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Abstract
Water Resources Management (WRM) problems frequently possess inconsistent performance components and conflicting 

design requirements. Consequently, when solving complex WRM problems, it is often preferable to study a number of quantifiably 
good alternatives that encompass multiple, dissimilar perspectives. These alternatives need to satisfy the specified system 
performance criteria but be maximally different from each other in the decision space. The approach for creating maximally 
different sets of solutions is referred to as Modelling-to-Generate-Alternatives (MGA). Simulation-optimization approaches 
are frequently employed to solve computationally difficult problems containing significant stochastic uncertainties. This paper 
outlines a multicriteria MGA approach for WRM that can produce sets of maximally different alternatives for any simulation-
optimization method that employs a population-based solution algorithm. This algorithmic approach is computationally efficient 
because it simultaneously produces the prescribed number of maximally different solution alternatives in a single computational 
run of the procedure. The efficacy of this stochastic multicriteria MGA approach for creating alternatives is demonstrated using 
a “real world” water resource management planning case.

Keywords: Metaheuristics; Modelling-to-generate-alterna-
tives; Population-based algorithms; Simulation-Optimization; 
Water resources management

Introduction
Water resource managers have been challenged by difficult 

water allocation problems for many decades [1,2]. Implementing 
effective Water Resources Management (WRM) has proven to 
be notoriously antagonistic as inherent conflict between multiple 
industrial, agricultural, and municipal water-users has intensified. 
Declining water supplies together with increased population shifts 
have further diminished the inter-user relations. These aggravations 
exacerbate the hostilities when the natural conditions become more 
unpredictable as concern for water quantity and quality grows. Ill-
conceived water allocation schemes can increase into more serious 
conflicts under detrimental river-flow and changing climatic 
conditions. In the past, increasing demand for water was satisfied 
by the development of new water sources. However, the significant 
economic and environmental costs associated with developing new 
water sources have rendered this tactic unsustainable. Unlimited 

expansion of water sources is no longer the primary focus of 
WRM. Instead, for optimum WRM, the objective has become 
the improvement of existing water management by shaping water 
allocation techniques in a more equitable, environmentally-
benign, and efficient manner. However, these innovative strategy 
formulation approaches can prove extremely problematic, since 
many components of water systems possess extensive stochastic 
uncertainties. The prevalence of stochastic uncertainty renders 
most common decision-making approaches relatively unsuitable 
for practical WRM implementation.

Since water systems possess all of the characteristics 
connected with environmental planning, WRM has generally 
provided an ideal background for testing a wide range of decision 
support techniques used in environmental decision-making 
[3-5]. WRM decision-making frequently possesses incompatible 
and inconsistent design provisions that prove challenging to 
formulate into standard mathematical models [1-6]. This situation 
commonly occurs when final decisions must be constructed 
based not only upon clearly articulated specifications, but also 
upon environmental, political and socio-economic objectives 
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that are either fundamentally subjective or not clearly articulated 
[7-10]. While “Optimal” results can be explicitly calculated for 
the mathematical formulations, whether these represent the truly 
best courses-of-action to pursue for the “real” problem remains 
somewhat tentative. Moreover, in public policy formulation, 
it may never be possible to explicitly convey many of the 
subjective considerations because there are numerous competing, 
adversarial stakeholder groups holding diametrically opposed 
perspectives. Therefore, many of the subjective aspects remain 
unknown, unquantified and unmodelled in the construction of any 
corresponding decision models. WRM policy determination can 
become even more complex when the various system components 
contain considerable stochastic uncertainties [10]. Consequently, 
WRM policy formulation can be considered an extremely 
complicated and challenging enterprise [10,11].

Within WRM decision-making, there are routinely many 
stakeholder groups holding incongruent standpoints, essentially 
dictating that policy-makers need to construct decision frameworks 
that can somehow simultaneously reflect numerous irreconcilable 
viewpoints. In such situations, it is often more desirable to create 
a small number of dissimilar alternatives that provide dissimilar 
viewpoints for the particular problem [3,9]. These distinct 
solutions should be near-optimal when measured with respect to 
the quantified objective(s), but be maximally different from each 
other within the decision space. Several techniques collectively 
referred to as Modelling-to-Generate-Alternatives (MGA) have 
been created to address this multi-solution [6,7,9]. The fundamental 
impetus underlying MGA is to construct a set of alternatives that are 
“Good” with respect to the Stated objective(s), but fundamentally 
different from each other in the decision region. Decision-makers 
must then conduct a subsequent assessment of the alternatives 
to determine which Specific alternative(s) most closely achieve 
their specific goals. Therefore, MGA approaches are classified as 
decision support processes instead of solution creation methods as 
assumed in optimization.

