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Abstract

Digital stethoscopes, enhanced with artificial intelligence (AI) and machine learning (ML), represent a transformative advancement
in telemedicine by enabling automated, high-precision auscultation. Equipped with high-fidelity acoustic sensors and real-time signal
processing, Al integration allows these devices to detect, classify, and interpret heart and lung sounds with diagnostic reliability
comparable to expert clinicians. Their incorporation into telehealth platforms facilitates remote monitoring, early detection of
cardiopulmonary abnormalities, and data-driven management of chronic diseases, particularly in resource-limited or decentralized
care settings. Clinical evidence supports the equivalence of Al-assisted digital auscultation to traditional in-person evaluation, while
offering added benefits of continuous monitoring, predictive analytics, and personalized acoustic profiling. Challenges to widespread
adoption remain, including cost, clinician training, regulatory oversight, and data privacy, yet Al-powered digital stethoscopes are

emerging as essential tools in connected healthcare, advancing equitable, responsive, and precision-driven patient care.
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Introduction

Auscultation remains a cornerstone of clinical diagnosis, enabling
assessment of cardiac, pulmonary, and gastrointestinal function.
Traditional acoustic stethoscopes, since Laennec’s invention in
1816, are inherently subjective and reliant on clinician expertise
[1]. Digital and electronic stethoscopes amplify and digitize
physiological sounds, allowing real-time analysis, storage,
and sharing. They integrate microphones, analog-to-digital
converters, embedded processors, and often-wireless connectivity.
Advanced features include noise reduction, intelligent filtering,
and crucially, machine learning—based sound classification and
pattern recognition [2-4]. Physiological signals are low-amplitude,
broad-spectrum, and non-stationary, undergoing attenuation and

distortion across tissues. Optimizing mechanical and electronic
components diaphragms, tubing, microphones, and amplification
circuits is essential to preserve signal fidelity across the 20-2000
Hz range under constraints of size, power, and latency [4,5].

Artificial intelligence (AI) now plays a central role, enabling
automated detection of murmurs, arrhythmias, respiratory
abnormalities, and other subtle pathologies. Al-driven stethoscopes
support telemedicine, clinical decision-making, data archiving,
and medical education, with performance approaching expert
clinicians. Validation, usability, regulation, and privacy remain
challenges, but Al integration represents a paradigm shift in
auscultation [5,6].

This review emphasizes the physical, mechanical, and
computational foundations of modern stethoscopes, highlighting
how Al transforms auscultation by bridging biomedical
engineering, signal processing, and clinical application, and
guiding innovation in digital health.
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Materials and Methods

This narrative review was conducted to evaluate the efficacy,
reliability, and emerging role of digital stethoscopes enhanced by
Al, compared with traditional acoustic devices. A systematic and
comprehensive search was performed across PubMed, Embase,
and the Cochrane Library, covering publications up to March
2025. Key search terms included “digital stethoscope,” “electronic
stethoscope,” “digital auscultation,” “Al-assisted auscultation,”
and “machine learning stethoscope.”

To ensure inclusion of high-quality evidence, single case reports
and unpublished works in English or French were excluded.
Reference lists of selected studies were systematically screened to
identify additional relevant publications.

This methodology enabled a rigorous synthesis of current
knowledge regarding the integration of Al algorithms in digital
auscultation, including their potential to detect murmurs,
arrhythmias, and respiratory abnormalities. The review highlights
the technological features, clinical advantages, limitations, and
implementation challenges of Al-driven digital stethoscopes,
providing healthcare professionals with evidence-based guidance
for adoption in routine diagnostic practice.

Biomedical Acoustics, Digital Stethoscope Design, and Al-
Based Signal Analysis

Physiological sounds originate from mechanical and fluid dynamic
processes within organ systems. Cardiac signals, such as S1 and
S2, are produced by valve closures, while S3, S4, and murmurs
reflect abnormal ventricular compliance or turbulent flow across
pathological valves [1,6]. Pulmonary sounds arise from airflow
through the bronchial tree and alveoli, with normal patterns
including vesicular and bronchial breathing, and abnormal sounds
such as crackles, wheezes, rhonchi, or stridor indicating airway
pathology [7,8]. Vascular sounds, including bruits, result from
turbulent flow in stenotic arteries [1]. These signals are low in
amplitude (mPa—Pa) and broadband, spanning 20-150 Hz for
cardiac sounds, 100-2000 Hz for pulmonary sounds, and 50—
800 Hz for vascular sounds [1,6-8]. Their non-stationary nature
necessitates time-frequency analysis, including STFT and wavelet
transforms, for adaptive filtering and feature extraction [6].

