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Abstract

Digital stethoscopes, enhanced with artificial intelligence (AI) and machine learning (ML), represent a transformative advancement 
in telemedicine by enabling automated, high-precision auscultation. Equipped with high-fidelity acoustic sensors and real-time signal 
processing, AI integration allows these devices to detect, classify, and interpret heart and lung sounds with diagnostic reliability 
comparable to expert clinicians. Their incorporation into telehealth platforms facilitates remote monitoring, early detection of 
cardiopulmonary abnormalities, and data-driven management of chronic diseases, particularly in resource-limited or decentralized 
care settings. Clinical evidence supports the equivalence of AI-assisted digital auscultation to traditional in-person evaluation, while 
offering added benefits of continuous monitoring, predictive analytics, and personalized acoustic profiling. Challenges to widespread 
adoption remain, including cost, clinician training, regulatory oversight, and data privacy, yet AI-powered digital stethoscopes are 
emerging as essential tools in connected healthcare, advancing equitable, responsive, and precision-driven patient care.
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Introduction

Auscultation remains a cornerstone of clinical diagnosis, enabling 
assessment of cardiac, pulmonary, and gastrointestinal function. 
Traditional acoustic stethoscopes, since Laennec’s invention in 
1816, are inherently subjective and reliant on clinician expertise 
[1]. Digital and electronic stethoscopes amplify and digitize 
physiological sounds, allowing real-time analysis, storage, 
and sharing. They integrate microphones, analog-to-digital 
converters, embedded processors, and often-wireless connectivity. 
Advanced features include noise reduction, intelligent filtering, 
and crucially, machine learning–based sound classification and 
pattern recognition [2-4]. Physiological signals are low-amplitude, 
broad-spectrum, and non-stationary, undergoing attenuation and 

distortion across tissues. Optimizing mechanical and electronic 
components diaphragms, tubing, microphones, and amplification 
circuits is essential to preserve signal fidelity across the 20-2000 
Hz range under constraints of size, power, and latency [4,5]. 

Artificial intelligence (AI) now plays a central role, enabling 
automated detection of murmurs, arrhythmias, respiratory 
abnormalities, and other subtle pathologies. AI-driven stethoscopes 
support telemedicine, clinical decision-making, data archiving, 
and medical education, with performance approaching expert 
clinicians. Validation, usability, regulation, and privacy remain 
challenges, but AI integration represents a paradigm shift in 
auscultation [5,6].

This review emphasizes the physical, mechanical, and 
computational foundations of modern stethoscopes, highlighting 
how AI transforms auscultation by bridging biomedical 
engineering, signal processing, and clinical application, and 
guiding innovation in digital health.
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Materials and Methods

This narrative review was conducted to evaluate the efficacy, 
reliability, and emerging role of digital stethoscopes enhanced by 
AI, compared with traditional acoustic devices. A systematic and 
comprehensive search was performed across PubMed, Embase, 
and the Cochrane Library, covering publications up to March 
2025. Key search terms included “digital stethoscope,” “electronic 
stethoscope,” “digital auscultation,” “AI-assisted auscultation,” 
and “machine learning stethoscope.”

To ensure inclusion of high-quality evidence, single case reports 
and unpublished works in English or French were excluded. 
Reference lists of selected studies were systematically screened to 
identify additional relevant publications.

This methodology enabled a rigorous synthesis of current 
knowledge regarding the integration of AI algorithms in digital 
auscultation, including their potential to detect murmurs, 
arrhythmias, and respiratory abnormalities. The review highlights 
the technological features, clinical advantages, limitations, and 
implementation challenges of AI-driven digital stethoscopes, 
providing healthcare professionals with evidence-based guidance 
for adoption in routine diagnostic practice.

Biomedical Acoustics, Digital Stethoscope Design, and AI-
Based Signal Analysis

Physiological sounds originate from mechanical and fluid dynamic 
processes within organ systems. Cardiac signals, such as S1 and 
S2, are produced by valve closures, while S3, S4, and murmurs 
reflect abnormal ventricular compliance or turbulent flow across 
pathological valves [1,6]. Pulmonary sounds arise from airflow 
through the bronchial tree and alveoli, with normal patterns 
including vesicular and bronchial breathing, and abnormal sounds 
such as crackles, wheezes, rhonchi, or stridor indicating airway 
pathology [7,8]. Vascular sounds, including bruits, result from 
turbulent flow in stenotic arteries [1]. These signals are low in 
amplitude (mPa–Pa) and broadband, spanning 20–150 Hz for 
cardiac sounds, 100–2000 Hz for pulmonary sounds, and 50–
800 Hz for vascular sounds [1,6-8]. Their non-stationary nature 
necessitates time-frequency analysis, including STFT and wavelet 
transforms, for adaptive filtering and feature extraction [6].

