&

GAVIN PUBLISHERS

Research Article

OPENaACCESS

Journal of Earth and Environmental Sciences

Yeomans JS. J Earth Environ Sci 7: 179.
DOI: 10.29011/2577-0640.100179

Water Resource Management Using Stochastic Multicriteria
Population-Based Algorithms for Producing Alternatives

Julian Scott Yeomans®

OMIS Area, Schulich School of Business, York University, Canada

“Corresponding author: Julian Scott Yeomans, OMIS Area, Schulich School of Business, York University, Canada. Tel:

+14167365074; Email: syeomans@schulich.yorku.ca

Citation: Yeoman JS (2019) Water Resource Management Using Stochastic Multicriteria Population-Based Algorithms for Produc-
ing Alternatives. J Earth Environ Sci 7: 179. DOI: 10.29011/2577-0640.100179

Received Date: 09 November, 2019; Accepted Date: 16 November, 2019; Published Date: 21 November, 2019

/Abstract

a “real world” water resource management planning case.

N

Water Resources Management (WRM) problems frequently possess inconsistent performance components and conflicting
design requirements. Consequently, when solving complex WRM problems, it is often preferable to study a number of quantifiably
good alternatives that encompass multiple, dissimilar perspectives. These alternatives need to satisfy the specified system
performance criteria but be maximally different from each other in the decision space. The approach for creating maximally
different sets of solutions is referred to as Modelling-to-Generate-Alternatives (MGA). Simulation-optimization approaches
are frequently employed to solve computationally difficult problems containing significant stochastic uncertainties. This paper
outlines a multicriteria MGA approach for WRM that can produce sets of maximally different alternatives for any simulation-
optimization method that employs a population-based solution algorithm. This algorithmic approach is computationally efficient
because it simultaneously produces the prescribed number of maximally different solution alternatives in a single computational
run of the procedure. The efficacy of this stochastic multicriteria MGA approach for creating alternatives is demonstrated using

~
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Introduction

Water resource managers have been challenged by difficult
water allocation problems for many decades [1,2]. Implementing
effective Water Resources Management (WRM) has proven to
be notoriously antagonistic as inherent conflict between multiple
industrial, agricultural, and municipal water-users has intensified.
Declining water supplies together with increased population shifts
have further diminished the inter-user relations. These aggravations
exacerbate the hostilities when the natural conditions become more
unpredictable as concern for water quantity and quality grows. Ill-
conceived water allocation schemes can increase into more serious
conflicts under detrimental river-flow and changing climatic
conditions. In the past, increasing demand for water was satisfied
by the development of new water sources. However, the significant
economic and environmental costs associated with developing new
water sources have rendered this tactic unsustainable. Unlimited

expansion of water sources is no longer the primary focus of
WRM. Instead, for optimum WRM, the objective has become
the improvement of existing water management by shaping water
allocation techniques in a more equitable, environmentally-
benign, and efficient manner. However, these innovative strategy
formulation approaches can prove extremely problematic, since
many components of water systems possess extensive stochastic
uncertainties. The prevalence of stochastic uncertainty renders
most common decision-making approaches relatively unsuitable
for practical WRM implementation.

Since water systems possess all of the characteristics
connected with environmental planning, WRM has generally
provided an ideal background for testing a wide range of decision
support techniques used in environmental decision-making
[3-5]. WRM decision-making frequently possesses incompatible
and inconsistent design provisions that prove challenging to
formulate into standard mathematical models [1-6]. This situation
commonly occurs when final decisions must be constructed
based not only upon clearly articulated specifications, but also
upon environmental, political and socio-economic objectives
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that are either fundamentally subjective or not clearly articulated
[7-10]. While “Optimal” results can be explicitly calculated for
the mathematical formulations, whether these represent the truly
best courses-of-action to pursue for the “real” problem remains
somewhat tentative. Moreover, in public policy formulation,
it may never be possible to explicitly convey many of the
subjective considerations because there are numerous competing,
adversarial stakeholder groups holding diametrically opposed
perspectives. Therefore, many of the subjective aspects remain
unknown, unquantified and unmodelled in the construction of any
corresponding decision models. WRM policy determination can
become even more complex when the various system components
contain considerable stochastic uncertainties [10]. Consequently,
WRM policy formulation can be considered an extremely
complicated and challenging enterprise [10,11].