The earliest MGA methods employed basic, incremental 
processes for creating their alternatives by iteratively re-running 
their procedures whenever a new solution needed to be constructed 
[6-10]. These iterative approaches replicated the seminal approach 
of Brill et al. [8] where, once an initial mathematical formulation 
had been optimized, all supplementary alternatives were produced 
one-at-a-time. These methods all employed n+1 iterations of their 
respective algorithms – initially to optimize the original problem, 
then to produce each of the n subsequent alternatives [9,11-18].

In this paper, it is demonstrated how a set of maximally 
different alternatives can be created by extrapolating several 
earlier MGA approaches into stochastic optimization [12-18]. 
The stochastic MGA process provides a method that can be 
deployed using any population-based solution algorithm. This 

process extends several earlier concurrent approaches [13-17] by 
permitting the simultaneous generation of n distinct alternatives in 
a single computational run. Consequently, to generate n maximally 
different alternatives, the algorithm runs exactly once irrespective 
of the value of n [19-23]. This data structure permits the solution 
generalization to all population-based solution algorithms. A 
multicriteria objective is employed that combines a novel data 
structure into the simultaneous solution approach to create an 
effective MGA approach. The use of this data structure permits 
the solution generalization to all population-based methods. 
Consequently, this stochastic, multicriteria MGA algorithmic 
approach proves to be extremely computationally efficient. The 
efficacy of this method for creating water resource alternatives 
is demonstrated by extending the MGA procedure to the “Real 
world” WRM optimization case study taken from [24,25].

Modelling to Generate Alternatives

Mathematical programming has focused almost exclusively 
on the construction of single optimal solutions to single-objective 
formulations or calculating sets of no inferior solutions for multi-
objective models [2,5,7]. Although these techniques supply 
resolutions to the mathematical models, whether these outputs 
are truly best for the underlying “Real” problems is less obvious 
[1,2,6,7]. Within most “Real world” decision-making environments, 
there are countless system requirements and objectives that will 
never be explicitly apparent or included in the model formulation 
stage [1,5]. In addition, most subjective components unavoidably 
remain unquantified and unmodelled in the models constructed. 
This regularly occurs where final decisions are constructed based 
not only on modelled objectives, but also on more subjective socio-
political-economic preferences and stakeholder goals [9]. Several 
incongruent modelling conditions are discussed in [6-8,10].

When unmodelled objectives and unquantified issues exist, 
non-traditional methods are needed to search the decision region 
for not only noninferior sets of solutions, but also alternatives 
that are plainly sub-optimal for the modelled problem. Namely, 
any search for alternatives to problems known or suspected to 
contain unmodelled components must concentrate not only on a 
non-inferior set of solutions, but also necessarily on an explicit 
exploration of the problem’s inferior solution space.

To illustrate the consequences of unquantified objectives, 
suppose that the optimal solution for a maximization problem is 
X* with objective value Z1* [26]. Assume an unmodelled second 
maximization objective Z2 exists that epitomises some “Politically 
acceptable” factor. Suppose that a 2-objective noninferior solution, 
Xa, exists representing the best compromise solution if both 
objectives could have been considered concurrently. While Xa 
would be the best solution to the real problem, in the mathematical 
model it would be considered inferior to X* because Z1a ≤  Z1*. 
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Thus, when unquantified components can somehow be incorporated 
into the decision-making process, mathematically inferior 
solutions could prove optimal to the underlying “Real” problem. 
Therefore, when unmodelled issues and unquantified objectives 
might exist, mathematically “Different” solution approaches are 
needed to not only search the decision domain for noninferior 
solutions, but also to simultaneously explore the decision domain 
for inferior solutions. Population-based search algorithms permit 
coordinated explorations throughout a solution space and prove to 
be particularly adept solution procedures.