Sound propagation is influenced by layered tissues—skin,
fat, muscle, bone, and pleura—causing frequency-dependent
attenuation, commonly modeled as o(f)=a0[fn\alpha(f) = \
alpha 0 \cdot f*na(f)=a0]fn, where n is tissue-specific [1,5].
Low-frequency components transmit more efficiently than
high-frequency murmurs, and optimal acoustic coupling at the
skin—sensor interface, via diaphragms or gels, is essential to
maximize signal capture [1]. Digital stethoscope design benefits
from physical modeling and numerical simulations, including

FEM and BEM, to predict wave interactions, optimize sensor
placement, and evaluate diaphragm vibrations for resonance and
bandwidth, supporting personalized calibration and explaining
inter-anatomical variability in auscultation [2,5,9].

The chest piece serves as the primary mechanical-acoustic
interface. Its diaphragm, typically made from PET, silicone,
or polyurethane, determines resonance and bandwidth, with
thinner membranes favoring low-frequency detection and stiffer
membranes enhancing high-frequency sensitivity [9,10]. Dual
membranes or variable-pressure designs further expand frequency
coverage [10,11]. Mechanical coupling and isolation from
hand contact or ambient noise are critical for preserving low-
amplitude signals [9,11]. Sensors convert mechanical vibrations
into electrical signals. Modern devices predominantly use MEMS
microphones for high SNR (>65 dB), flat frequency response, low
power consumption, and durability, while piezoelectric sensors
offer robustness and EMI resistance but limited high-frequency
sensitivity; hybrid MEMS-piezoelectric systems are under
development to optimize performance [10-12].

The analog front-end amplifies and filters signals prior to
digitization, employing LNAs with gains of 20-60 dB, anti-
aliasing filters tuned to 20-150 Hz (cardiac) or up to 2000 Hz
(pulmonary), and impedance matching to prevent signal loss
[9-11]. Digitization is performed with ADCs, typically 16-bit
and sampling at 4-8 kHz, ensuring sufficient dynamic range and
temporal resolution to capture murmurs and transient events [9-
11]. Post-digitization, embedded microcontrollers, DSPs, or
FPGAs perform real-time processing, including noise reduction,
segmentation, envelope detection, and spectral analysis via FFT
or wavelet decomposition [9,10]. Latency is maintained below
50 ms for real-time feedback, with data stored locally or streamed
via wireless protocols for telemedicine applications, and energy-
efficient components extending portable device battery life [9-11].

Robust signal processing is essential in noisy clinical environments.
Band-pass filters and advanced methods, including adaptive LMS/
RLS filtering and wavelet denoising, preserve physiological
transients while reducing artifacts [10,11,13]. Segmentation
identifies individual heartbeats or respiratory cycles, supporting
diagnosis and classification. Cardiac segmentation uses hidden
semi-Markov models (HSMM) trained on envelope energy,
spectral flux, and zero-crossing rate, while respiratory cycles are
detected via energy thresholds, zero-crossing, or Hilbert transform
envelopes [6,13]. Time-domain metrics (RMS amplitude, peak
intervals, heart rate variability) complement frequency-domain
and time-frequency features (PSD, STFT, CWT/DWT, MFCCs)
to enhance discrimination of murmurs, clicks, and crackles [9-11].

Nonlinear descriptors including Shannon and spectral entropy,
fractal dimensions, Lyapunov exponents, and Hjorth parameters
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quantify signal complexity and irregularity, offering sensitivity
to pathological changes in atrial fibrillation, valvular stenosis,
and chronic obstructive pulmonary disease (COPD) [6,9,11,13].
Feature selection and dimensionality reduction, via PCA, LDA, or
RFE, optimize model efficiency while preserving discriminative
power [9-11]. Extracted features are input to machine learning
classifiers, including SVMs, random forests, gradient-boosted
trees, and ANNS, particularly CNNs applied to spectrograms or
MFCC matrices for hierarchical feature learning [9-11]. Model
performance is assessed using cross-validation and ROC analysis,
measuring accuracy, sensitivity, specificity, and AUC [6,9,11].
Several commercial and academic digital stethoscopes now provide
real-time Al-assisted feedback, alerting clinicians to abnormal
cardiac or pulmonary sounds with validated classification scores
[6,14].