Within WRM decision-making, there are routinely many
stakeholder groups holding incongruent standpoints, essentially
dictating that policy-makers need to construct decision frameworks
that can somehow simultaneously reflect numerous irreconcilable
viewpoints. In such situations, it is often more desirable to create
a small number of dissimilar alternatives that provide dissimilar
viewpoints for the particular problem [3,9]. These distinct
solutions should be near-optimal when measured with respect to
the quantified objective(s), but be maximally different from each
other within the decision space. Several techniques collectively
referred to as Modelling-to-Generate-Alternatives (MGA) have
been created to address this multi-solution [6,7,9]. The fundamental
impetus underlying MGA is to construct a set of alternatives that are
“Good” with respect to the Stated objective(s), but fundamentally
different from each other in the decision region. Decision-makers
must then conduct a subsequent assessment of the alternatives
to determine which Specific alternative(s) most closely achieve
their specific goals. Therefore, MGA approaches are classified as
decision support processes instead of solution creation methods as
assumed in optimization.

The earliest MGA methods employed basic, incremental
processes for creating their alternatives by iteratively re-running
their procedures whenever a new solution needed to be constructed
[6-10]. These iterative approaches replicated the seminal approach
of Brill et al. [8] where, once an initial mathematical formulation
had been optimized, all supplementary alternatives were produced
one-at-a-time. These methods all employed #n+1 iterations of their
respective algorithms — initially to optimize the original problem,
then to produce each of the n subsequent alternatives [9,11-18].

In this paper, it is demonstrated how a set of maximally
different alternatives can be created by extrapolating several
earlier MGA approaches into stochastic optimization [12-18].
The stochastic MGA process provides a method that can be
deployed using any population-based solution algorithm. This

process extends several earlier concurrent approaches [13-17] by
permitting the simultaneous generation of n distinct alternatives in
a single computational run. Consequently, to generate » maximally
different alternatives, the algorithm runs exactly once irrespective
of the value of n [19-23]. This data structure permits the solution
generalization to all population-based solution algorithms. A
multicriteria objective is employed that combines a novel data
structure into the simultaneous solution approach to create an
effective MGA approach. The use of this data structure permits
the solution generalization to all population-based methods.
Consequently, this stochastic, multicriteria MGA algorithmic
approach proves to be extremely computationally efficient. The
efficacy of this method for creating water resource alternatives
is demonstrated by extending the MGA procedure to the “Real
world” WRM optimization case study taken from [24,25].

Modelling to Generate Alternatives

Mathematical programming has focused almost exclusively
on the construction of single optimal solutions to single-objective
formulations or calculating sets of no inferior solutions for multi-
objective models [2,5,7]. Although these techniques supply
resolutions to the mathematical models, whether these outputs
are truly best for the underlying “Real” problems is less obvious
[1,2,6,7]. Within most “Real world” decision-making environments,
there are countless system requirements and objectives that will
never be explicitly apparent or included in the model formulation
stage [1,5]. In addition, most subjective components unavoidably
remain unquantified and unmodelled in the models constructed.
This regularly occurs where final decisions are constructed based
not only on modelled objectives, but also on more subjective socio-
political-economic preferences and stakeholder goals [9]. Several
incongruent modelling conditions are discussed in [6-8,10].

When unmodelled objectives and unquantified issues exist,
non-traditional methods are needed to search the decision region
for not only noninferior sets of solutions, but also alternatives
that are plainly sub-optimal for the modelled problem. Namely,
any search for alternatives to problems known or suspected to
contain unmodelled components must concentrate not only on a
non-inferior set of solutions, but also necessarily on an explicit
exploration of the problem’s inferior solution space.

To illustrate the consequences of unquantified objectives,
suppose that the optimal solution for a maximization problem is
X" with objective value ZI* [26]. Assume an unmodelled second
maximization objective Z2 exists that epitomises some “Politically
acceptable” factor. Suppose that a 2-objective noninferior solution,
X, exists representing the best compromise solution if both
objectives could have been considered concurrently. While X“
would be the best solution to the real problem, in the mathematical

model it would be considered inferior to X* because Z/® < ZI".
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Thus, whenunquantified components can somehow be incorporated
into the decision-making process, mathematically inferior
solutions could prove optimal to the underlying “Real” problem.
Therefore, when unmodelled issues and unquantified objectives
might exist, mathematically “Different” solution approaches are
needed to not only search the decision domain for noninferior
solutions, but also to simultaneously explore the decision domain
for inferior solutions. Population-based search algorithms permit
coordinated explorations throughout a solution space and prove to
be particularly adept solution procedures.

