KNN) classifier also showed acceptable 
performance, with a precision of 0.58, recall of 0.73, and F1-score 
of 0.65 for CIN1, an accuracy of 56%, and a ROC AUC of 0.539.

Support Vector Machine (SVM) achieved moderate values, with a 
precision of 0.54, recall of 0.47, and F1-score of 0.50 for the CIN1 
group, an accuracy of 48%, and a ROC AUC of 0.444. Logistic 
regression had a lower performance with a precision of 0.50, recall 
of 0.40, and F1-score of 0.44 for CIN1, resulting in an overall 
accuracy of 44% and the lowest ROC AUC of 0.389, despite using 
a regularization parameter C = 1 and L2 penalty.

Naive Bayes performed modestly with a precision of 0.50, recall 
of 0.67, and F1-score of 0.57 for CIN1, yielding an accuracy of 
44% and ROC AUC of 0.417. While both logistic regression and 
Naive Bayes offered high recall or precision individually, their 
overall discrimination was inferior to Random Forest and KNN.

Model Precision Recall F1-score Accuracy ROC AUC Best Parameters

Logistic Regression 0.50 0.40 0.44 0.44 0.3889 C = 1, penalty = l2

Random Forest 0.67 0.67 0.67 0.63 0.6583 max_depth = None, n_estimators = 100

SVM 0.54 0.47 0.50 0.48 0.4444 C = 10, kernel = linear

Naive Bayes 0.50 0.67 0.57 0.44 0.4167 –

KNN 0.58 0.73 0.65 0.56 0.5389 n_neighbors = 5

CIN1: Cervical Intraepithelial Neoplasia grade 1; SVM: Support Vector Machine; KNN: k-Nearest Neighbors; ROC AUC: Receiver Operating 
Characteristic Area Under the Curve; F1-score: Harmonic Mean of Precision and Recall; C: Regularization Parameter; L2: Ridge Regularization 
Penalty; Max Depth: Maximum Depth of the Trees in Random Forest; n_estimators: Number of Estimators (Trees) in Random Forest

 Table 2: Performance metrics of machine learning models for CIN1 prediction.

Figure 2: Performance metrics of machine learning models for CIN1 prediction.
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The performance metrics of the evaluated algorithms for CIN2 
prediction is presented in Table 3 and in Figure 3. Logistic 
regression with L2 regularization (C = 0.01) exhibited the strongest 
overall performance, achieving an accuracy of 0.89, a precision of 
0.83, a recall of 0.71, and an F1-score of 0.77. Its discriminative 
ability, as indicated by the ROC AUC, was 0.8393, suggesting a 
good balance between sensitivity and specificity.

CatBoost, a gradient boosting model, also showed high 
performance with an accuracy of 0.85, precision and recall both 
at 0.71, and an F1-score of 0.71. It yielded the highest ROC AUC 
among all models at 0.8464, indicating excellent predictive power. 
This model was tuned using a depth of 5 and 100 iterations.

Random Forest, configured with a maximum depth of 10 and 50 
estimators, reached an accuracy of 0.78, with precision, recall, 
and F1-score each at 0.57. Its ROC AUC of 0.8036 indicated solid 
model discrimination.

The Support Vector Machine with a radial basis function kernel 
(C = 10) achieved an accuracy of 0.74, precision of 0.50, recall 
of 0.71, and an F1-score of 0.59, with a ROC AUC of 0.7893. 
The k-Nearest Neighbors (KNN) model (k = 5) provided similar 
performance, with an accuracy of 0.78, precision of 0.56, recall of 
0.71, and an F1-score of 0.62. Its ROC AUC was 0.7750, indicating 
moderate predictive power.

XGBoost, another ensemble learning model, achieved an accuracy 
of 0.74, with precision of 0.50, recall of 0.57, and F1-score of 0.53. 
Its ROC AUC stood at 0.7964, which was comparable to other 
ensemble approaches. In contrast, Naive Bayes demonstrated 
the weakest performance, with an accuracy of 0.37, precision of 
0.27, and an F1-score of 0.41, despite a relatively high recall of 
0.86. Its ROC AUC was 0.6893, suggesting limited discriminatory 
capability.

