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Introduction
Metallodendrimers belongs to the class of large hyper-

branched polymeric compounds with incorporated metal atoms. 
Mtallodendrimers are supramolecular moieties having novel phys-
ical, biological, Optical, electrochemical and catalytic properties. 
The initiation of incorporating metal ions in the dendritic framework 
(Figure 1) backs to the early 90’s by Balzani and Newkome’s [1-4].

Figure 1: Schematic representation of dendrimeric framework.

The approaches used commonly either by internal metal 
complexation, use of metal branching centers or encapsulation at 
the specific binding site. In tradition, metal inclusion occurs af-
ter construction of dendritic framework in which metal’s role as a 
connector as core or monomer, building block connectors, struc-
tural auxiliaries and branching centers. (Figure 2) After that, since 
90’s incredible work has been carried out in the field of metallo-
dendrimers with applications of synthetic novel materials as drug 
carriers [5,6], enzyme mimics [7,8], MRI contrast agents [9] and 
biocatalyst [10]. Metal ions that are used till now dates to Ru, Os, 

Bi, Ge, Si, Zn, Fe, Pt, Pd, Er, Eu, Tb, CO, Cu. C60 [2,3,11-23] as 
a core, connector and peripheral group. It has been discussed with 
details in a review article by Newkome et al. [24] published in 
chemical reviews explanation about different types of metalloden-
drimers and their chemical mechanism involved in it. This present 
overview attempts to touch the recent progress of metallodendrim-
ers in the field of catalysis.

Figure 2: Potential uses and positioning of metals within dendritic struc-
ture [24].

Metallodendrimers as a Catalyst
The Au nanoparticle were formulated by Au-PAMAM met-

allodendrimer through in situ reduction using Na[BH4] had set 
path for effective formation of nanoparticles by PAMAM-based 
dendritic stabilizers [25]. In another study amidoamine based den-
drimers with peripheral Pd-Fe units has used in Heck reaction [26]. 
The study reports cooperative, positive effect of palladium con-
taining amidoamine core metallodendrimers in the Heck-Mizoroki 
cross coupling of iodobenzene with tert-butyl acrylate following 
heterogeneous carbon-carbon cross-coupling (Schema 1). 
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Scheme 1: Representative Heck-Mizoroki cross coupling using Pd con-
taining amidoamine containing metallodendrimer as a catalyst [26].

In a very interesting study, the 4th generation PAMAM den-
drimer with mixed Pd-Au and Pd-Pt NPs demonstrated more ef-
fective hydrogenation reaction in comparison to monometallic Pt 
or Pd catalyst [27-29]. The reason for such effective reaction may 
be due to rigid open structure of dendrimers and easy accessibility 
of substrate to active sites. Furthermore, the dendritic framework 
serves as a selectivity stage for the reactant and product, signifying 
high potential of dendrimer Nano catalyst as a control of catalytic 
chemical composition, solubility and recovery [28]. To study the 
effect of the dendrimer´s generation on the catalytic activity El-
Sayed in 2001 used PAMAM dendrimer-stabilized NPs in Suzuki 
cross-coupling reactions [30].

The first DAB dendrimer catalyst synthesized by Reetz in 
1997, that reports the Heck reaction of bromobenzene and styrene 
to form trans-1, 2-diphenylethylene (Figure 3) yielded higher yield 
than traditional method [31].

Figure 3: Representative DAB-Dendrimer for Heck reaction [31].

The same reaction using palladium-dendrimer complex 
supported by silica through three generation was reported by Alper 
et al. in 2000 [32]. However, the highest conversion factor was 
observed with 1st generation catalyst and higher turnover numbers 
(TONs) with 2nd generation catalyst after 6 hours. In contrast, 
Alper claims recyclability of the catalyst with no confirmational 
data proving the same.

Interestingly, Jacobsen et al. in 2000 represented the use of 
dendrimer catalyst in selective epoxidation reaction in addition 
to the epoxidation using Salen/metal complexes. In this work 
commercially, available Poly Amidoamine (PAMAM) was coupled 
with Cobalt-Salen moiety leading to the formation of 3rd generation 
dendrimers with n-Co-PAMAM (n=4/8/16). The epoxidation 
reaction was carried out with both monomeric catalyst and the 
dendrimers catalyst. It was found that there was no conversion 
taking place after 40 hours of the reaction, whereas the dendrimers 
catalyst showed 50% conversion with recovery of starting material 
and >98% enantioselectivity (ee). Further increase in generation 
of dendrimers and employment of the same in the reaction 
showed higher ee with a lower conversion rate. In contrast to the 
kinetic resolution of epoxides by Jacobsen, Bhyrappa et al. did 
shape selective epoxidation using metalloporphyrin dendrimers 
[33,34]. A more accessible double bond in non-conjugated dienes 
is possible with higher generation along with higher yield using 
metalloporphyrin dendrimers in comparison to monomeric tetra 
phenyl porphyrin.

Mizugaki et al. in 1999 studied selective hydrogenation of 
dienes to monoenes using DAB-dendr-[N(CH2PPh2)2PdCl2]16
(DAB-dendr = 1,4-diaminobutane polyamino) [35]. The metaled 
dendrimers catalyst was synthesized by reaction of commercially 
available dendrimer DAB-dendr-(NH2)16 with Ph2PCH2OH. The 
terminal phosphines were complexed using [PdCl2(PhCN)2] to 
give Pd-metallodendrimer catalyst. The catalytic activity was 
considerably higher than the traditional monomeric catalyst 
PhN(CH2PPh2)2PdCl2. However, the dendrimer catalyst selectively 
hydrogenated cyclopentadiene to cyclopentene, whereas, the 
traditional catalyst hydrogenated both double bonds. However, 
the activity of dendrimer catalyst is lower than Pd/C or Pd/Al2O3, 
which is not reusable whereas the dendrimers catalyst can recover 
by centrifugation and could be reused with minor loss in its 
activity. The another metallodendrimer synthesized by Jayaram et 
al. with poly(alkyl-aryl-ether) core and phosphine terminal groups 
complexes using [Rh(COD)Cl2] (Figure 4) where a steady increase 
in TONs was observed with increasing generation [36]. Notably 
the highest TONs of 900 in a 60-minute cycle was recorded by 
the metalodendrimer catalyst whereas the monomeric catalyst 
reached only just 450 in 60 minutes. In a similar method Zhan et 
al. used the same core by combining with [Ru(COD)2][BF4] for 
asymmetric hydrogenation. The catalyst was reused five times 
with same enantioselectivity [37].
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Figure 4: Representative [Rh(COD)Cl2] complexed poly(alkyl-aryl-
ether) metallodendrimer.

In 2007 Scrimin et al. used ZnIII complexes of triazacy-
clononane functionalized DAB dendrimer as transphosphorylation 
catalyst for cleavage of RNA model substrate HPNPP [38] (Figure 5).

Figure 5: Representative structure of ZnIII complexes of triazacyclononane 
functionalized DAB dendrimer with two metal centers [38].

In summary, it could be stated that the metallodendrimers for 
catalysis is not confined to few examples represented. The poten-
tial application of dendrimers, metallodendrimers and bio-metallo-
dendrimers is impactful and extensive not only in catalysis but also 
in dendrimer based medicines, gene delivery, MRI agents, light 
emitting diodes, chemical sensors, molecular recognition, and as 
a biomemic agent. 
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