The purpose of MGA is to produce a practicable set of
alternatives that are quantifiably good with respect to all modelled
objectives, yet as distinct from each other as possible within the
decision region. In accomplishing this task, the resultant set of
alternatives supplies truly different perspectives that perform
similarly with respect to the known modelled objective(s) yet
very differently with respect to potentially unmodelled aspects.
By generating such good-but-different alternatives, the decision-
makers can then explore potentially desirable qualities within
the solutions that might satisfy unmodelled objectives to varying
degrees of stakeholder acceptability.

A formal mathematical representation is needed to
characterize the MGA process [6,9]. Let the optimal solution to the
original mathematical model be X* with corresponding objective
value Z" = F(X"). A subsequent difference model can then be solved
that produces an alternative solution, X, which can be considered
maximally different from X"

Maxitmize A (X,X%)= Min | - X*| )
Subject to: X:D )
|F(X)-Z%| <T (3)

where /A denotes an appropriate difference function
(shown in (1) as an absolute difference) and 7 represents some
targeted tolerance relative to the original optimal objective Z.
T is a user-specified limit that regulates what proportion of the
inferior region will be explored for satisfactory alternatives. The
difference concept can be extrapolated to a difference function
between sets of alternatives by replacing X" in the objective of the
maximal difference model and calculating the overall minimum
absolute difference (or some other function) between the pairwise
comparisons of corresponding variables in each pair of alternatives
— subject to the requirement that each alternative is feasible and
falls within the specified tolerance constraint.

The subsequent population-based MGA procedure
constructs sets of near-optimal, maximally different alternatives,
by selectively altering the value of 7 and solving the resulting

maximal difference problem by exploiting the population structure
of the algorithm. Solution survival is contingent upon how well the
solutions perform with respect to the problem’s originally modelled
objective(s) and simultaneously by how far away they are from all
of the other alternatives generated in the decision space.

Simulation-Optimization for Stochastic Optimization

Optimizing large problems is difficult when numerous
stochastic uncertainties need to be combined directly into the
solution procedures [26-29]. Simulation-Optimization (SO) is a
widely categorized family of solution approaches that combines
simulation with optimization for stochastic optimization [26]. In
SO, simulation models in which the decision variables provide the
settings under which simulation is performed replace all unknown
objective functions, constraints, and parameters.

The fundamental phases of SO can be stated in the following
manner [28,30]. Suppose an optimization problem contains n

decision variables, X, represented by X=[X,, X,,..., X 1. If
the objective function is designated by F and the feasible region
is expressed as D, then the problem is to optimize F(X) subject to
X € D. Under stochastic conditions, the objective and constraint
values can be calculated via simulation. A comparison between any
two solutions X7 and X2 involves the calculation of some statistic
of F modelled with X7 compared to the same statistic modelled
with X2 [26,31]. These statistics are determined in a simulation
model where each X provides the decision variable settings. While
simulation can be used to compare results, it cannot determine
the optimal solutions. Hence, stochastic optimization cannot be
accomplished autonomously through simulation alone.

As all system measures in SO are stochastic, each solution,
X, needs to be estimated by simulation. Since simulation is
computationally intensive, an optimization component is required
to direct the search through the problem’s solution domain using as
few simulation runs as possible [29,31]. Because most stochastic
problems possess numerous potential solutions, in general,
extensive solution searches need to be made through all portions of
the feasible domain. Hence, a stochastic SO method contains two
alternating computational phases [32]. Inphase 1, an “Evolutionary”
component directed by some optimization method is employed.
In phase 2, the solution values from phase 1 are calculated via
simulation. Because of the stochastic components, all performance
measures are statistics determined by the responses generated in
the simulation phase. Namely, solution quality is found by the
value of the performance criterion, F, determined in the simulation
phase. After simulating each candidate solution, the corresponding
objective values are returned to the evolutionary phase in order to
construct the ensuing candidate solutions. Thus, the evolutionary
phase directs the search toward improved solutions in subsequent
generations by ensuring that the solution search does not become
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stuck at local optima. After constructing new candidate solutions
in the evolutionary phase, the new solution set is sent back to the
simulation phase for comparative evaluation. The two-phase search
process terminates when an appropriately static system state has
been attained (i.e. an optimal solution). The optimal solution is
the single best solution found throughout the entire search process
[32].