Model Precision Recall F1-
score Accuracy ROC 

AUC Best Parameters

Logistic Regression 0.83 0.71 0.77 0.89 0.8393 C = 0.01, penalty = l2

Random Forest 0.57 0.57 0.57 0.78 0.8036 max_depth = 10, n_estimators = 50

SVM 0.50 0.71 0.59 0.74 0.7893 C = 10, kernel = rbf

Naive Bayes 0.27 0.86 0.41 0.37 0.6893 –

KNN 0.56 0.71 0.62 0.78 0.7750 n_neighbors = 5

XGBoost 0.50 0.57 0.53 0.74 0.7964 learning_rate = 0.1, max_depth = 5, n_
estimators = 100

CatBoost 0.71 0.71 0.71 0.85 0.8464 depth = 5, iterations = 100

CIN2: Cervical Intraepithelial Neoplasia grade 2; SVM: Support Vector Machine; KNN: k-Nearest Neighbors; ROC AUC: Receiver Operating 
Characteristic Area Under the Curve; F1-score: Harmonic Mean of Precision and Recall; C: Regularization Parameter; L2: Ridge Regularization 
Penalty; Max Depth: Maximum Depth of the Trees in Random Forest; n_estimators: Number of Estimators (Trees) in Random Forest

Table 3: Performance metrics of machine learning models for CIN2 prediction.
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Figure 3: Performance metrics of machine learning models for CIN2 prediction.

The performance metrics of the evaluated algorithms for CIN3 
prediction is presented in Table 4 and in Figure 4. Logistic 
regression demonstrated the highest overall performance among 
all evaluated models. It achieved a precision of 0.67, perfect 
recall of 1.00, and an F1-score of 0.80. The model also attained 
the highest accuracy (96%) and ROC AUC (0.98), with optimal 
hyperparameters of regularization parameter C = 0.01 and L2 
penalty.

Random forest, XGBoost, and CatBoost models all exhibited 
comparable performance, each reaching an accuracy of 93% and an 
F1-score of 0.50. These models also showed strong discriminative 
ability with ROC AUC values of 0.98, 0.93, and 0.96, respectively. 
The best-performing hyperparameters for random forest included 
a maximum tree depth of 5 and 50 estimators; XGBoost performed 

best with a learning rate of 0.05, maximum depth of 3, and 50 
estimators; and CatBoost used a depth of 3 and 50 iterations.

The support vector machine model, tuned with C = 0.1 and a linear 
kernel, showed a precision of 0.33, recall of 0.50, and F1-score 
of 0.40. While its accuracy was 89%, the ROC AUC was slightly 
lower at 0.88. K-nearest neighbors (KNN) with 3 neighbors 
performed less favorably, yielding a precision of 0.25, recall of 
0.50, F1-score of 0.33, and accuracy of 85%, with a notably lower 
ROC AUC of 0.66.

Naive Bayes produced the lowest precision (0.17) but achieved 
a recall of 1.00, suggesting high sensitivity but poor specificity. 
Despite a modest F1-score of 0.29, its ROC AUC was high at 0.98, 
though the overall accuracy remained relatively low at 63%.
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Model Precision Recall F1-score Accuracy ROC 
AUC Best Parameters

Logistic 
Regression 0.67 1.0 0.8 0.96 0.98 C = 0.01, penalty = l2

Random Forest 0.5 0.5 0.5 0.93 0.98 max_depth = 5, n_estimators = 50

SVM 0.33 0.5 0.4 0.89 0.88 C = 0.1, kernel = linear

Naive Bayes 0.17 1.0 0.29 0.63 0.98 -

KNN 0.25 0.5 0.33 0.85 0.66 n_neighbors = 3

XGBoost 0.5 0.5 0.5 0.93 0.93 learning_rate = 0.05, max_depth = 3, n_estimators = 
50

CatBoost 0.5 0.5 0.5 0.93 0.96 depth = 3, iterations = 50

CIN3: Cervical Intraepithelial Neoplasia grade 3; SVM: Support Vector Machine; KNN: k-Nearest Neighbors; ROC AUC: Receiver Operating 
Characteristic Area Under the Curve; F1-score: Harmonic Mean of Precision and Recall; C: Regularization Parameter; L2: Ridge Regularization 
Penalty; Max Depth: Maximum Depth of the Trees in Random Forest; n_estimators: Number of Estimators (Trees) in Random Forest

Table 4: Performance metrics of machine learning models for CIN3 prediction.

Figure 4: Performance metrics of machine learning models for CIN3 prediction.

Discussion

In this study, we evaluated the performance of multiple supervised 
machine learning (ML) models in predicting cervical intraepithelial 
neoplasia (CIN) grades using clinical, cytological, virological, and 
immunocytochemical data from 98 patients with histologically 
confirmed CIN1, CIN2, or CIN3. 

