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Abstract 
This review deals with herbal medicines involving natural polyphenols, including, quercetin, luteolin, kaempferol, gera-

lylated flavonoid, pycnogenol, bisflavonoid, rosmarinic acid, xanthohumol, pomegranate extract, epigallocatechin gallate, cur-
cumin, and myricetin. Beneficial effects arise on generation of reactive oxygen species at low concentrations in accord with the 
unifying mechanistic theme based on electron transfer, reactive oxygen species, oxidative stress and antioxidants. Various other 
physiological effects are addressed, including inflammation, apoptosis and cell signaling.
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Abbreviations
ROS : Reactive Oxygen Species

OS : Oxidative Stress

RNS : Reactive Nitrogen Species

ET : Electron Transfer

AO : Antioxidant

Introduction
The use of plants for healing purposes predates recorded 

history and has provided material to much of modern medicine. 
Many of present day drugs have their origin from plant sources e.g., 
aspirin from foxglove, quinine from chincona bark and morphine 
from opium poppy. Natural products from plants have provided 
the pharmaceutical industry with the most important sources of 
“Lead” compounds in the search for new drugs and medicines [1]. 
The search for new drugs from plants continues with many of the 
large-scale pharmaceutical companies. 

Chinese and Indian ayurvedic herbalism is the ancient herbal 
traditions that is currently practiced. It is based on “Yin” or cooling 

and “Yang” or stimulating or combination of both with various 
herbal materials. In addition, other ancient cultures in different 
parts of the world, such as Egyptian, Persian, Mayan and Aztec 
have also practiced herbal medicine.

About 20 years ago, a brief account of herbal medicines 
was reported [2]. Flavonoids, which are phenolic are known to 
be therapeutic agents, e.g., as anti-inflammatory, anti-ischemic 
and anti-thrombotic compounds. Ginko biloba, a Chinese herbal 
medicine of the flavonoid class, exerts AO action by rutin, quercetin, 
myricetin, and kaempferol. Tea possesses anticancer action, 
apparently due to the presence of catechins. The resin propolis 
has played a role in medicine, probably due to the presence of 
numerous phenolics. Herbal kampo medicines from Japan contain 
many AOs of the phenolic class. Nordihydroguairetic acid, from 
the creosote bush, inhibits lipid peroxidation. 

Continuing on the same line, we recently reported naturally 
occurring mono-phenolic compounds as therapeutic agents and 
phenolic compounds in natural product spices and nutrients in 
relation to the unifying mechanism based on Electron Transfer 
(ET), Reactive Oxygen Species (ROS) and Oxidative Stress (OS) 
[3-6]. The small number of monophenolics involved consisted 
of thymol (thyme), carvacrol (thyme, bergamot), eugenol (clove, 
nutmeg, basil), gingerol (ginger) and capsaicin (peppers), vanillin 
(vanilla), and sesamol (sesame).

The prepondence of bioactive substances, usually as 
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metabolites, incorporate ET functionalities. These may play an 
important role in physiological responses. The main group includes 
quinones (or phenolic precursors), aromatic nitro compounds, 
metal compounds and imines. Resultant redox cycling can occur, 
giving rise to OS through generation of ROS and diverse radicals 
(Scheme 1). 
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Scheme 1: Redox cycling with superoxide and ROS formation.

ROS and OS have been increasingly implicated in the mode 
of action of drugs and toxins. Phenols also display Antioxidant 
(AO) properties. There is a plethora of experimental evidence 
supporting the ET-ROS theoretical framework. This evidence 
includes generation of the common ROS, lipid peroxidation, 
degradation products of oxidation, depletion of AOs, effect of 
exogenous AOs, and DNA oxidation and cleavage products, as well 
as electrochemical data. This comprehensive, unifying mechanism 
is consistent with the frequent observation that many ET substances 
display a variety of activities, such as multiple drug properties, as 
well as toxic effects [3]. Phenols are one of the principal operators 
in herbal medicine. Mode of action in conversion to quinones is 
illustrated in (Scheme 2). Phenolic ethers are also prevalent, which 
can undergo dealkylation to phenols. 

A recent report on the High Through Put Screening (HTPS) 
of biologically active natural products and natural product drugs 
revealed the most hits were from molecules containing the catechol 
moiety, followed by p-dihydroxyphenols [7]. This is in compliance 
with our unifying theme of ET-ROS-OS associated with various 
illnesses. This prompted us to compile a list of natural products 
used in herbal medicine with the catechol structural motif. The 
present report deals with herbal medicines that perform many 
beneficial effects involving the polyphenolic class as AOs. The 
mechanism is shown in (Scheme 2). 
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Scheme 2: Mechanism of AO action.