It has been demonstrated that SO can be used as a very
computationally intensive, stochastic MGA technique [31,33].
However, because of the very long computational runs, several
approaches to accelerate the search times and solution quality
of SO have been examined subsequently [30]. Population-based
algorithms prove beneficial in SO as the solution set contained
within their populations allow for simultaneous searches through
multiple sections of the feasible region. A primary characteristic
of population-based algorithms is that better solutions in a
current population possess a greater likelihood for survival and
progression into the subsequent population. The next section
provides a population-based MGA algorithm that incorporates
stochastic uncertainty using SO to much more efficiently generate
sets of maximally different solution alternatives.

Multicriteria Mga

Algorithm

Population-Based Computational

In this section, a data structure is used to enable multicriteria
MGA via any population-based algorithm [34-36]. Suppose that
the aim is to produce P different alternatives with each solution
consisting of n decision variables. The entire population contains
K solutions in total. Thus, each solution in the population consists
of one entire set of 7 maximally different alternatives. Let ¥, k =
1,..., K, represent the k" solution which consists of one complete
set of P different alternatives. Specifically, if X, corresponds to
the p™ alternative, p = 1,..., P, of solution k, k = 1,..., K, then Y,
can be written as

Yi=[Xo. Xu2..... Xir] . 4)

If Xqu’ q=1,..., n,is the ¢" variable in the j” alternative of solution
k, then
Xig = (X1, Mgz, Xign) - (3)

Therefore, the entire population, ¥, consisting of K different sets of
P alternatives, can be written as the vector,

YV=[¥.¥...¥]. (6)
The following multicriteria population-based MGA

algorithm produces a pre-determined number of near-optimal,

but maximally different alternatives, by modifying the value of

the bound 7 in equation (3) of the maximal difference model and
using a population-based method to solve the corresponding,
maximal difference problem. Each solution, ¥,, k= 1,..., K, in the
population encompasses one entire set of p different alternatives.
By exploiting the co-evolutionary characteristics of the algorithm,
the procedure evolves each solution, ¥, toward sets of dissimilar
local optima within the solution space. In the procedure, each
solution alternative, ¥,, undergoes the search steps of the
algorithm. Solution survival depends upon both upon how well the
solutions perform with respect to the modelled objective(s) and by
how far apart they are from every other alternative in the decision
domain.

A simple course for generating alternatives incrementally
solves the maximum difference model by iterating the value
of the target 7" when a new alternative needs to be formed and
then re-solving the resulting model [34]. This straightforward
MGA approach matches the seminal Hop, Skip, and Jump (HSJ)
algorithm [7] where the alternatives are created one-at-a-time
through the incremental adjustment of the target constraint. While
this approach is straightforward, it entails a repetitive execution of
the optimization algorithm [9,12,13]. To advance the HSJ process,
Imanirad et al. [13-15] designed a concurrent MGA approach
employing co-evolution. In the co-evolutionary technique, pre-
specified stratified subpopulation ranges within an algorithm’s
overall population are established that collectively evolve the search
toward the specified number of maximally different alternatives.
Each desired solution alternative is represented by each respective
subpopulation and each subpopulation undergoes the common
processing operations of the procedure. The survival of solutions
in each subpopulation depends simultaneously upon how well the
solutions perform with respect to the modelled objective(s) and by
how far away they are from all of the other alternatives. Thus, the
evolution of solutions in each subpopulation toward local optima is
directly influenced by those solutions contained in all of the other
subpopulations, which forces the concurrent co-evolution of each
subpopulation towards good but maximally distant regions within
the decision space according to the maximal difference model [9].
Co-evolution is also much more efficient than a sequential HSJ-
style approach in that it exploits the inherent population-based
searches to concurrently generate the entire set of maximally
different solutions using only a single population [12,16].

While concurrent approaches can exploit population-
based procedures, co-evolution only occurs in each stratified
subpopulation. Consequently, the maximal differences between
solutions in different subpopulations must depend on aggregated
subpopulation measures. Conversely, in the subsequent algorithm,
each solution in the population consists of an entire set of alternatives
and maximal difference is calculated only for that specific solution
(i.e. the particular set of alternatives contained within that
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specific solution of the population). Hence, by the evolutionary
characteristics of population-based search procedure, in the
subsequent approach, the maximal difference is simultaneously
calculated for the specific set of alternatives considered within
each specific solution - and the need for concurrent subpopulation
aggregation measures is circumvented.

