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Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent causing COVID-19 disease, 

whose pandemic has had far-reaching consequences on the global population. Since the detection of the first cases in late 
2019, much has been learned about the mechanism of action of SARS-CoV-2 and the associated immune response to 
eradicate the infection. Recently, a clear correlation between disease severity and abnormal type I IFN response in patients 
has been established. Individuals with immune responses characterized by high concentrations of IFN-a2b and low blood 
levels of IL-6, TNF-alpha, and IL-1Ra were much less affected than those patients who exhibited an opposite scenario. 
Interestingly, recombinant human IFN-a2b (rhIFN-a2b) could mitigate the severity of symptoms, if given in the early stages 
of the disease, before reaching the inflammatory shock (cytokine storm) that characterizes the most severe cases. However, 
there are adverse effects associated with rhIFN-a2b-based therapy. Among them, the emergence of unwanted immune 
responses against the biologic can, in some cases, compromise the treatment’s safety and efficacy. In addition, rhIFN-a2b 
is a small cytokine, which results in rapid clearance from the bloodstream. This quick plasma clearance poses the need for 
frequent high doses to achieve the desired effect, which may, in turn, exacerbate unwanted effects associated with therapy. 
In this article we will address the most relevant strategies for the development of biobetters versions of rhIFN-a2b, as 
promising candidates for the treatment of COVID-19 and other human viral diseases.

Keywords: SARS-CoV-2; COVID-19; IFN-a2b; 
Immunogenicity; Pegylation; Glycosylation; Biobetter.

Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) is the infectious agent causing COVID-19 disease, whose 
pandemic has had far-reaching consequences on the global 
population. Since the detection of the first cases in late 2019, much 
has been learned about the mechanism of action of SARS-CoV-2 
and the associated immune response to eradicate the infection [1]. 
Recently, a clear correlation between disease severity and abnormal 
type I IFN response in patients has been established. Individuals 
with immune responses characterized by high concentrations of 
IFN-a2b and low blood levels of IL-6, TNF-alpha, and IL-1Ra 

were much less affected than those patients who exhibited an 
opposite scenario [2]. Interestingly, recombinant human IFN-a2b 
(rhIFN-a2b) could mitigate the severity of symptoms, if given in 
the early stages of the disease, before reaching the inflammatory 
shock (cytokine storm) that characterizes the most severe cases.

However, there are adverse effects associated with rhIFN-
a2b-based therapy. Among them, the emergence of unwanted 
immune responses against the biologic can, in some cases, 
compromise the treatment’s safety and efficacy. In addition, 
rhIFN-a2b is a small cytokine, which results in rapid clearance 
from the bloodstream. This quick plasma clearance poses the need 
for frequent high doses to achieve the desired effect, which may, 
in turn, exacerbate unwanted effects associated with therapy [3].
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These limitations have prompted the development of 
rhIFN-a2b biobetters versions, mainly focused on improving its 
plasma stability. The two most successful approaches were protein 
pegylation and glycosylation. Both strategies aim to increase the 
protein’s apparent size and, consequently, decrease the plasma 
clearance rate. For example, adding rhIFN-a2b of polyethylene 
glycol (PEG) molecules (12 kDa) allowed the development 
of a product marketed as PEGIntron®. Although this product 
possesses high relative antiviral activity, the improvement in 
pharmacokinetic properties of the molecule is still reduced [4]. 
Another pegylated version of rhIFN-a2b is commercially known 
as PEGASYS®, provided with larger PEG residues that confer to 
the molecule a longer half-life. However, the larger apparent size 
of the molecule is achieved to the detriment of the reduced antiviral 
activity exhibited by this product over the unmodified protein [5].

Glycoengineering of therapeutic proteins is another 
interesting approach that has led to longer plasma half-lives 
of certain biologics. Although glycan residues can be added 
in diverse ways, two strategies have achieved successful 
outcomes. For instance, N-glycosylation involves the addition of 
carbohydrates to Asparagine atoms, whereas, for O-glycosylated 
proteins, sugars are bound to Threonine or Serine residues [6]. 
Thus, a hyperglycosylated version of rhIFN-a2b, developed 
using the N-glycosylation strategy, exhibited a 25-fold longer 
elimination half-life than the non-glycosylated protein. In addition, 
O-glycosylation of the cytokine also allowed for improved plasma 
stability of the product, with an additional advantage associated 
with high retention of in vitro antiviral activity [7].

Pegylation and glycosylation strategies have made it possible 
to achieve substantial improvements in the in vivo rhIFN-a2b half-
life and, consequently, to reduce the number of doses needed to 
reach the therapeutic window. However, these biobetter versions 
of the biologic do not solve the problems associated with the risk 
of immunogenicity [8].

For this reason, we recently proposed the development 
of hyperglycosylated versions of rhIFN-a2b with reduced 
immunogenicity, using a strategy based on the identification and 
elimination of epitopes potentially recognized by T cells. This 
approach, known as De-immunization for Functional Therapeutics 
(DeFT), combines powerful immune-informatics algorithms with 
in vitro and in vivo experimental platforms. First, we analyzed the 
immunogenicity of two hyperglycosylated rhIFN-a2b muteins, 
which were found to be more immunogenic than the unglycosylated 
protein. We then identified the most immunogenic residues by 
in silico analysis. These amino acids were then substituted to 
reduce the binding of rhIFN-a2b-derived peptides to human major 
histocompatibility complex (HLA) molecules and, consequently, 
the immunogenicity of these proteins. The in silico predictions 
were then validated by in vitro binding experiments to relevant 

HLA molecules and by ex vivo and in vivo assays. The new 
hyperglycosylated and de-immunized rhIFN-a2b versions exhibited 
a marked reduced immunogenicity and retained high residual 
antiviral activity [8-10]. Altogether, these results demonstrate the 
success of the strategy approached and highlight the new rhIFN-
a2b de-immunized variants as promising antiviral candidates.

In conclusion, since its approval as an antiviral agent, 
significant progress has been made in the search for new rhIFN-
a2b versions with improved properties in terms of stability and 
immunogenicity. Approaching these strategies in combination 
will allow further improvements in the development of biobetter 
versions of this potent antiviral agent.
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