Phenols act as pro-oxidants via conversion to quinones 
which generate ROS-OS via ET (Scheme 3). The effects can be 
beneficial at lower levels, but harmful with large amounts. 
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Scheme 3: Oxidation of phenol to o- and p- quinone.

Of the naturally occurring polyphenolic compounds, 
flavonoids are widely distributed and isolated from a wide range 
of vascular plants. Over 8000 individual compounds are known, 
which act as antioxidants, antimicrobials, photoreceptors, visual 
attractors, feeding repellants and for light screening [8,9]. 
Studies suggest that flavonoids exhibit biological activities, such 
as antiallergenic, antiviral, anti-inflammatory and vasodilating 
properties. The capacity of flavonoids to act as antioxidants in 
vivo has been the subject of several studies. As representative 
of the class of compounds, we have selected quercetin, luteolin, 
kaempferol, pycnogenol, rosmaric acid, curcumin, myricetin and 
polyphenols from tea for discussion of their biological properties 
in detail.

Quercetin
Quercetin (Figure 1), which occurs as free phenol or as 

D-glucoside, exerts medicinal effects, such as anticancer, anti-
inflammatory and cyto-protective. Preventing OS is attributed 
to AO properties. Signaling pathways appear to be involved. 
The therapeutic potential includes neurodegeneration and anti-
inflammation [10,11]. Hepato-protective and radical scavenging 
effects are exhibited by quercetin nanoparticles [12]. Chronic 
quercetin treatment exhibits antimanic and AO effects [13]. 
Quercetin exhibits AO and anti-fibroticin action in addition to 
prevention of cornea injury [14]. The flavonoid is classified 
as a cognitive enhancer in folk medicine. Treatment involves 
neurodegenerative disorders and cardiovascular diseases in which 
protective effects occur against OS mediated neuronal damage. 
The review puts focus on mechanism involving prevention of 
neurological disorders [15]. OS which is associated with aging, 
is the basis of neurodegenerative disorders for which polyphenols 
act as AO agents. The reaction mechanism is addressed for the 
vitro studies [16]. Anti-carcinogenic action is treated in another 
report [17]. An antidepressant effect is the topic of another study, 
in which hyperactivity was reduced. The effects are based on 
receptor inhibition and synthesis of NO. The AO effect contributes 
as evidenced by reduction of lipid hydro-peroxide levels [18]. The 
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report addresses amelioration of liver injury by reduction of OS and 
inflammation. Underlying mechanisms are treated based on OS and 
anti-inflammatory properties [19]. Rats with neurodegeneration by 
OS were treated with quercetin, in which AO activity counteracted 
the OS [20]. 
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Figure 1: Quercetin.

There was protection against renal and hepatic toxicity 
in rats. The beneficial role partly involves AO action [21]. 
Neuroprotective action of quercetin was studied. OS caused by 
free radicals contributes to the pathogenesis which is lessened 
by AO action [22]. Hepatotoxicity and OS underwent relief; AO 
action of the flavonoid plays a part [23]. Another study deals with 
the neuroprotective role. ROS are involved in the damaging effects 
of the illness resulting in OS which is decreased by the AO [24]. In 
a recent report quercetin showed potent anti-aggregation activity 
of amyloid-β peptide in Alzheimer’s disease [25]. 

Luteolin
Luteolin, 3’,4’, 5,7-tetrahydoxyflavone (Figure 2), having 

the catechol structural moiety, is a flavonoid that is found to exist in 
many vegetables and medicinal plant species. Chinese traditional 
medicine uses plants rich in luteolin for treating hypertension, 
inflammation, and cancer. Having multiple biological effects, 
the phenol functions as an antioxidant as well as a pro-oxidant 
biochemically [26]. 

O

O

HO

OH

OH

OH

Figure 2: Luteolin.

Two 2008 reviews deal with the anticancer properties of 
luteolin, addressing apoptosis, inhibition of cell proliferation, 
metastasis and angiogenesis [26,27]. Furthermore, luteolin 
interacts with cancer cells by suppressing cell survival pathways 
via cell signaling [28], inhibiting apoptosis protein, and stimulating 
apoptosis pathways including the tumor suppressor p53. Luteolin 
induced ROS acts as potential cytotoxic agent to human colorectal 
cell line [29,30]. 