Using the data structure terminology, the steps for the multicriteria
population-based, stochastic MGA algorithm are as follows (see
also: [18-23,34-38]). It should be readily apparent, however, that
the stratification approach employed by this method can be easily
modified to enable solution by any population-based algorithm
[37].

Initialization Step. Solve the original optimization problem to find
its optimal solution, X*. Based upon the objective value F(X"),
establish P target values. P represents the desired number of
maximally different alternatives to be generated within prescribed
target deviations from X". Note: The value for P has to have been
set a priori by the decision-maker.

Without loss of generality, it is possible to forego this step and
to use the algorithm to find X" as part of its solution processing
in the subsequent steps. However, this can significantly increase
the number of iterations of the computational procedure and the
initial stages of the processing become devoted to finding X" while
the other elements of each population solution are retained as
essentially “computational overhead”.

Step 1: Create an initial population of size K where each solution
contains P equally-sized partitions. The partition size corresponds
to the number of decision variables in the original optimization
problem. X, represents the p” alternative, p = 1,...,P, in solution
Y. k=1,..K

Step 2: In each of the K solutions, evaluate each ka, p=1..P,
using the simulation module with respect to the modelled objective.
Alternatives meeting their target constraint and all other problem
constraints are designated as feasible, while all other alternatives
are designated as infeasible. A solution can only be designated as
feasible if all of the alternatives contained within it are feasible.

Step 3: Apply an appropriate elitism operator to each solution
to rank order the best individuals in the population. The best
solution is the feasible solution containing the most distant set
of alternatives in the decision space (the distance measures are
defined in Step 5).

Note: Because the best solution to date is always retained in the
population throughout each iteration, at least one solution will
always be feasible. A feasible solution for the first step can always
consist of P repetitions of X".

Step 4: Stop the algorithm if the termination criteria (such as

maximum number of iterations or some measure of solution
convergence) are met. Otherwise, proceed to Step 5.

Step 5: For each solution Y, k = 1,..., K, calculate R Max-Min
and/or Max-Sum distance measures, D', r = 1,..., R, between all
of the alternatives contained within the solution.

As an illustrative example for calculating the multicriteria
distance measures, compute

D= A ( Xiw, Xip) = M}in | Xiag=Xurg|, a=1..Pb=1._Fg=1_n )]
abg
Dl = A (Xia Xy = Zﬂ.lw Za.ha? Z;hl n g =Ty ®
and
Dﬁk = AJ (Xh‘ X'L.b) = Zﬂ-lmP ZHIOP Z-?\-I n (Xm _XH"I )2’ (9)

D', denotes the minimum absolute distance, D’ represents the
overall absolute deviation, and D’ represents the overall quadratic
deviation between all of the alternatives contained within solution

k.

Alternatively, the distance functions could be calculated by
some other appropriately defined function.

Step 6: Let D, = G(D', D°,, D’,,..., D)) represent the multicriteria
objective for solution k. Rank the solutions according to the distance
measure D, objective — appropriately adjusted to incorporate any
constraint violation penalties for infeasible solutions. The goal
of maximal difference is to force alternatives to be as far apart
as possible in the decision space from the alternatives of each of
the partitions within each solution This step orders the specific
solutions by those solutions which contain the set of alternatives
which are most distant from each other.

Step 7: Apply applicable algorithmic “Change operations” to each
solution within the population and return to Step 2.

Water Resources Management Case Study

Water resources problems often contain significant
stochastic uncertainties. Under such circumstances, WRM
decision-makers prefer to select from a set of contrasting, “near
best” alternatives that differ from each other in terms of the system
structures provided by their decision variables. The efficacy of the
multicriteria population-based MGA procedure will be illustrated
using a WRM case taken from [24,25]. While this section briefly
summarizes the case, more explicit details, data, and descriptions
can be found in [24,25,36,39-42].

Earlier studies [24,25] considered a WRM problem for
allocating water in a dry season from an unregulated reservoir
to three distinct user classes: (i) An industrial concern, (ii) an
agricultural sector, and (iii) a municipality (see Figure 1). The
industrial and agricultural segments were in a period of significant
capital expansion and wanted to establish the water allocation
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levels to which they were entitled. If insufficient water quantities
were available, these sectors would be forced to curb their planned
expansions. If adequate supplies of water could be delivered,
this would contribute positive net benefits to the local economy.
However, if sufficient water could not be guaranteed, net benefits
provided by the users would be curtailed.