Consistent with existing literature, our cohort exhibited an 
increasing prevalence of high-risk HPV types and sexually 
transmitted infections with higher CIN grades. Notably, HPV 
16/18 was found in 88.9% of CIN3 cases, compared with 50% 
and 22.6% in CIN2 and CIN1, respectively. This finding aligns 
with regional epidemiologic patterns, as Eastern Europe continues 
to report some of the highest HPV prevalence and dysplasia rates 

globally. A recent 10-year epidemiological study from Serbia 
reported a strikingly high overall HPV positivity rate of 43.3% 
among women, highlighting the widespread nature of infection in 
the region. Among the detected HPV strains, high-risk genotypes, 
including HPV types 16, 31, 52, 56, 39, and 51, accounted for 
62.3% of infections. Notably, HR HPV was detected in 76.5% 
of women diagnosed with HSIL [16]. At a broader regional 
level, Central and Eastern Europe (CEE) continues to experience 
a substantial burden of HPV-related diseases. In 2019 alone, 
across nine CEE countries, including Bulgaria, Croatia, Czechia, 
Hungary, Poland, Romania, Serbia, Slovakia, and Slovenia, 
there were an estimated 6,832 deaths attributable to HPV-related 
cancers, alongside 107,846 years of life lost [17]. These statistics 
reflect both a high prevalence of oncogenic HPV infection and 
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substantial progression rates to dysplasia and malignancy.

CINtec® dual-staining demonstrated strong association with 
lesion severity in our cohort. While 55.6% of CIN3 cases were 
CINtec-positive, the positivity declined to 16.7% in CIN2 and just 
11.32% in CIN1. Studies consistently demonstrate that CINtec® 
dual-stain positivity correlates strongly with lesion severity. In 
particular, the proportion of dual-stain–positive samples increases 
progressively across CIN grades: approximately 50% in lesions 
classified as ≤CIN1, 76.6%–100% in CIN2, and 87%–100% in 
CIN3 [18-20]. In cases of invasive cervical cancer, dual-stain 
positivity remains high, reaching 83.3% [18]. These findings 
suggest a robust quantitative association between p16/Ki-67 co-
expression and histological severity, reinforcing the role of dual-
staining as a reliable biomarker for high-grade disease [18, 19, 21].

The density of dual-positive cells is significantly elevated in CIN2 
and CIN3 lesions compared to low-grade or benign findings, further 
supporting its biological relevance as an indicator of transforming 
HPV infections [19, 21]. Moreover, when compared with HPV 
genotyping or cytological assessment alone, dual-staining offers 
superior diagnostic specificity and overall accuracy for detecting 
CIN2+ lesions, with reported performance metrics reaching 83.5% 
for accuracy and 84.8% for specificity [20, 22, 23].

From a clinical standpoint, these findings highlight the utility of 
dual-staining in triaging equivocal cytology results and identifying 
women at increased risk for high-grade lesions. For instance, in 
patients with CIN2, dual-stain positivity ranges from 76.6% to 
100%, while in CIN3 cases it often approaches or exceeds 87%, 
offering a stratified risk framework to guide further intervention 
[18, 19, 21]. In contrast, lesions classified as ≤CIN1 typically 
demonstrate lower rates of positivity (~50%), suggesting that 
a negative result may help support conservative management 
strategies [19].

The ML models demonstrated variable predictive power 
depending on the CIN grade and underlying algorithm. For CIN1 
prediction, Random Forest and KNN models outperformed others, 
with F1-scores of 0.67 and 0.65, respectively. These models may 
have benefited from their capacity to handle mixed-type data and 
capture non-linear patterns in clinical and behavioural variables, 
such as number of sexual partners and smoking history.

In contrast, CIN2 prediction was best achieved using Logistic 
Regression and CatBoost, with F1-scores of 0.77 and 0.71, 
respectively. Logistic regression achieved the highest accuracy 
(89%) and a robust ROC AUC (0.8393), suggesting that linear 
decision boundaries combined with regularization may be 
sufficient for moderate-grade lesions, particularly when guided by 
strong predictors like HPV 16/18 status and HSIL cytology.

CIN3 prediction was the most accurate across all models. Logistic 
Regression again led performance with an F1-score of 0.80 and an 

high AUC value of 0.98. Other ensemble methods such as Random 
Forest, XGBoost, and CatBoost also performed well (accuracy ≥ 
93%, ROC AUC ≥ 0.93). Despite the small number of CIN3 cases 
(n=9), these results highlight the ability of ML models to detect 
high-risk lesions with strong discriminative power, a critical need 
in cervical cancer prevention programs. Notably, while Naive 
Bayes models frequently achieved high recall, they consistently 
underperformed in precision and overall accuracy, particularly in 
CIN3 (precision = 0.17). This reflects the model’s sensitivity to 
assumptions of feature independence, which are often violated in 
real-world medical datasets.