This integrated framework-linking biomedical acoustics,
mechanical design, digital signal processing, and Al-supports
automated, reliable, and clinically actionable auscultation, bridging
engineering, signal analysis, and medical practice.

Figure 1: Workflow of Al-Enhanced Digital Auscultation.
Schematic representation of the Al-enabled digital stethoscope
workflow. Physiological sounds are captured by a digital
stethoscope, digitized, and processed through Al algorithms for
signal analysis and pattern recognition. The system provides real-
time diagnostic feedback to clinicians, enhancing the accuracy and
reliability of auscultation.

Al and ML in Digital Stethoscopes: Technological Advances
and Clinical Evidence

1. Technological Advances in AI-Powered Digital Stethoscopes

Huang et al. (2023) conducted a comprehensive review of deep
learning algorithms applied to lung sound analysis, highlighting
the potential of Al to transform traditional auscultation practices
[14]. Their study emphasized the use of convolutional neural

networks (CNNs) to process two-dimensional spectrograms of
lung sounds, facilitating the automatic detection of respiratory
abnormalities such as wheezes, crackles, and rhonchi. Moreover,
the authors provided an open-source framework to standardize
algorithmic workflows, promoting reproducibility and enabling
future development in this field.

In a practical implementation, Zhang et al. (2023) developed a
low-cost, Al-powered stethoscope capable of diagnosing both
cardiac and respiratory conditions [15]. Utilizing a lightweight
model deployed on a Raspberry Pi Zero 2W, the system achieved
remarkable performance metrics: 99.94% accuracy, 99.84%
precision, 99.89% specificity, 99.66% sensitivity, and a 99.72%
F1 score. These results demonstrate the feasibility of deploying
high-performance diagnostic tools in resource-limited settings.

Lee et al. (2022) introduced a soft, wearable stethoscope designed
for continuous, real-time auscultation [16]. The flexible device
reduces motion artifacts and friction noise, enhancing the quality of
recorded signals. Embedded machine learning algorithms enabled
the classification of lung sounds and detection of abnormalities
with 95% accuracy, highlighting potential applications in home-
based monitoring and sleep studies.

Kimetal. (2023) reviewed the evolution of stethoscope technology,
emphasizing the integration of ML algorithms into wearable and
digital devices for automated detection of heart sounds [17]. These
Al-powered stethoscopes facilitate identification of murmurs,
abnormal rhythms, and other pathological cardiac signals while
providing real-time feedback and enabling remote monitoring.

Jiang et al. (2024) leveraged deep learning to process heart
sounds and detect valvular heart disease automatically [18]. The
model achieved high diagnostic performance, with sensitivity and
specificity exceeding 90%, demonstrating accuracy comparable
to expert cardiologists and highlighting the utility of Al-assisted
auscultation in standardizing cardiac assessments.

2. Evidence from Recent Clinical Studies

Accurate detection and classification of cardiopulmonary
abnormalities in pediatric, neonatal, and adult populations remain
a central challenge in clinical practice. Al-enhanced digital
stethoscopes have demonstrated substantial improvements in this
domain. In pediatric cardiology, Zhou et al. developed a deep
learning algorithm for multi-class classification of heart sounds,
achieving AUC values of 0.92 for normal sounds, 0.83 for innocent
murmurs, and 0.88 for pathological murmurs, providing objective,
reproducible, and reliable murmur classification [19]. Similarly,
digital stethoscopes have improved early detection of abnormal
pediatric breath sounds. Kevat et al. reported higher sensitivity for
wheeze detection compared to traditional auscultation, achieving
100% concordance for crackle identification [20], while Zhou
et al. demonstrated enhanced recognition of wheezes, crackles,
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and stridor through objective analysis of sound features [21].
The PERCH study further demonstrated the utility of digital
stethoscopes in low-resource settings for pediatric pneumonia
diagnosis, reliably capturing crackles and wheezes in children aged
1-59 months, highlighting their potential as cost-effective, non-
invasive diagnostic tools [22]. In neonates, Grooby et al. applied
a random under sampling boosting classifier to digital stethoscope
recordings, achieving 85% specificity, 66.7% sensitivity, and
81.8% overall accuracy for early detection of respiratory distress,
underscoring the potential for timely clinical intervention [23].