Reservoir

Municipal Industrial  Agnicultural

Figure 1: Schematic of Water-Allocation to Multiple Users.

In the region, the water demands have been increasing
temporally due to economic expansion and population growth.
Because of this, it is necessary to establish where the different water
users stand by supplying sufficient information to make decisions
regarding various investments and activity levels. For example,
industries are not likely to develop water intensive projects if they
know, a priori, that water consumption will need to be limited.
Similarly, farmers aware that there is only a small chance of
receiving sufficient water during a dry season are unlikely to
undertake major investments in irrigation infrastructure. If needed
water cannot be delivered due to insufficiency, the users will have
to either curtail their development plans or obtain water from more
expensive alternate sources. (Tables 1 and 2) show the related water
resources and economic data [24,25]. For example, municipal
residents may have to restrict the watering of lawns, industries may
have to increase water recycling rates or reduce production levels,
and farmers may not be able to irrigate as planned. These impacts
will result in increased costs or decreased benefits in relation to
the regional development. Thus, it is necessary that the available
water be effectively allocated to minimize any associated penalties.
The problem can be formulated as maximizing the expected net
system benefits. Based upon local water management policies, a
quantity of water can be pre-defined for each user. If this quantity
is delivered, it will result in net benefits; however, if it cannot be
delivered, the system will be subject to some form of penalties.

Water allocation

[1.5,2.5] [2.0, 4.0] [3.5, 6.5]

target ( VV[i )

Net benefit when
water

[90, 110] [45,55] [28, 32]

demand is satisfied (

B)

Reduction of net
benefit when

[220, 280] [60, 90] [50, 70]

demand is not

delivered ( C';L )

Table 1 Allowable Water Allocations (m3 Millions) and Related
Economic Data ($ Millions)

Activity [Flow 11 o0 = 1) | Medium (7=2) | High (=3)
level
Seasonal flow [ 14,20]]
. [3.2,4.8] [7,13]
rate ( q; )
Probability (p,) 0.2 0.6 0.2

Table 2 Streamflow Distribution (m?* Millions) and the Associated
Probabilities.

Consequently, under the conditions of uncertainty, the
primary decisions are: (i) how to efficiently apportion water to
each of the three sectors to maximize the anticipated net benefits;
and, (i) how to establish the water policies (in terms of allowable
amounts) with the least risk of system disruption. Within these
decisions is a determination of which one of the many pathways
that the water would need to flow through to reach the users. In
addition, it is possible to subdivide the various water streams,
with each substream sent to a different user. Since cost differences
from operating the facilities at different capacity levels produce
economies of scale, decisions have to be made to determine how

Municipal | Industrial | Agricultural much water should be sent along each flow pathway to each user
Activity / User type. Thus, any individual policy entails a combination of many
=1 (i=2) i=3) decisions regarding which facilities were allocated water and
the quantities of water that would be directed to each user type.
Maximum allowable These decisions are further complicated by prevailing system
. 7 7 7 uncertainties vis-a-vis the seasonal water flows together with their
allocation (W, ) corresponding likelihoods.
6 Volume 3: Issue 02
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The WRM authority is responsible for allocating water to
each of the municipality, the industrial concerns, and the agricultural
sector. As the quantity of stream flows from the reservoir are
uncertain, the problem is formulated as a stochastic programming
problem. This stochastic programming model can account for the
uncertainties in water availability. However, uncertainties may
also exist in other parameters such as benefits, costs and water-
allocation targets. In the formulation, penalties are imposed when
policies that have been expressed as targets are violated. Also,
within the model, any uncertain parameter 4 is represented by

A" and its corresponding values are generated via probability
distributions. To reflect all of these uncertainties, the following
stochastic programming model was constructed by [25]:

m m R
Maxf*=3 BW: -3 p.CiS: (10)
il il el
Subject to:
:ZI[I'T’.-:-SE} <q; v (1)
SS W<, Vi (12)
5520 Vi (13)