A study showed luteolin inhibits RNAs (RSK) and eradicates 
the cancer stem cell population [31]. It effectively blocks progestin-
dependent human breast cancer tumor growth and stem cell-like 
phenotype in human breast cancer [32]. A similar study revealed 
retardation of growth by MCF-7 cells via inhibiting Insulin Growth 
Factor (IGF-1) mediated P13K-Akt pathway dependent ERα in 
human breast cancer stem cells [33]. 

Luteolin acts as a potential anticancer chemo preventive 
and chemotherapeutic agent in malignant melanoma cells [34]. 
Luteolin induces apoptosis in multidrug resistant cancer cells 
via ROS generation, DNA damage, activation of p53, NF-kB 
signaling pathways, activation of p38 pathway and depletion of 
anti-apoptotic proteins [35]. Glioma is one of the most common 
malignant tumors affecting the central nervous system. Drug 
screening using curcurmin, luteolin, chrysin and apigenin, showed 
suppression of the tumor cells [36].

Kaempferol
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Figure 3: Kaempferol.

 Kaempferol (Figure 3), a flavonoid in folk medicine, exerts 
a gastro protective effect. It was able to diminish the extent of 
ulcerated gastric areas in rodents [37]. Inflammation often is a 
healing response to many agents, such as pathogens. Kaempferol 
displays powerful anti-inflammatory properties which has been 
widely described in both in vitro and in vivo. The review describes 
this property in detail, in addition to mechanism, chemistry and 
toxic effects [38]. Kaempferol is used in treatment of many 
ailments. It possesses interesting AO and antimicrobial properties. 
Use is made in treatment of infections and damage from free 
radicals is lessened [39]. Plants containing kaempferol are known 
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to reduce the risk of cancer and cardiovascular diseases. There 
is a wide range of pharmacological activities, including AO, 
antimicrobial, anti-inflammatory, neuroprotective, antidiabetic, 
anti-osteoporotic, anxiolytic, analgesic and anti-allergic [40]. 
Metabolism is also discussed. 

In addition to the above mentioned polyphenols and their 
biological actions, there are several recent reports of novel flavonoid 
compounds isolated from terrestrial plants. Natural geranylated 
flavonoid (Figure 4) isolated from Paulownia tomentosa fruits 
showed anti-inflammatory properties and inhibited cyclooxygenase 
and lipoxygenase activity; mechanism of anti-inflammatory effect 
is discussed [41].

OHO

OH O

OH

OH

Figure 4: Geranylated flavonoid.

Parts of the plant Epimedium brevicornum are used in 
traditional Chinese herbal medicine as a cure for impotence, 
premature ejaculation, numbness hemiplegia, neurasthma, 
forgetfulness and tinnitus. Plant extract yielded several flavonoids, 
of which the prenylated flavonoid (Figure 5) exhibited cytotoxic 
activity against four human cancer cell lines [42]. 
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Figure 5: Prenylated flavonoid.

Pycnogenol
Pycnogenol (PYC) (Figure 6), a pine bark extract, is a 

procyanidin comprised of catechin and epicatechin subunits. PYC 
acts as a potent scavenger of free radicals [43]. There are other 
AO effects, including a role in the regeneration and protection 
of AO vitamins C and E. Anti-inflammatory activity has been 
demonstrated, as well as protection against UV radiation which 

produces harmful radicals. Phenolic acids produce a variety of 
beneficial effects. The AO action of anti-inflammation has been 
addressed [10,11]. PYC prevents ischemic-reperfusion injury from 
OS by decreasing DNA damage and increasing antioxidant status 
[44]. It showed neuroprotective action against oxygen-glucose 
deprivation/re-oxygenation-induced injury via NF-kB and ERK1/2 
pathways in rat astrocytes [45]. PYC decreased selenite-mediated 
ROS in human lung carcinoma cells [46] and prevents complex 
organ dysfunction syndrome induced by oxidative damage by 
decreasing DNA damage and increasing the AO status and DNA 
repair capacity in rats [47]. A study showed a protective effect 
against OS mediated apoptotic changes caused by cisplatin-induced 
acute kidney injury [48]. PYC protects rats from OS produced by 
recurrent hypoglycemia [49].
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Figure 6: Pycnogenol.