Sound propagation is influenced by layered tissues—skin, 
fat, muscle, bone, and pleura—causing frequency-dependent 
attenuation, commonly modeled as α(f)=α0⋅fn\alpha(f) = \
alpha_0 \cdot f^nα(f)=α0⋅fn, where n is tissue-specific [1,5]. 
Low-frequency components transmit more efficiently than 
high-frequency murmurs, and optimal acoustic coupling at the 
skin–sensor interface, via diaphragms or gels, is essential to 
maximize signal capture [1]. Digital stethoscope design benefits 
from physical modeling and numerical simulations, including 

FEM and BEM, to predict wave interactions, optimize sensor 
placement, and evaluate diaphragm vibrations for resonance and 
bandwidth, supporting personalized calibration and explaining 
inter-anatomical variability in auscultation [2,5,9].

The chest piece serves as the primary mechanical-acoustic 
interface. Its diaphragm, typically made from PET, silicone, 
or polyurethane, determines resonance and bandwidth, with 
thinner membranes favoring low-frequency detection and stiffer 
membranes enhancing high-frequency sensitivity [9,10]. Dual 
membranes or variable-pressure designs further expand frequency 
coverage [10,11]. Mechanical coupling and isolation from 
hand contact or ambient noise are critical for preserving low-
amplitude signals [9,11]. Sensors convert mechanical vibrations 
into electrical signals. Modern devices predominantly use MEMS 
microphones for high SNR (>65 dB), flat frequency response, low 
power consumption, and durability, while piezoelectric sensors 
offer robustness and EMI resistance but limited high-frequency 
sensitivity; hybrid MEMS–piezoelectric systems are under 
development to optimize performance [10-12].

The analog front-end amplifies and filters signals prior to 
digitization, employing LNAs with gains of 20-60 dB, anti-
aliasing filters tuned to 20-150 Hz (cardiac) or up to 2000 Hz 
(pulmonary), and impedance matching to prevent signal loss 
[9-11]. Digitization is performed with ADCs, typically 16-bit 
and sampling at 4–8 kHz, ensuring sufficient dynamic range and 
temporal resolution to capture murmurs and transient events [9-
11]. Post-digitization, embedded microcontrollers, DSPs, or 
FPGAs perform real-time processing, including noise reduction, 
segmentation, envelope detection, and spectral analysis via FFT 
or wavelet decomposition [9,10]. Latency is maintained below 
50 ms for real-time feedback, with data stored locally or streamed 
via wireless protocols for telemedicine applications, and energy-
efficient components extending portable device battery life [9-11].

Robust signal processing is essential in noisy clinical environments. 
Band-pass filters and advanced methods, including adaptive LMS/
RLS filtering and wavelet denoising, preserve physiological 
transients while reducing artifacts [10,11,13]. Segmentation 
identifies individual heartbeats or respiratory cycles, supporting 
diagnosis and classification. Cardiac segmentation uses hidden 
semi-Markov models (HSMM) trained on envelope energy, 
spectral flux, and zero-crossing rate, while respiratory cycles are 
detected via energy thresholds, zero-crossing, or Hilbert transform 
envelopes [6,13]. Time-domain metrics (RMS amplitude, peak 
intervals, heart rate variability) complement frequency-domain 
and time-frequency features (PSD, STFT, CWT/DWT, MFCCs) 
to enhance discrimination of murmurs, clicks, and crackles [9-11].

Nonlinear descriptors including Shannon and spectral entropy, 
fractal dimensions, Lyapunov exponents, and Hjorth parameters 
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quantify signal complexity and irregularity, offering sensitivity 
to pathological changes in atrial fibrillation, valvular stenosis, 
and chronic obstructive pulmonary disease (COPD) [6,9,11,13]. 
Feature selection and dimensionality reduction, via PCA, LDA, or 
RFE, optimize model efficiency while preserving discriminative 
power [9-11]. Extracted features are input to machine learning 
classifiers, including SVMs, random forests, gradient-boosted 
trees, and ANNs, particularly CNNs applied to spectrograms or 
MFCC matrices for hierarchical feature learning [9-11]. Model 
performance is assessed using cross-validation and ROC analysis, 
measuring accuracy, sensitivity, specificity, and AUC [6,9,11]. 
Several commercial and academic digital stethoscopes now provide 
real-time AI-assisted feedback, alerting clinicians to abnormal 
cardiac or pulmonary sounds with validated classification scores 
[6,14].