The purpose of MGA is to produce a practicable set of 
alternatives that are quantifiably good with respect to all modelled 
objectives, yet as distinct from each other as possible within the 
decision region. In accomplishing this task, the resultant set of 
alternatives supplies truly different perspectives that perform 
similarly with respect to the known modelled objective(s) yet 
very differently with respect to potentially unmodelled aspects. 
By generating such good-but-different alternatives, the decision-
makers can then explore potentially desirable qualities within 
the solutions that might satisfy unmodelled objectives to varying 
degrees of stakeholder acceptability.

A formal mathematical representation is needed to 
characterize the MGA process [6,9]. Let the optimal solution to the 
original mathematical model be X* with corresponding objective 
value Z* = F(X*). A subsequent difference model can then be solved 
that produces an alternative solution, X, which can be considered 
maximally different from X*:

where ∆  denotes an appropriate difference function 
(shown in (1) as an absolute difference) and T represents some 
targeted tolerance relative to the original optimal objective Z*. 
T is a user-specified limit that regulates what proportion of the 
inferior region will be explored for satisfactory alternatives. The 
difference concept can be extrapolated to a difference function 
between sets of alternatives by replacing X* in the objective of the 
maximal difference model and calculating the overall minimum 
absolute difference (or some other function) between the pairwise 
comparisons of corresponding variables in each pair of alternatives 
– subject to the requirement that each alternative is feasible and 
falls within the specified tolerance constraint.

The subsequent population-based MGA procedure 
constructs sets of near-optimal, maximally different alternatives, 
by selectively altering the value of T and solving the resulting 

maximal difference problem by exploiting the population structure 
of the algorithm. Solution survival is contingent upon how well the 
solutions perform with respect to the problem’s originally modelled 
objective(s) and simultaneously by how far away they are from all 
of the other alternatives generated in the decision space.

Simulation-Optimization for Stochastic Optimization

Optimizing large problems is difficult when numerous 
stochastic uncertainties need to be combined directly into the 
solution procedures [26-29]. Simulation-Optimization (SO) is a 
widely categorized family of solution approaches that combines 
simulation with optimization for stochastic optimization [26]. In 
SO, simulation models in which the decision variables provide the 
settings under which simulation is performed replace all unknown 
objective functions, constraints, and parameters.

The fundamental phases of SO can be stated in the following 
manner [28,30]. Suppose an optimization problem contains n 

decision variables, iX , represented by X = [ 1X , 2X ,…, nX ]. If 
the objective function is designated by F and the feasible region 
is expressed as D, then the problem is to optimize F(X) subject to 
X ∈  D. Under stochastic conditions, the objective and constraint 
values can be calculated via simulation. A comparison between any 
two solutions X1 and X2 involves the calculation of some statistic 
of F modelled with X1 compared to the same statistic modelled 
with X2 [26,31]. These statistics are determined in a simulation 
model where each X provides the decision variable settings. While 
simulation can be used to compare results, it cannot determine 
the optimal solutions. Hence, stochastic optimization cannot be 
accomplished autonomously through simulation alone.

As all system measures in SO are stochastic, each solution, 
X, needs to be estimated by simulation. Since simulation is 
computationally intensive, an optimization component is required 
to direct the search through the problem’s solution domain using as 
few simulation runs as possible [29,31]. Because most stochastic 
problems possess numerous potential solutions, in general, 
extensive solution searches need to be made through all portions of 
the feasible domain. Hence, a stochastic SO method contains two 
alternating computational phases [32]. In phase 1, an “Evolutionary” 
component directed by some optimization method is employed. 
In phase 2, the solution values from phase 1 are calculated via 
simulation. Because of the stochastic components, all performance 
measures are statistics determined by the responses generated in 
the simulation phase. Namely, solution quality is found by the 
value of the performance criterion, F, determined in the simulation 
phase. After simulating each candidate solution, the corresponding 
objective values are returned to the evolutionary phase in order to 
construct the ensuing candidate solutions. Thus, the evolutionary 
phase directs the search toward improved solutions in subsequent 
generations by ensuring that the solution search does not become 
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stuck at local optima. After constructing new candidate solutions 
in the evolutionary phase, the new solution set is sent back to the 
simulation phase for comparative evaluation. The two-phase search 
process terminates when an appropriately static system state has 
been attained (i.e. an optimal solution). The optimal solution is 
the single best solution found throughout the entire search process 
[32].