Beyond pediatric and neonatal applications, Al-powered digital
stethoscopes have advanced the detection of cardiac murmurs,
valvular heart disease, and asymptomatic cardiovascular
dysfunction in adults and obstetric populations. Chorba et al. trained
a deep learning model on over 34 hours of heart sound recordings,
achieving 76.3% sensitivity and 91.4% specificity for murmur
detection, with improved sensitivity for moderate-to-severe
aortic stenosis (93.2%) and mitral regurgitation (66.2%) [24]. In
obstetric populations, Al-guided screening increased detection of
peripartum left ventricular systolic dysfunction from 2.0% to 4.1%
in over 1,200 women [25], demonstrating enhanced cardiovascular
monitoring in low-resource settings. In adults, Guo et al. validated

a CNN model combining digital stethoscope and single-lead ECG
data, achieving an AUC of 0.85 with 77.5% sensitivity and 78.3%
specificity for detecting reduced ejection fraction (<40%) [25].
Pulmonary applications have also benefited from Al integration:
Glangetas et al. [26] and Siebert et al. [27] employed CNN and
LSTM models to analyze lung sounds, achieving AUC values
greater than 0.80 for interstitial lung diseases (ILD) and COPD
detection, while facilitating early diagnosis and prognosis of
COVID-19 in decentralized care environments. Collectively,
these studies demonstrate that Al-assisted digital auscultation
provides a scalable, objective, and clinically actionable approach
to cardiopulmonary evaluation across diverse patient populations.

Tables 1 and 2 summarize the significant advances achieved
through artificial intelligence (AI) and machine learning (ML) in
human auscultation and digital stethoscope technology. (Table 1)
focuses on technological developments, highlighting AI and ML
algorithms, device types, and performance metrics for cardiac
and pulmonary sound analysis. (Table 2) presents evidence from
clinical studies, including pediatric, neonatal, obstetric, and adult
populations, and illustrates how Al-enhanced digital stethoscopes
improve diagnostic accuracy, sensitivity, and specificity compared
to traditional auscultation.

Study Application Algorithm / Model Device Type Key Performance Metrics
Huang et Lung sound Digital Automatic detection of wheezes, crackles, rhonchi;
al., 2023 classification CNNon 2D spectrograms stethoscope framework for reproducibility
Cardiac & . . .. .. s
Zhang et respiratory disease Lightweight AI model Low-cost digital Accuracy: 99.94%, Precision: 99.84%, Sensitivity:
al., 2023 P dete?t’ion (Raspberry Pi Zero 2W) stethoscope 99.66%, Specificity: 99.89%, F1: 99.72%
Lee et al., | Continuous real-time . Soft wearable 0co
2022 auscultation Embedded ML algorithms stethoscope Accuracy: 95%
Kim et Automated heart M.L algorithms for real- Wearable digital . .
. time murmur/rhythm Real-time feedback and remote monitoring
al., 2023 sound analysis . stethoscope
detection
Jiang et Valvular heart Deep learning on heart Digital e o N
al., 2024 disease detection sounds stethoscope Sensitivity & specificity >90%

Table 1: Technological Advances in Al- and ML-Powered Digital Stethoscopes.
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. Clinical Algorithm / .
Study Population Application Model Key Performance Metrics
Zhou et al., . . Heart murmur Deep learning . . .
2023 Pediatric patients classification multi-class model AUC: 0.92 (normal), 0.83 (innocent), 0.88 (pathologic)
Kevat et al., o . Detection of Digital 100% concordance for crackles, higher sensitivity for
Pediatric patients abnormal breath stethoscope . .
2023 . . wheezes than clinician auscultation
sounds signal analysis
PERCH . Pneumonia Digital Reliable detection of crackles and wheezes; higher
Children 1-59 months . . . .
Study, 2023 diagnosis stethoscope prevalence in severe pneumonia
Neonatal
Grooby etal, Term newborns respiratory distress RUSB.OOSt Accuracy: 81.8%, Sensitivity: 66.7%, Specificity: 85.0%
2023 . classifier
detection
Murmur detection: Sensitivity 76.3%, Specificity 91.4%;
Chorba et al., Adult patients Cardiac murmurs Deep learnin Aortic stenosis: Sensitivity 93.2%, Specificity 86.0%;
2023 p & valvular disease P & Mitral regurgitation: Sensitivity 66.2%, Specificity
94.6%
. Screening for . .
Adedinsewo et Pregnant/postpartum LV systolic Al-guided (hgltal LVSD detection: 4.1% vs 2.0% in control
al., 2023 women . auscultation
dysfunction
Guo et al Asymptomatic CNN on digital
? Adults LV systolic stethoscope + AUC 0.85, Sensitivity 77.5%, Specificity 78.3%
2023 .
dysfunction ECG
. CNN + LSTM
Slebzeztzgt al., Adult patients IL]?ﬁzniszPD models on lung AUC > 0.80
g sounds + LUS
COVID-19 . . . Co
Glangetas et COVID-19 patients diagnosis and Deep learning on Early detection and severl_ty. prediction; supports
al., 2023 prognosis lung sounds telemedicine