Recent advancements in machine learning have shown the efficacy 
of different algorithms in predicting cervical intraepithelial 
neoplasia. Traditional models like logistic regression and KNN are 
widely utilized for their interpretability and simplicity; however, 
they are often surpassed by ensemble and advanced models such 
as Random Forest, XGBoost, and CatBoost, particularly when 
applied to high-quality, pre-processed clinical data [24-27].

SVMs demonstrated notable efficacy in cervical pathology tasks, 
with AUC values reported between 0.82 and 0.93 in diagnostic 
applications, including degenerative cervical myelopathy and 
cervical cancer screening [24, 25]. While SVMs do not consistently 
outperform ensemble methods, they are a reliable option for binary 
classification tasks involving balanced datasets.

Ensemble techniques, especially stacked ensembles, demonstrate 
superior predictive performance. A study on cervical cancer 
detection demonstrated that a stacked ensemble model attained 
an accuracy of 0.994, markedly surpassing the performance of 
individual classifiers [5]. Random Forest models, although not 
consistently evaluated for CIN1–3 stratification, have demonstrated 
robust performance in broader cervical neoplasia prediction tasks 
and are often preferred for their capacity to manage imbalanced 
and non-linear data [26].

KNN, while employed in various studies mainly for imputation or 
as a secondary classifier, generally demonstrates lower predictive 
accuracy and reduced robustness in comparison to ensemble or 
kernel-based models [27]. Similarly, although XGBoost and 
CatBoost are commonly utilized in medical machine learning tasks, 
their specific application to CIN prediction is not well-documented 
in the existing literature. Their comparative performance in 
CIN grading tasks is largely speculative and requires further 
investigation.

In summary, although ensemble and advanced machine learning 
models show significant potential for accurate prediction of CIN 
grades, existing literature does not provide direct, comparative 
analyses of these algorithms within this particular diagnostic 
framework [26, 27]. Most existing studies primarily address 
cervical cancer or general neoplasia, rather than specifically 
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examining stratified CIN grading. Further research is required to 
establish benchmarks for these models in predicting CIN1, CIN2, 
and CIN3, utilizing standardized datasets and evaluation metrics.

This study has several limitations. First, the small sample size, 
especially the small number of CIN3 cases, may have influenced 
model stability and generalizability. Although SMOTE was used 
to mitigate class imbalance, synthetic oversampling cannot fully 
replicate the complexity of naturally occurring high-grade lesions. 
Second, our dataset was derived from a single geographical region, 
which may limit external validity. Differences in HPV genotypes, 
screening coverage, and healthcare infrastructure may influence 
model applicability across populations. Third, the study employed 
classical ML approaches rather than end-to-end deep learning 
pipelines, which could potentially further improve classification if 
larger annotated image datasets were available.

Future research should explore larger, multicenter datasets 
incorporating multimodal inputs, including colposcopic imagery, 
digital pathology, and molecular biomarkers. Additionally, 
prospective validation of the best-performing models is necessary 
to evaluate clinical utility. Integrating ML predictions with clinical 
decision support systems could offer tailored risk stratification, 
thereby improving adherence to guideline-based management.

Conclusion

Our findings highlight the significance of high-risk HPV 
genotyping, particularly types 16 and 18, along with CINtec® dual-
staining, as essential factors in predicting CIN. CINtec positivity 
demonstrated a significant correlation with lesion severity, thereby 
supporting its function as a surrogate biomarker for oncogenic 
transformation.

While the study presents encouraging results, limitations including 
a small sample size and geographic specificity necessitate 
caution in generalizing these findings. Despite class imbalance, 
the consistently high accuracy in CIN3 detection highlights the 
potential of machine learning models to enhance early cervical 
cancer risk assessment and management.

Subsequent research should focus on validating these findings 
in larger, multicenter cohorts, preferably integrating multimodal 
data, including colposcopic imaging and molecular biomarkers. 
Furthermore, the clinical integration of machine learning-
driven tools should prioritize the improvement of decision-
making workflows, the reduction of diagnostic variability, and 
the mitigation of both over-treatment and under-treatment of 
precancerous cervical lesions.
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