It has been demonstrated that SO can be used as a very 
computationally intensive, stochastic MGA technique [31,33]. 
However, because of the very long computational runs, several 
approaches to accelerate the search times and solution quality 
of SO have been examined subsequently [30]. Population-based 
algorithms prove beneficial in SO as the solution set contained 
within their populations allow for simultaneous searches through 
multiple sections of the feasible region. A primary characteristic 
of population-based algorithms is that better solutions in a 
current population possess a greater likelihood for survival and 
progression into the subsequent population. The next section 
provides a population-based MGA algorithm that incorporates 
stochastic uncertainty using SO to much more efficiently generate 
sets of maximally different solution alternatives.

Multicriteria Population-Based Mga Computational 
Algorithm

In this section, a data structure is used to enable multicriteria 
MGA via any population-based algorithm [34-36]. Suppose that 
the aim is to produce P different alternatives with each solution 
consisting of n decision variables. The entire population contains 
K solutions in total. Thus, each solution in the population consists 
of one entire set of P maximally different alternatives. Let Yk, k = 
1,…, K, represent the kth solution which consists of one complete 
set of P different alternatives. Specifically, if Xkp corresponds to 
the pth alternative, p = 1,…, P, of solution k, k = 1,…, K, then Yk 
can be written as

If Xkjq, q = 1,…, n, is the qth variable in the jth alternative of solution 
k, then 

Therefore, the entire population, Y, consisting of K different sets of 
P alternatives, can be written as the vector,

The following multicriteria population-based MGA 
algorithm produces a pre-determined number of near-optimal, 
but maximally different alternatives, by modifying the value of 

the bound T in equation (3) of the maximal difference model and 
using a population-based method to solve the corresponding, 
maximal difference problem. Each solution, Yk, k = 1,…, K, in the 
population encompasses one entire set of p different alternatives. 
By exploiting the co-evolutionary characteristics of the algorithm, 
the procedure evolves each solution, Yk, toward sets of dissimilar 
local optima within the solution space. In the procedure, each 
solution alternative, Yk, undergoes the search steps of the 
algorithm. Solution survival depends upon both upon how well the 
solutions perform with respect to the modelled objective(s) and by 
how far apart they are from every other alternative in the decision 
domain.

A simple course for generating alternatives incrementally 
solves the maximum difference model by iterating the value 
of the target T when a new alternative needs to be formed and 
then re-solving the resulting model [34]. This straightforward 
MGA approach matches the seminal Hop, Skip, and Jump (HSJ) 
algorithm [7] where the alternatives are created one-at-a-time 
through the incremental adjustment of the target constraint. While 
this approach is straightforward, it entails a repetitive execution of 
the optimization algorithm [9,12,13]. To advance the HSJ process, 
Imanirad et al. [13-15] designed a concurrent MGA approach 
employing co-evolution. In the co-evolutionary technique, pre-
specified stratified subpopulation ranges within an algorithm’s 
overall population are established that collectively evolve the search 
toward the specified number of maximally different alternatives. 
Each desired solution alternative is represented by each respective 
subpopulation and each subpopulation undergoes the common 
processing operations of the procedure. The survival of solutions 
in each subpopulation depends simultaneously upon how well the 
solutions perform with respect to the modelled objective(s) and by 
how far away they are from all of the other alternatives. Thus, the 
evolution of solutions in each subpopulation toward local optima is 
directly influenced by those solutions contained in all of the other 
subpopulations, which forces the concurrent co-evolution of each 
subpopulation towards good but maximally distant regions within 
the decision space according to the maximal difference model [9]. 
Co-evolution is also much more efficient than a sequential HSJ-
style approach in that it exploits the inherent population-based 
searches to concurrently generate the entire set of maximally 
different solutions using only a single population [12,16].

While concurrent approaches can exploit population-
based procedures, co-evolution only occurs in each stratified 
subpopulation. Consequently, the maximal differences between 
solutions in different subpopulations must depend on aggregated 
subpopulation measures. Conversely, in the subsequent algorithm, 
each solution in the population consists of an entire set of alternatives 
and maximal difference is calculated only for that specific solution 
(i.e. the particular set of alternatives contained within that 



Citation: Yeoman JS (2019) Water Resource Management Using Stochastic Multicriteria Population-Based Algorithms for Producing Alternatives. J Earth Environ Sci 
7: 179. DOI: 10.29011/2577-0640.100179

5 Volume 3: Issue 02

J Earth Environ Sci, an open access journal

ISSN: 2577-0640

specific solution of the population). Hence, by the evolutionary 
characteristics of population-based search procedure, in the 
subsequent approach, the maximal difference is simultaneously 
calculated for the specific set of alternatives considered within 
each specific solution - and the need for concurrent subpopulation 
aggregation measures is circumvented.