Table 2: Clinical Evidence of Al-Enhanced Digital Stethoscopes.

Collectively, these tables demonstrate the transformative impact of
Al and ML on auscultation, providing objective, reproducible, and
scalable tools for the detection of heart and lung pathologies. The
integration of Al-driven analysis into digital stethoscopes not only
augments clinician capabilities but also enables early detection and
intervention, particularly in resource-limited or remote settings.

Future Perspectives of Al in Digital Stethoscopes

The evolution of digital stethoscopes is increasingly driven by
Al and ML, which enhance diagnostic accuracy, automate signal
interpretation, and enable predictive, precision-driven healthcare.
Flexible and wearable devices—including epidermal acoustic
sensors and piezoelectric wearables—leverage Al to process
high-fidelity heart and lung sounds in real time, reduce noise, and

classify physiological signals, supporting continuous monitoring
in pediatric, neonatal, and chronic care populations [28-30].

Multimodal data fusion-combining ECG, oxygen saturation,
respiratory rate, and motion sensors-enables Al models to detect
complex pathologies, such as early heart failure exacerbations,
while personalized acoustic baselines allow longitudinal tracking
of subtle changes in murmurs or wheezes, improving sensitivity
and reducing false positives. These capabilities transform
digital auscultation into a cornerstone of remote monitoring and
telemedicine, facilitating connected healthcare by integrating
patient data across distributed networks.

Integration with augmented reality (AR), electronic health
records (EHRs), and Internet of Medical Things (IoMT) standards
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(FHIR, HL7, DICOM-WAVE, IEEE 11073) supports real-time
visualization, secure data streaming, and predictive analytics
at both individual and population levels. This allows clinicians
to implement data-driven decision-making, anticipate disease
progression, and deliver precision medicine tailored to each
patient’s physiological profile [28-33].

Although challenges such as device variability, noise sensitivity,
and the limited interpretability of deep learning models remain,
standardizing algorithms and datasets, along with interdisciplinary
collaboration among clinicians, engineers, and data scientists,
will be crucial to fully harness AI’s potential in auscultation.
Ultimately, Al-powered digital stethoscopes promise to enable
early detection, continuous remote monitoring, and seamless
integration within connected healthcare ecosystems, transforming
traditional auscultation into a proactive, predictive, and patient-
centered diagnostic tool.

Conclusion
The Central Role of AI

Al is transforming the digital stethoscope from a purely acoustic
instrument into a data-driven diagnostic platform. By combining
high-fidelity acoustic sensors with machine learning algorithms,
these devices enhance the detection and classification of subtle
cardiac and pulmonary abnormalities, enable personalized
monitoring, and support predictive, preventive, and precision
healthcare. Integrated into telemedicine platforms, Al-powered
stethoscopes facilitate remote monitoring and continuous patient
assessment, expanding access to high-quality care in decentralized
and resource-limited settings.

Clinical studies have demonstrated the utility of Al-assisted
auscultation across pediatric, neonatal, obstetric, and adult
populations, enabling early detection of heart murmurs, valvular
disease, respiratory distress, and chronic pulmonary conditions.
Future developments-including wearable and flexible sensors,
multimodal biosensing, augmented reality overlays and IoMT
integration-promise to make auscultation continuous, automated,
context-aware, and tightly integrated within connected healthcare
ecosystems.

Despite these advances, challenges remain, including cost, clinician
training, data privacy, and equitable access. Interdisciplinary
collaboration among clinicians, engineers, and data scientists is
essential to fully leverage AI’s potential in telemedicine, predictive
analytics, and precision medicine, ultimately transforming
traditional auscultation into a continuous, patient-centered
diagnostic tool.

This work honors Mr. Raymond Gass, whose pioneering studies in
Strasbourg laid the foundation for digital pulmonary auscultation,
now amplified by Al and ML technologies.
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