This integrated framework-linking biomedical acoustics, 
mechanical design, digital signal processing, and AI-supports 
automated, reliable, and clinically actionable auscultation, bridging 
engineering, signal analysis, and medical practice.

Figure 1: Workflow of AI-Enhanced Digital Auscultation. 
Schematic representation of the AI-enabled digital stethoscope 
workflow. Physiological sounds are captured by a digital 
stethoscope, digitized, and processed through AI algorithms for 
signal analysis and pattern recognition. The system provides real-
time diagnostic feedback to clinicians, enhancing the accuracy and 
reliability of auscultation.

AI and ML in Digital Stethoscopes: Technological Advances 
and Clinical Evidence

1. Technological Advances in AI-Powered Digital Stethoscopes

Huang et al. (2023) conducted a comprehensive review of deep 
learning algorithms applied to lung sound analysis, highlighting 
the potential of AI to transform traditional auscultation practices 
[14]. Their study emphasized the use of convolutional neural 

networks (CNNs) to process two-dimensional spectrograms of 
lung sounds, facilitating the automatic detection of respiratory 
abnormalities such as wheezes, crackles, and rhonchi. Moreover, 
the authors provided an open-source framework to standardize 
algorithmic workflows, promoting reproducibility and enabling 
future development in this field.

In a practical implementation, Zhang et al. (2023) developed a 
low-cost, AI-powered stethoscope capable of diagnosing both 
cardiac and respiratory conditions [15]. Utilizing a lightweight 
model deployed on a Raspberry Pi Zero 2W, the system achieved 
remarkable performance metrics: 99.94% accuracy, 99.84% 
precision, 99.89% specificity, 99.66% sensitivity, and a 99.72% 
F1 score. These results demonstrate the feasibility of deploying 
high-performance diagnostic tools in resource-limited settings.

Lee et al. (2022) introduced a soft, wearable stethoscope designed 
for continuous, real-time auscultation [16]. The flexible device 
reduces motion artifacts and friction noise, enhancing the quality of 
recorded signals. Embedded machine learning algorithms enabled 
the classification of lung sounds and detection of abnormalities 
with 95% accuracy, highlighting potential applications in home-
based monitoring and sleep studies.

Kim et al. (2023) reviewed the evolution of stethoscope technology, 
emphasizing the integration of ML algorithms into wearable and 
digital devices for automated detection of heart sounds [17]. These 
AI-powered stethoscopes facilitate identification of murmurs, 
abnormal rhythms, and other pathological cardiac signals while 
providing real-time feedback and enabling remote monitoring.

Jiang et al. (2024) leveraged deep learning to process heart 
sounds and detect valvular heart disease automatically [18]. The 
model achieved high diagnostic performance, with sensitivity and 
specificity exceeding 90%, demonstrating accuracy comparable 
to expert cardiologists and highlighting the utility of AI-assisted 
auscultation in standardizing cardiac assessments.

2. Evidence from Recent Clinical Studies

Accurate detection and classification of cardiopulmonary 
abnormalities in pediatric, neonatal, and adult populations remain 
a central challenge in clinical practice. AI-enhanced digital 
stethoscopes have demonstrated substantial improvements in this 
domain. In pediatric cardiology, Zhou et al. developed a deep 
learning algorithm for multi-class classification of heart sounds, 
achieving AUC values of 0.92 for normal sounds, 0.83 for innocent 
murmurs, and 0.88 for pathological murmurs, providing objective, 
reproducible, and reliable murmur classification [19]. Similarly, 
digital stethoscopes have improved early detection of abnormal 
pediatric breath sounds. Kevat et al. reported higher sensitivity for 
wheeze detection compared to traditional auscultation, achieving 
100% concordance for crackle identification [20], while Zhou 
et al. demonstrated enhanced recognition of wheezes, crackles, 
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and stridor through objective analysis of sound features [21]. 
The PERCH study further demonstrated the utility of digital 
stethoscopes in low-resource settings for pediatric pneumonia 
diagnosis, reliably capturing crackles and wheezes in children aged 
1-59 months, highlighting their potential as cost-effective, non-
invasive diagnostic tools [22]. In neonates, Grooby et al. applied 
a random under sampling boosting classifier to digital stethoscope 
recordings, achieving 85% specificity, 66.7% sensitivity, and 
81.8% overall accuracy for early detection of respiratory distress, 
underscoring the potential for timely clinical intervention [23].