Using the data structure terminology, the steps for the multicriteria 
population-based, stochastic MGA algorithm are as follows (see 
also: [18-23,34-38]). It should be readily apparent, however, that 
the stratification approach employed by this method can be easily 
modified to enable solution by any population-based algorithm 
[37].

Initialization Step. Solve the original optimization problem to find 
its optimal solution, X*. Based upon the objective value F(X*), 
establish P target values. P represents the desired number of 
maximally different alternatives to be generated within prescribed 
target deviations from X*. Note: The value for P has to have been 
set a priori by the decision-maker.

Without loss of generality, it is possible to forego this step and 
to use the algorithm to find X* as part of its solution processing 
in the subsequent steps. However, this can significantly increase 
the number of iterations of the computational procedure and the 
initial stages of the processing become devoted to finding X* while 
the other elements of each population solution are retained as 
essentially “computational overhead”.

Step 1: Create an initial population of size K where each solution 
contains P equally-sized partitions. The partition size corresponds 
to the number of decision variables in the original optimization 
problem. Xkp represents the pth alternative, p = 1,…,P, in solution 
Yk, k = 1,…,K.

Step 2: In each of the K solutions, evaluate each Xkp, p = 1,…,P, 
using the simulation module with respect to the modelled objective. 
Alternatives meeting their target constraint and all other problem 
constraints are designated as feasible, while all other alternatives 
are designated as infeasible. A solution can only be designated as 
feasible if all of the alternatives contained within it are feasible.

Step 3: Apply an appropriate elitism operator to each solution 
to rank order the best individuals in the population. The best 
solution is the feasible solution containing the most distant set 
of alternatives in the decision space (the distance measures are 
defined in Step 5).

Note: Because the best solution to date is always retained in the 
population throughout each iteration, at least one solution will 
always be feasible. A feasible solution for the first step can always 
consist of P repetitions of X*.

Step 4: Stop the algorithm if the termination criteria (such as 

maximum number of iterations or some measure of solution 
convergence) are met. Otherwise, proceed to Step 5.

Step 5: For each solution Yk, k = 1,…, K, calculate R Max-Min 
and/or Max-Sum distance measures, Dr

k, r = 1,…, R, between all 
of the alternatives contained within the solution.

As an illustrative example for calculating the multicriteria 
distance measures, compute

 
D1

k denotes the minimum absolute distance, D2
k represents the 

overall absolute deviation, and D3
k represents the overall quadratic 

deviation between all of the alternatives contained within solution 
k. 

Alternatively, the distance functions could be calculated by 
some other appropriately defined function.

Step 6: Let Dk = G(D1
k, D

2
k, D

3
k,…, DR

k) represent the multicriteria 
objective for solution k. Rank the solutions according to the distance 
measure Dk objective – appropriately adjusted to incorporate any 
constraint violation penalties for infeasible solutions. The goal 
of maximal difference is to force alternatives to be as far apart 
as possible in the decision space from the alternatives of each of 
the partitions within each solution This step orders the specific 
solutions by those solutions which contain the set of alternatives 
which are most distant from each other.

Step 7: Apply applicable algorithmic “Change operations” to each 
solution within the population and return to Step 2.

Water Resources Management Case Study

Water resources problems often contain significant 
stochastic uncertainties. Under such circumstances, WRM 
decision-makers prefer to select from a set of contrasting, “near 
best” alternatives that differ from each other in terms of the system 
structures provided by their decision variables. The efficacy of the 
multicriteria population-based MGA procedure will be illustrated 
using a WRM case taken from [24,25]. While this section briefly 
summarizes the case, more explicit details, data, and descriptions 
can be found in [24,25,36,39-42].

Earlier studies [24,25] considered a WRM problem for 
allocating water in a dry season from an unregulated reservoir 
to three distinct user classes: (i) An industrial concern, (ii) an 
agricultural sector, and (iii) a municipality (see Figure 1). The 
industrial and agricultural segments were in a period of significant 
capital expansion and wanted to establish the water allocation 
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levels to which they were entitled. If insufficient water quantities 
were available, these sectors would be forced to curb their planned 
expansions. If adequate supplies of water could be delivered, 
this would contribute positive net benefits to the local economy. 
However, if sufficient water could not be guaranteed, net benefits 
provided by the users would be curtailed.