In this formulation [ * represents the net system benefit ($/
m?) and Bii represents the net benefit to user i per m* of water
allocated (§). VKi is the fixed allocation amount (m?) for water

that is promised to user 7, while Wiiax is the maximum allowable

amount (m?) that can be allocated to user i. The loss to user i per

m? of water not delivered is given by Cl.i , where C, > B, ($). S, ;
corresponds to the shortage of water, which is the amount (m?) by

which W, is not met when the seasonal flow is g.. qf is the amount
(m?) of seasonal flow with p; probability of occurrence under j flow
level, where p; provides the probability (%) of occurrence of flow
level j. The variable i, i = 1, 2, 3, designates the water user, where
i = 1 for municipal, 2 for industrial, and 3 for agricultural. The
value of j, j =1, 2, 3, is used to delineate the flow level, where j = 1
represents low flows, 2 represents medium flows, and 3 represents
high flows. Finally, m is the total number of water users and 7 is
the total number of flow levels.

Using this stochastic formulation, the WRM problem is to
effectively assign the water to the three user groups to maximize
the overall net benefits and to incorporate water policies in terms
of determining permissible amounts with the least risk for causing
system disruption. By representing the stochastic uncertainties
as probability distributions, interval estimates, and uncertainty

membership functions, Magsood et al. [25] constructed a solution
to the WRM problem with an overall net benefit of $2.02 million.

While knowing the optimal solution to the mathematical
model establishes an important quantitative benchmark, WRM
planners faced with difficult and potentially controversial choices
generally tend to prefer to choose from a set of near-optimal
alternatives that differ significantly from each other in terms of their
system structures. To create such planning options for the WRM
system, one approach would be to place extra target constraints
into the mathematical model to force solutions that were different
from the one initially determined by optimization. For example,
suppose that five additional planning alternative options were
created through the inclusion of a technical constraint on the
objective function that decreased the total system benefits of the
original model from 2% up to 10% in increments of 2%. By adding
these incremental target constraints to the original SO model and
sequentially re-solving the problem an additional 5 times, it would
be possible to construct the specific number of alternative policies
for WRM planning.

Rather than running five additional, separate instances of the
computationally intensive SO procedure to create these solutions,
the multicriteria population-based MGA algorithm from the
previous section was run a single time to produce the requisite
additional alternatives. (Figure 2) shows a schematic layout
showing how the MGA approach is applied to the WRM case and
(Table 3) provides the overall system benefits for the 5 maximally
different options generated.

[ Uncertain information and policy ]
v ¥ ¥ v
Policies Probability Discrete Imprecise
(targets) distributions intervals information

Stochastic Interval Fuzzy
programming Estimatations Estimation

v

[ Multicriteria Population-Based MGA ]

Computationzl Algonithm

.

[ Generation of decision alternatives ]

Evaluation of
alternatives

Figure 2: Schematic of the Multicriteria MGA Methodology
Applied to WRM Case.
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WRM System Benefits
Maximally Different Solutions
($ Millions)
Best Solution Overall 2.02
Best Solution Within 2% 1.99
Best Solution Within 4% 1.96
Best Solution Within 6% 1.91
Best Solution Within 8% 1.86
Best Solution Within 10% 1.79

Table 3: System Benefits ($ Millions) for 6 Maximally Different
Alternatives.

(Table 4) shows the actual water allocation values obtained
for the overall best solution determined under optimized water-
allocation targets. It can be observed that solutions for the objective
function value and most of the non-zero decision variables related
to the agricultural and industrial water can occur over an interval
range, while those related to municipal water use are explicit
deterministic values. In case of insufficient water supply, allocation
should firstly be guaranteed to the municipality, secondly to the
industry, and lastly to the agriculture. This is because municipal
use provides the highest benefit when water demand is satisfied
and is subject to the highest penalty if the promised water is not
delivered; whereas, the industrial and agricultural uses correspond
to lower benefits and penalties.

Agricultural
Municipal Industrial
Activity/ User (i=3)
(i=1 (i=2)
2. 4. 4.
Target ( W;i ) > 0 6
+
Shortage (S j ) under a flow level of:
Low (j=1) 0 [2.1,2.7] 4.6
Medium (j =2) 0 0 [0, 1.7]
High (j = 3) 0 0 0
Allocation (under a flow level of:
Low (j=1) 2.5 [1.3,1.9] 0
Medium (j = 2) 2.5 4.0 [2.9, 4.6]
High (j =3) 2.5 4.0 4.6
Net benefit ($ Millions) fir —202

Table 4: Best Water Allocations Under Optimized Water-Allocation Targets (m* Millions).