Beyond pediatric and neonatal applications, AI-powered digital 
stethoscopes have advanced the detection of cardiac murmurs, 
valvular heart disease, and asymptomatic cardiovascular 
dysfunction in adults and obstetric populations. Chorba et al. trained 
a deep learning model on over 34 hours of heart sound recordings, 
achieving 76.3% sensitivity and 91.4% specificity for murmur 
detection, with improved sensitivity for moderate-to-severe 
aortic stenosis (93.2%) and mitral regurgitation (66.2%) [24]. In 
obstetric populations, AI-guided screening increased detection of 
peripartum left ventricular systolic dysfunction from 2.0% to 4.1% 
in over 1,200 women [25], demonstrating enhanced cardiovascular 
monitoring in low-resource settings. In adults, Guo et al. validated 

a CNN model combining digital stethoscope and single-lead ECG 
data, achieving an AUC of 0.85 with 77.5% sensitivity and 78.3% 
specificity for detecting reduced ejection fraction (≤40%) [25]. 
Pulmonary applications have also benefited from AI integration: 
Glangetas et al. [26] and Siebert et al. [27] employed CNN and 
LSTM models to analyze lung sounds, achieving AUC values 
greater than 0.80 for interstitial lung diseases (ILD) and COPD 
detection, while facilitating early diagnosis and prognosis of 
COVID-19 in decentralized care environments. Collectively, 
these studies demonstrate that AI-assisted digital auscultation 
provides a scalable, objective, and clinically actionable approach 
to cardiopulmonary evaluation across diverse patient populations.

Tables 1 and 2 summarize the significant advances achieved 
through artificial intelligence (AI) and machine learning (ML) in 
human auscultation and digital stethoscope technology. (Table 1) 
focuses on technological developments, highlighting AI and ML 
algorithms, device types, and performance metrics for cardiac 
and pulmonary sound analysis. (Table 2) presents evidence from 
clinical studies, including pediatric, neonatal, obstetric, and adult 
populations, and illustrates how AI-enhanced digital stethoscopes 
improve diagnostic accuracy, sensitivity, and specificity compared 
to traditional auscultation.

Study Application Algorithm / Model Device Type Key Performance Metrics

Huang et 
al., 2023

Lung sound 
classification CNN on 2D spectrograms Digital 

stethoscope
Automatic detection of wheezes, crackles, rhonchi; 

framework for reproducibility

Zhang et 
al., 2023

Cardiac & 
respiratory disease 

detection

Lightweight AI model 
(Raspberry Pi Zero 2W)

Low-cost digital 
stethoscope

Accuracy: 99.94%, Precision: 99.84%, Sensitivity: 
99.66%, Specificity: 99.89%, F1: 99.72%

Lee et al., 
2022

Continuous real-time 
auscultation Embedded ML algorithms Soft wearable 

stethoscope Accuracy: 95%

Kim et 
al., 2023

Automated heart 
sound analysis

ML algorithms for real-
time murmur/rhythm 

detection

Wearable digital 
stethoscope Real-time feedback and remote monitoring

Jiang et 
al., 2024

Valvular heart 
disease detection

Deep learning on heart 
sounds

Digital 
stethoscope Sensitivity & specificity >90%

Table 1: Technological Advances in AI- and ML-Powered Digital Stethoscopes.
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Study Population Clinical 
Application

Algorithm / 
Model Key Performance Metrics

Zhou et al., 
2023 Pediatric patients Heart murmur 

classification
Deep learning 

multi-class model AUC: 0.92 (normal), 0.83 (innocent), 0.88 (pathologic)

Kevat et al., 
2023 Pediatric patients

Detection of 
abnormal breath 

sounds

Digital 
stethoscope 

signal analysis

100% concordance for crackles, higher sensitivity for 
wheezes than clinician auscultation

PERCH 
Study, 2023 Children 1–59 months Pneumonia 

diagnosis
Digital 

stethoscope
Reliable detection of crackles and wheezes; higher 

prevalence in severe pneumonia

Grooby et al., 
2023 Term newborns

Neonatal 
respiratory distress 

detection

RUSBoost 
classifier Accuracy: 81.8%, Sensitivity: 66.7%, Specificity: 85.0%

Chorba et al., 
2023 Adult patients Cardiac murmurs 

& valvular disease Deep learning

Murmur detection: Sensitivity 76.3%, Specificity 91.4%; 
Aortic stenosis: Sensitivity 93.2%, Specificity 86.0%; 