Figure 1: Schematic of Water-Allocation to Multiple Users.

In the region, the water demands have been increasing 
temporally due to economic expansion and population growth. 
Because of this, it is necessary to establish where the different water 
users stand by supplying sufficient information to make decisions 
regarding various investments and activity levels. For example, 
industries are not likely to develop water intensive projects if they 
know, a priori, that water consumption will need to be limited. 
Similarly, farmers aware that there is only a small chance of 
receiving sufficient water during a dry season are unlikely to 
undertake major investments in irrigation infrastructure. If needed 
water cannot be delivered due to insufficiency, the users will have 
to either curtail their development plans or obtain water from more 
expensive alternate sources. (Tables 1 and 2) show the related water 
resources and economic data [24,25]. For example, municipal 
residents may have to restrict the watering of lawns, industries may 
have to increase water recycling rates or reduce production levels, 
and farmers may not be able to irrigate as planned. These impacts 
will result in increased costs or decreased benefits in relation to 
the regional development. Thus, it is necessary that the available 
water be effectively allocated to minimize any associated penalties. 
The problem can be formulated as maximizing the expected net 
system benefits. Based upon local water management policies, a 
quantity of water can be pre-defined for each user. If this quantity 
is delivered, it will result in net benefits; however, if it cannot be 
delivered, the system will be subject to some form of penalties. 

Activity	 / User	
Municipal

(i = 1)

Industrial

(i = 2)	

Agricultural

(i = 3)

Maximum allowable 

allocation ( ±
i maxW )

7 7 7

Water allocation 

target ( ±
iW )

[1.5, 2.5] [2.0, 4.0] [3.5, 6.5]

Net benefit when 
water 

demand is satisfied (

±
iB )

[90, 110] [45, 55] [28, 32]

Reduction of net 
benefit when 

demand is not 

delivered ( ±
iC )

[220, 280] [60, 90] [50, 70]

Table 1 Allowable Water Allocations (m3 Millions) and Related 
Economic Data ($ Millions)

Activity / Flow 
level Low (j = 1) Medium (j = 2) High (j = 3)

Seasonal flow 

rate ( ±
jq )

[3.2, 4.8] [ 7, 13]
[ 14, 20]]

Probability (pj) 0.2 0.6 0.2

Table 2 Streamflow Distribution (m3 Millions) and the Associated 
Probabilities.

Consequently, under the conditions of uncertainty, the 
primary decisions are: (i) how to efficiently apportion water to 
each of the three sectors to maximize the anticipated net benefits; 
and, (ii) how to establish the water policies (in terms of allowable 
amounts) with the least risk of system disruption. Within these 
decisions is a determination of which one of the many pathways 
that the water would need to flow through to reach the users. In 
addition, it is possible to subdivide the various water streams, 
with each substream sent to a different user. Since cost differences 
from operating the facilities at different capacity levels produce 
economies of scale, decisions have to be made to determine how 
much water should be sent along each flow pathway to each user 
type. Thus, any individual policy entails a combination of many 
decisions regarding which facilities were allocated water and 
the quantities of water that would be directed to each user type. 
These decisions are further complicated by prevailing system 
uncertainties vis-à-vis the seasonal water flows together with their 
corresponding likelihoods.
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The WRM authority is responsible for allocating water to 
each of the municipality, the industrial concerns, and the agricultural 
sector. As the quantity of stream flows from the reservoir are 
uncertain, the problem is formulated as a stochastic programming 
problem. This stochastic programming model can account for the 
uncertainties in water availability. However, uncertainties may 
also exist in other parameters such as benefits, costs and water-
allocation targets. In the formulation, penalties are imposed when 
policies that have been expressed as targets are violated. Also, 
within the model, any uncertain parameter A is represented by 

A±  and its corresponding values are generated via probability 
distributions. To reflect all of these uncertainties, the following 
stochastic programming model was constructed by [25]:

In this formulation f ±  represents the net system benefit ($/

m3) and iB±  represents the net benefit to user i per m3 of water 

allocated ($). iW ±  is the fixed allocation amount (m3) for water 

that is promised to user i, while maxiW ±  is the maximum allowable 
amount (m3) that can be allocated to user i. The loss to user i per 

m3 of water not delivered is given by iC± , where Ci > Bi ($). ijS ±

corresponds to the shortage of water, which is the amount (m3) by 

which Wi is not met when the seasonal flow is qj. jq±  is the amount 
(m3) of seasonal flow with pj probability of occurrence under j flow 
level, where pj provides the probability (%) of occurrence of flow 
level j. The variable i, i = 1, 2, 3, designates the water user, where 
i = 1 for municipal, 2 for industrial, and 3 for agricultural. The 
value of j, j = 1, 2, 3, is used to delineate the flow level, where j = 1 
represents low flows, 2 represents medium flows, and 3 represents 
high flows. Finally, m is the total number of water users and n is 
the total number of flow levels.

