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Abstract
Mutations in the Isocitrate Dehydrogenase 1 (IDH1) gene occur in 70% of grade II and grade III gliomas, 10% of acute my-

eloid leukemia, as well as cholangiocarcinomas, melanomas, and chondrosarcomas. Numerous mechanisms have been proposed 
to illustrate the biological function of mutant IDH1. Most functional studies of mutant IDH1 have been conducted in exogenous 
overexpression systems with the IDH1 wild type background. This mini-review comments on recent publication by Wei et al, in 
which a highly efficient “single base editing” approach was employed to generate monoallelic IDH1 R132H mutation without the 
induction of a double strand break in the IDH1 gene.
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Introduction
Gliomas are the most prevalent type of tumors of the central 
nervous systems, accounting for up to 30% of all primary 
lesions and nearly 80% of all malignant forms [1,2]. Given their 
anatomical localization and locally infiltrative nature, these tumors 
are associated with high morbidity and mortality. Despite radical 
surgical resection coupled with chemo- and radiotherapy, these 
tumors often recur, leading to a dismal overall prognosis. With an 
approximate incident rate of 6.6 per 100,000 individuals annually 
in the USA, these malignancies result in a majority of deaths from 
primary brain tumors. Historically, gliomas have been classified 
based on their histological features and graded by their degree of 
anaplasia according to WHO criteria, serving as a “gold standard” 
for decades. However, in the case of low grade gliomas and 
particularly diffusely infiltrative gliomas, these methods are subject 
to intra observer variability. Thus, with the advent of molecular 
profiling, these tumors have now been further interrogated to 
identify diagnostically relevant alterations, including genomic, 
transcriptomic, and epigenetic variants, complementing the 
histological-based classification system [3-5].

IDH1 Mutation in Glioma
The recent identification of frequent mutations in the 

metabolic gene Isocitrate Dehydrogenase (IDH) 1 and 2 suggests 
the existence of different molecular subclasses of diffusely 
infiltrative gliomas with distinct biological and clinical attributes, 
prompting the WHO to propose revised classification guidelines 
[6]. Originally discovered in 2008 [7], it is now appreciated that 
70-80% of grade II/III and 20% grade IV gliomas harbor mutations 
in IDH1; and that these alterations frequently coexist with TP53, 
ATRX mutations, and co-deletions of chromosome 1p and 19q 
[8,9]. Prior studies have identified mutations in IDH1 as one of 
the earliest events in gliomagenesis, possibly playing a significant 
role during tumor initiation and subsequent transformation [9-11]. 
The majority of IDH1 mutants contain heterozygous single amino 
acid missense mutation in its active site at arginine 132, altering its 
enzymatic activity that results in the neomorphic production of the 
oncometabolite 2-Hydroxyglutarate (2-HG) using α-ketoglutarate 
(α-KG) [12]. This aberrant production of 2-HG in turn inhibits 
α-KG-dependent dioxygenases, including histone demethylases 
and DNA demethylase Ten-Eleven Translocation 2 (TET 2) 
[13-15]. Consequently, IDH mutation is associated with global 
changes in DNA and histone methylation patterns as indicated 
by widespread hypermethylation of CpG islands [16]. Clinically, 
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mutations in IDH1 prolong survival of glioma patients [8]. Given 
the pronounced frequency of IDH1 mutation in gliomas coupled 
with its impact on the biology and clinical progression of the 
disease, it is vital to further delineate the role of monoallelic IDH1 
point mutations in gliomas. 

Current Models for Mutant IDH1
While previous studies have investigated the biological 

function of mutant IDH1 in the context of tumorigenesis and 
tumor progression, these studies are often limited by the paucity 
of appropriate endogenous mutant IDH1 systems [17,18]. For 
instance, most prior studies have relied on the use of overexpression 
systems, which do not necessarily recapitulate the naturally 
occurring heterozygous IDH1 mutational status in this cancer 
[17]. Moreover, the underlying wild type IDH1 background in 
these exogenously overexpressing IDH1 mutant clonal cells may 
obscure the true biological and clinical impact of IDH1 mutation 
in this cancer. Although techniques to establish primary cultures 
carrying monoallelic IDH1 mutants from human tumor samples 
has been improved, it remains difficult to generate isogenic 
cellular models to study the function of mutant IDH1, especially 
during tumorigenesis [19]. Likewise, while orthotopic xenograft 
models are available, their utility is often limited [20]. Thus, it 
is important to establish clinically relevant cellular models that 
recapitulate the parental disease to methodically characterize the 
role of IDH1 mutation in this cancer. Such clinically representative 
in vitro disease models will enable systematic delineation of the 
molecular network driven by mutated IDH1, a prerequisite for 
effective therapeutic design.

An Efficient Approach to Create Heterozygous IDH1 
R132H Mutation

To this end, we recently demonstrated the use of “Single 
base editing” method to generate isogenic cellular models 
carrying monoallelic IDH1 mutants [21]. Using a recently reported 
CRISPR-Cas9 technology which functions without the induction 
of a double strand break in IDH1 [22], we precisely introduced 
heterozygous IDH1 R132H point mutation in human astroglial 
cells with a successful rate of 20%. Compared with other nuclease 
and homology directed repair-based knock-in methods used to 
date [23-25], our work provides an efficient and easy approach 
to generate monoallelic IDH1 R132H mutation, and can be 
valuable to others in the field searching for models of endogenous 
heterozygous IDH1 mutation.

The monoallelic IDH1 mutants in our model displayed 
global alterations in DNA methylation and gene expression pattern 
coupled with dramatic changes in cellular behavior including 
decreased cell proliferation. Notably, we uncovered a previously 

unknown link between expression of YAP, an effector of the 
pro-growth Hippo pathway, and IDH1 mutation status (Figure 
1). Specifically, our work revealed a Hippo-independent, 2-HG-
dependent regulation of YAP expression in these monoallelic IDH1 
mutant astroglial clones. The Hippo-YAP pathway has emerged 
as a critical network driving tumor growth and progression [26-
28]. Thus, it is of interest to identify potent regulators of YAP and 
their role in cancer development. Our study suggests that YAP is 
responsive to changes in metabolic state, highlighting the intimate 
relationship between proto-oncogenes and cellular metabolism. 
While further mechanistic investigation is warranted to precisely 
elucidate the biological implication of YAP inhibition by IDH1 
mutation, this study lays the groundwork in establishing a novel 
connection between oncometabolite production and activity of pro-
growth signaling network in early disease development. Overall, 
this versatile and efficient “Single base gene editing” technique 
will permit thorough interrogation of the biological function of 
heterozygous IDH1 mutants in the context of glioma development 
and progression, and serve as a valuable model to test effective 
therapies for the management and treatment of gliomas. 

Figure 1: Schematic of the mechanistic details and functional effects of 
mutant IDH1-YAP signaling.
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