Dietes bicolor (Iridacae) is an ornamental plant from Africa 
where it is used to treat diarrhea and dysentery. Among many 
flavonoids isolated from the species, the bisfalvonoid (Figure 
7) exhibited anti-allergic activity by inhibiting antigen-induced 
β-hexosaminidase release and anti-inflammatory properties [50]. 
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Figure 7: Bisflavonoid.
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Rosmarinic Acid (RA)
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Figure 8: Rosmarinic acid.

Rosmarinic Acid (RA) (Figure 8), member of various 
medicinal plants, possesses AO and anti-inflammatory effects. 
In a study, the effects of RA on tracheal responsiveness in lung 
inflammatory cells and oxidant biomarkers in sensitized rats were 
evaluated [51]. Results were comparable to those of dexamethasone 
drug on sensitized rats. Ethanolic extracts of Rosmarinus officinalis 
L., as well as rosmarinic acid, showed anti-inflammatory effects in 
rat model with neuropathic pain [52]. RA was shown to delay the 
development of airway inflammation in cases of allergic asthma 
[53]. Anti-inflammation mechanism has been addressed previously 
[10;11].

A study revealed RA could serve as a hepato protective 
agent, and dietary supplementation may be beneficial in improving 
cholestasis-related liver injury via OS and down regulation of NF-
kB, AP-1 and TGF-b1 signaling [54]. RA treatment ameoliorated 
damage caused by doxorubicin-induced testicular injury in rats [55]. 
A similar study showed action as an AO attenuated acetoaminophen-
induced hepatotoxin in male rats [56]. Rosmarinic acid n-butyl 
ester protects cells against oxygen glucose deprivation-induced 
cell death, suggesting that the ester may be a promising drug 
candidate for the treatment of ischemia stroke. Supplementation 
with RA in rats protected them from deleterious effects caused by 
colon carcinogen 1,2-dimethylhydydazine; thus RA may be used 
as a potent chemo-preventive agent [53]. Rosmarinic acid inhibits 
inflammation and angiogenesis of hepatocellular carcinoma by 
suppressing NF-kB cell signaling in tumor bearing mice [57]. 

Xanthohumol
Xanthohumol (Figure 9) is isolated from Humulus lupus

(Hops), and the antioxidant controls OS levels. Further consumption 
by diabetic animal’s decreases inflammation and OS, allowing 
neovascularization control and improving diabetic wound healing 
[58].
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Figure 9: Xanthohumol.

Pomegranate Extract
Historically, pomegranate (Punica granatum L) has been 

used as a medicine for a variety of ailments in various cultures. 
In studies of human and murine models, pomegranate juice, peel, 
and oil have been shown to possess anticancer activities, including 
interference with tumor cell proliferation, cell cycle, invasion, 
angiogenesis, anti-inflammatory, anti-atherogenic, and antioxidant 
activities [59-61]. 

The peel of pomegranate possesses a higher content of 
polyphenols. The fruit contains large amounts of ellagic acid and 
its derivatives (Figure 10), along with punicalagin (Figure11), a 
large polyphenol being the major constituent, possessing >50% 
of the antioxidant activity of pomegranate juice. Pomegranate 
also contains other polyphenols, such as anthocyanins, cyanidin 
(Figure 12), caffeic acid, coumaric acid and flavonols. Ellagic 
acid is metabolized by the colon microflora to form urolithins A 
and B that circulate in the blood stream reaching various organs, 
playing a role as antioxidant, and anti-inflammatory and anti-
cancerous agents [60]. Four recent reviews deal with the role of 
pomegranate juice in breast cancer, colon cancer, pancreatic cancer, 
hepatocellular carcinoma, prostate cancer and human larynx 
epidermal carcinoma [59-61]. Mechanistically, as discussed in 
prior sections, the catechol can act as o-quinone precursor leading 
to ET-ROS-OS as part of the unifying theme.
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Figure 10: Ellagic acid (a) and hydrolysis product (b).
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Figure 11: Punicalgin.
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Figure 12: Polyphenols.

Epigallocatechin Gallate (EGCG)
EGCG (Figure 13) is a polyphenol prevalent in green tea. 

Clinical trials comprise the phenol alone or together with Pt drugs 
involving synergism against prostate and colon cancers. One mode 
of action entails induction of apoptosis in tumor cells and animal 
models, which can result from OS [62]. Increase in ROS occurs 
during gallate-induced apoptosis of hepatic cancer cells [63] The 
compound enhanced the production of radicals, both ROS and 
RNS [64]. A study was made of the drug effect on Leishmania [65]. 
Results suggest a mode of action involving ROS. The effect was 
reversed by catalase, providing evidence for ROS involvement. 