Mitral regurgitation: Sensitivity 66.2%, Specificity 
94.6%

Adedinsewo et 
al., 2023

Pregnant/postpartum 
women

Screening for 
LV systolic 
dysfunction

AI-guided digital 
auscultation LVSD detection: 4.1% vs 2.0% in control

Guo et al., 
2023 Adults

Asymptomatic 
LV systolic 
dysfunction

CNN on digital 
stethoscope + 

ECG
AUC 0.85, Sensitivity 77.5%, Specificity 78.3%

Siebert et al., 
2023 Adult patients ILD and COPD 

diagnosis

CNN + LSTM 
models on lung 
sounds + LUS

AUC > 0.80

Glangetas et 
al., 2023 COVID-19 patients

COVID-19 
diagnosis and 

prognosis

Deep learning on 
lung sounds

Early detection and severity prediction; supports 
telemedicine

Table 2: Clinical Evidence of AI-Enhanced Digital Stethoscopes.

Collectively, these tables demonstrate the transformative impact of 
AI and ML on auscultation, providing objective, reproducible, and 
scalable tools for the detection of heart and lung pathologies. The 
integration of AI-driven analysis into digital stethoscopes not only 
augments clinician capabilities but also enables early detection and 
intervention, particularly in resource-limited or remote settings.

Future Perspectives of AI in Digital Stethoscopes

The evolution of digital stethoscopes is increasingly driven by 
AI and ML, which enhance diagnostic accuracy, automate signal 
interpretation, and enable predictive, precision-driven healthcare. 
Flexible and wearable devices—including epidermal acoustic 
sensors and piezoelectric wearables—leverage AI to process 
high-fidelity heart and lung sounds in real time, reduce noise, and 

classify physiological signals, supporting continuous monitoring 
in pediatric, neonatal, and chronic care populations [28-30].

Multimodal data fusion-combining ECG, oxygen saturation, 
respiratory rate, and motion sensors-enables AI models to detect 
complex pathologies, such as early heart failure exacerbations, 
while personalized acoustic baselines allow longitudinal tracking 
of subtle changes in murmurs or wheezes, improving sensitivity 
and reducing false positives. These capabilities transform 
digital auscultation into a cornerstone of remote monitoring and 
telemedicine, facilitating connected healthcare by integrating 
patient data across distributed networks.

Integration with augmented reality (AR), electronic health 
records (EHRs), and Internet of Medical Things (IoMT) standards 
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(FHIR, HL7, DICOM-WAVE, IEEE 11073) supports real-time 
visualization, secure data streaming, and predictive analytics 
at both individual and population levels. This allows clinicians 
to implement data-driven decision-making, anticipate disease 
progression, and deliver precision medicine tailored to each 
patient’s physiological profile [28-33].

Although challenges such as device variability, noise sensitivity, 
and the limited interpretability of deep learning models remain, 
standardizing algorithms and datasets, along with interdisciplinary 
collaboration among clinicians, engineers, and data scientists, 
will be crucial to fully harness AI’s potential in auscultation. 
Ultimately, AI-powered digital stethoscopes promise to enable 
early detection, continuous remote monitoring, and seamless 
integration within connected healthcare ecosystems, transforming 
traditional auscultation into a proactive, predictive, and patient-
centered diagnostic tool.

Conclusion

The Central Role of AI

AI is transforming the digital stethoscope from a purely acoustic 
instrument into a data-driven diagnostic platform. By combining 
high-fidelity acoustic sensors with machine learning algorithms, 
these devices enhance the detection and classification of subtle 
cardiac and pulmonary abnormalities, enable personalized 
monitoring, and support predictive, preventive, and precision 
healthcare. Integrated into telemedicine platforms, AI-powered 
stethoscopes facilitate remote monitoring and continuous patient 
assessment, expanding access to high-quality care in decentralized 
and resource-limited settings.

Clinical studies have demonstrated the utility of AI-assisted 
auscultation across pediatric, neonatal, obstetric, and adult 
populations, enabling early detection of heart murmurs, valvular 
disease, respiratory distress, and chronic pulmonary conditions. 
Future developments-including wearable and flexible sensors, 
multimodal biosensing, augmented reality overlays and IoMT 
integration-promise to make auscultation continuous, automated, 
context-aware, and tightly integrated within connected healthcare 
ecosystems.

Despite these advances, challenges remain, including cost, clinician 
training, data privacy, and equitable access. Interdisciplinary 
collaboration among clinicians, engineers, and data scientists is 
essential to fully leverage AI’s potential in telemedicine, predictive 
analytics, and precision medicine, ultimately transforming 
traditional auscultation into a continuous, patient-centered 
diagnostic tool.

This work honors Mr. Raymond Gass, whose pioneering studies in 
Strasbourg laid the foundation for digital pulmonary auscultation, 
now amplified by AI and ML technologies.
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