Using this stochastic formulation, the WRM problem is to 
effectively assign the water to the three user groups to maximize 
the overall net benefits and to incorporate water policies in terms 
of determining permissible amounts with the least risk for causing 
system disruption. By representing the stochastic uncertainties 
as probability distributions, interval estimates, and uncertainty 

membership functions, Maqsood et al. [25] constructed a solution 
to the WRM problem with an overall net benefit of $2.02 million.

While knowing the optimal solution to the mathematical 
model establishes an important quantitative benchmark, WRM 
planners faced with difficult and potentially controversial choices 
generally tend to prefer to choose from a set of near-optimal 
alternatives that differ significantly from each other in terms of their 
system structures. To create such planning options for the WRM 
system, one approach would be to place extra target constraints 
into the mathematical model to force solutions that were different 
from the one initially determined by optimization. For example, 
suppose that five additional planning alternative options were 
created through the inclusion of a technical constraint on the 
objective function that decreased the total system benefits of the 
original model from 2% up to 10% in increments of 2%. By adding 
these incremental target constraints to the original SO model and 
sequentially re-solving the problem an additional 5 times, it would 
be possible to construct the specific number of alternative policies 
for WRM planning.

Rather than running five additional, separate instances of the 
computationally intensive SO procedure to create these solutions, 
the multicriteria population-based MGA algorithm from the 
previous section was run a single time to produce the requisite 
additional alternatives. (Figure 2) shows a schematic layout 
showing how the MGA approach is applied to the WRM case and 
(Table 3) provides the overall system benefits for the 5 maximally 
different options generated.

Figure 2: Schematic of the Multicriteria MGA Methodology 
Applied to WRM Case.
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Maximally Different Solutions
WRM System Benefits

($ Millions)
Best Solution Overall 2.02

Best Solution Within 2% 1.99
Best Solution Within 4% 1.96

Best Solution Within 6% 1.91

Best Solution Within 8% 1.86

Best Solution Within 10% 1.79

Table 3: System Benefits ($ Millions) for 6 Maximally Different 
Alternatives.

(Table 4) shows the actual water allocation values obtained 
for the overall best solution determined under optimized water-
allocation targets. It can be observed that solutions for the objective 
function value and most of the non-zero decision variables related 
to the agricultural and industrial water can occur over an interval 
range, while those related to municipal water use are explicit 
deterministic values. In case of insufficient water supply, allocation 
should firstly be guaranteed to the municipality, secondly to the 
industry, and lastly to the agriculture. This is because municipal 
use provides the highest benefit when water demand is satisfied 
and is subject to the highest penalty if the promised water is not 
delivered; whereas, the industrial and agricultural uses correspond 
to lower benefits and penalties.

Activity/ User
Municipal

(i = 1)

Industrial

(i = 2)

Agricultural

(i = 3)

Target ( ±
iW )

2.5 4.0 4.6

Shortage ( ±
ijS ) under a flow level of:

Low (j = 1)

Medium  (j = 2)

High (j = 3)

0

0

0

[2.1, 2.7]

0

0

4.6

[0, 1.7]

0

Allocation (under a flow level of:

Low (j = 1)

Medium (j = 2)

High (j = 3)

2.5

2.5

2.5

[1.3, 1.9]

4.0

4.0

0

[2.9, 4.6]

4.6

Net benefit ($ Millions) ±f  = 2.02

Table 4: Best Water Allocations Under Optimized Water-Allocation Targets (m3 Millions).

(Table 5) contrasts alternative options under different water-
allocation schemes. The best solution within 2% alternative 
would correspond to the situation in which the WRM manager 
is essentially optimistic regarding water availability. Thus, a plan 
with both higher shortage and higher allocation is generated, 
where risks of water insufficiency may exist but the net benefit is 
quite considerable. This leads to a plan with both lower shortage 
and lower allocation, but a higher risk of wasting available water. 