(Table 5) contrasts alternative options under different water-
allocation schemes. The best solution within 2% alternative
would correspond to the situation in which the WRM manager
is essentially optimistic regarding water availability. Thus, a plan
with both higher shortage and higher allocation is generated,
where risks of water insufficiency may exist but the net benefit is
quite considerable. This leads to a plan with both lower shortage
and lower allocation, but a higher risk of wasting available water.

For the best solution within 6%, the resulting plan will be effective
in high-runoff years when all targeted water demands can be
delivered, but becomes riskier under low-runoff conditions due
to the deficit of water availability and the relevant penalties. The
solution corresponds to a situation in which water availability falls
somewhere in-between conservative and optimistic conditions.
Conversely, the best solution within 10% represents a situation in
which the manager is pressured to be conservative regarding the
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water availability and, therefore, must allocate essentially lower bound target values to all users.

Best Solution Within 2% Best Solution Within 6% Best Solution Within 10%
Municipal | Industrial Agricultural | Municipal Industrial | Agricultural | Municipal Industrial Agricultural
Target (
. 1.5 2.0 3.5 2.5 4.0 6.5 2.0 3.0 5.0
W)
Shortage (
.,
APt
j=1 0 0 [2.6,2.94] 0 [2.1,2.9] 6.5 0 [0.6, 1.4] 5.0
j= 0 0 0 0 0 [1.8,4.2] 0 0 [0, 1.2]
i=3 0 0 0 0 0 0 0 0 0
Allocation
(47 ):
j=1 1.5 2.0 [0.56, 0.9] 2.5 [1.1,1.9] 0 2.0 [1.6,2.4] 0
j=2 1.5 2.0 3.5 2.5 4.0 [2.3,4.7] 2.0 3.0 [3.8,5.0]
j=3 1.5 2.0 3.5 2.5 4.0 6.5 2.0 3.0 5.0
Net Benefit
($ Millions) $1.99 $1.91 $1.79

Table 5: Alternative Solutions Under Different Water-Allocations (m* Millions).

Irrespective of the final decision, given the performance
bounds established for each problem alternative, the WRM policy-
makers can be confident in the stated performance objective of
each option while simultaneously recognizing that they are
as structurally different from each other as feasibly possible.
Therefore, if there might be stakeholders holding diametrically
opposing standpoints, the decision-makers can contrast the options
without being myopically constrained by any dominant perspective
based exclusively on objective value.

The WRM case illustrates several important characteristics
with respect to the multicriteria MGA algorithm: (i) Population-
based procedures can be effectively used as the fundamental
optimization search method in SO routines; (ii) Population-
based MGA solution searches can concurrently create more good
alternatives than planners could construct using other approaches;
(iii) Because of the structure of the MGA algorithm, the alternatives
generated are good for planning purposes since all of their solutions
are guaranteed to be as maximally different from each other as
possible; (iv) Because the procedure needs to run only once to
generate its entire set of multiple, good solution alternatives, it is
very computationally efficient (i.e. the algorithm runs exactly once
to generate n maximally different solution alternatives, irrespective

of the value of n); and, (v) The best overall solution produced
by the multicriteria MGA procedure will be identical to the best
solution produced by function optimization alone.

Conclusions

Water  resource  management  problems  contain
multidimensional performance specifications which inevitably
include incongruent performance components and unquantifiable
modelling features. These problems often possess incompatible
design specifications which are impossible to completely
incorporate into the supporting decision models. Consequently,
there are unmodelled problem components, generally not apparent
during model construction, that can significantly influence the
acceptability of any model’s solutions. These competing and
ambiguous components force WRM decision-makers to incorporate
many conflicting requirements into their decision process prior to
the final solution determination. Consequently, water management
decision-makers generally prefer to select from a set of distinct
planning perspectives.

This paper has applied a stochastic, multicriteria population-
based MGA procedure to WRM planning. This computationally
efficient MGA approach establishes how population-based
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algorithms can simultaneously construct entire sets of near-optimal,
maximally different alternatives by exploiting the evolutionary
characteristics of population-based solution algorithms. In this
MGA role, the multicriteria objective can efficiently generate the
requisite set of dissimilar alternatives, with each generated solution
providing an entirely different perspective to the problem. Since
population-based procedures can be applied to a wide range of
problem types, the practicality of this multicriteria MGA approach
can be extended to wide array of “real world” environmental
applications beyond WRM settings. These extensions will be
considered in future studies.
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