In relation to the ET-ROS-OS unifying mechanism, the 
catechol portion can act as precursor of an o-quinone which is 

an ET agent capable of inducing ROS-OS which plays a role in 
cancer destruction.
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Figure 13: Epigallocatechin gallate.

Curcumin
Curcumin (Figure 14), the principal agent of turmeric, is also 

a component of the ginger family and curry powder. It is related 
structurally to capsaicin in being a phenol type, which undergoes 
tautomerism to the keto-enol form.
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Figure 14: Curcumin.

 The compound displays a broad spectrum of physiological 
and drug activities, of which representative examples are presented 
herein. In a study of chemo preventive and therapeutic effects, 
activity was shown as an anti-tumor, anti-inflammatory and anti-
oxidant, capable of inducing apoptosis [66]. Mode of action is 
addressed in relation to carcinogenesis, gene expression and 
drug metabolism. Anti-inflammatory mechanisms are treated in a 
communication [67]. A brief review deals with antibacterial action, 
in addition to a broad range of other pharmacological properties, 
in which the mechanism involves multiple targets [68]. There is 
a report on anticancer properties and therapeutic activity [69]. 
Various biological aspects are involved including mutagenesis, 
Oncogenesis, apoptosis, tumorigenesis and metastasis. An anti-
proliferation effect exists, in addition to metastasis. Turmeric is 
known to display antioxidant and antimicrobial properties [70]. A 
book reports on therapeutic use with attention to molecular targets 
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[71]. Beneficial effects are reported for skin diseases, inflammation 
and urinary diseases. 

Since there is structural relation, the ET-ROS-OS theory 
treated in capsaicin should also apply with curcumin. There is also 
possible participation of the 1, 3-diketo structure in mechanism, 
e.g., metal chelation with subsequent ET. A study is reported on 
AO activity. The two phenolic OH groups play a major role [72]. 
Electron transfer reactions are involved. There is a protective 
effect conferred by the AO in Cd-induced OS and cardiovascular 
dysfunction [73]. A beneficial influence occurred with curcumin 
against Hg-induced OS in the liver [74]. The effect is attributed to 
free radical scavenging. These reports are representative examples 
of AO action. 

Memory in people with Alzheimer’s (AD) disease was 
improved [75]. The spice exerted various positive influences 
including AO and anti-inflammatory. Evidence supports 
involvement of OS, free radicals, metal toxicity and inflammation. 
Curcumin has been investigated in treatment of cancer, ulcers, 
arthritis, liver disease and atherosclerosis. A recent review entails 
a role in inhibiting stem cancer cells [5]. 

Myricetin
Myricetin (Figure 15), a polyether, is found in most herbal 

medicinal plants, which could exhibit AO properties. Enzymatically, 
the ether is dealkylated to the polyphenol; in support is a report 
dealing with the demethylation of polymethoxyflavones by human 
gut bacterium, Blautia sp. MRG-PMF1 [76]. 

O
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Figure 15: Myricetin.

An article deals with the effect of the herbal myriticin on 
memory loss in Alzheimer’s (AD). Treatment reduces oxidative 
damage and increases AO enzyme activity. Also, there was decrease 
in iron which can be an ET agent [77]. Various bioactivities are 
demonstrated by myricetin. It ameoliorates liver fibrosis that was 
induced by carbon tetrachloride and may serve as a therapeutic 
agent [78]. Myricetin displays remarkable anticancer properties 
with few side effects. The underlying mechanism was investigated 
which appears to involve mitochondria [79]. Myricetin provides 
an anticancer effect by inducing mitochondrial-mediated apoptosis 
with involvement of human glioma cells. Other effects are ROS 

generation, inhibition of cell migration and cell cycle arrest [79]. 
Myricetin exerts various physiological effects; the mechanism 
involved in apoptosis is unclear. This is an example of an adverse 
effect by medicines which is common in the therapy field and 
deserves more attention. The effect can be harmful or beneficial 
[80]. 

Conclusion
Consumer spending on herbal products in the United States 

is estimated to be more than $5 billion per year. Interest in finding 
lead compounds from natural herbal medicines has intensified 
over the years. In this review, among the various biologically 
active molecules, we have focused on polyphenolic compounds, 
which exhibit AO properties, and is in keeping with our unifying 
theme of ET-AO-ROS-OS and their biological actions related to 
illnesses. All the compounds presented above are isolated from 
herbal plants used in Chinese and Indian Ayurvedic medicine, with 
potential therapeutic and biological properties. 
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