For the best solution within 6%, the resulting plan will be effective 
in high-runoff years when all targeted water demands can be 
delivered, but becomes riskier under low-runoff conditions due 
to the deficit of water availability and the relevant penalties. The 
solution corresponds to a situation in which water availability falls 
somewhere in-between conservative and optimistic conditions. 
Conversely, the best solution within 10% represents a situation in 
which the manager is pressured to be conservative regarding the 
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water availability and, therefore, must allocate essentially lower bound target values to all users.

Best Solution Within 2% Best Solution Within 6% Best Solution Within 10%

Municipal Industrial Agricultural Municipal Industrial Agricultural Municipal Industrial Agricultural

Target (

±
iW )

1.5 2.0 3.5 2.5 4.0 6.5 2.0 3.0 5.0

Shortage (

±
ijS ):

j =1

j =2

j =3

0

0

0

0

0

0

[2.6, 2.94]

0

0

0

0

0

[2.1, 2.9]

0

0

6.5

[1.8, 4.2]

0

0

0

0

[0.6, 1.4]

0

0

5.0

[0, 1.2]

0

Allocation          

( ±
ijA ):

j =1

j =2

j =3

1.5

1.5

1.5

2.0

2.0

2.0

[0.56, 0.9]

3.5

3.5

2.5

2.5

2.5

[1.1, 1.9]

4.0

4.0

0

[2.3, 4.7]

6.5

2.0

2.0

2.0

[1.6, 2.4]

3.0

3.0

0

[3.8, 5.0]

5.0

Net Benefit      
($ Millions) $1.99 $ 1.91 $ 1.79

 Table 5: Alternative Solutions Under Different Water-Allocations (m3 Millions).

Irrespective of the final decision, given the performance 
bounds established for each problem alternative, the WRM policy-
makers can be confident in the stated performance objective of 
each option while simultaneously recognizing that they are 
as structurally different from each other as feasibly possible. 
Therefore, if there might be stakeholders holding diametrically 
opposing standpoints, the decision-makers can contrast the options 
without being myopically constrained by any dominant perspective 
based exclusively on objective value.

The WRM case illustrates several important characteristics 
with respect to the multicriteria MGA algorithm: (i) Population-
based procedures can be effectively used as the fundamental 
optimization search method in SO routines; (ii) Population-
based MGA solution searches can concurrently create more good 
alternatives than planners could construct using other approaches; 
(iii) Because of the structure of the MGA algorithm, the alternatives 
generated are good for planning purposes since all of their solutions 
are guaranteed to be as maximally different from each other as 
possible; (iv) Because the procedure needs to run only once to 
generate its entire set of multiple, good solution alternatives, it is 
very computationally efficient (i.e. the algorithm runs exactly once 
to generate n maximally different solution alternatives, irrespective 

of the value of n); and, (v) The best overall solution produced 
by the multicriteria MGA procedure will be identical to the best 
solution produced by function optimization alone.

Conclusions
Water resource management problems contain 

multidimensional performance specifications which inevitably 
include incongruent performance components and unquantifiable 
modelling features. These problems often possess incompatible 
design specifications which are impossible to completely 
incorporate into the supporting decision models. Consequently, 
there are unmodelled problem components, generally not apparent 
during model construction, that can significantly influence the 
acceptability of any model’s solutions. These competing and 
ambiguous components force WRM decision-makers to incorporate 
many conflicting requirements into their decision process prior to 
the final solution determination. Consequently, water management 
decision-makers generally prefer to select from a set of distinct 
planning perspectives.

This paper has applied a stochastic, multicriteria population-
based MGA procedure to WRM planning. This computationally 
efficient MGA approach establishes how population-based 
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algorithms can simultaneously construct entire sets of near-optimal, 
maximally different alternatives by exploiting the evolutionary 
characteristics of population-based solution algorithms. In this 
MGA role, the multicriteria objective can efficiently generate the 
requisite set of dissimilar alternatives, with each generated solution 
providing an entirely different perspective to the problem. Since 
population-based procedures can be applied to a wide range of 
problem types, the practicality of this multicriteria MGA approach 
can be extended to wide array of “real world” environmental 
applications beyond WRM settings. These extensions will be 
considered in future studies.
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