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/Abstract

N

During the past decades evidence that vitamin K is involved in areas extending far beyond hemostasis has accumulated.
Several mechanisms of action involving both direct interaction via receptors such as the steroid and xenobiotic receptor and
indirect via post-translational activation of Gla proteins have been proposed. The metabolism of vitamin K is complex and
has large interspecies variation. Also, the vitamin K content in various foods and the recommended daily intake are not clearly
specified. Notwithstanding, several clinical trials evaluating the effect of different vitamin K species on cardiovascular dis-
ease, osteoporosis, metabolic disease and cancer are ongoing or recently completed. The review attempts to summarize the
source and metabolism of different forms of vitamin K, as well as give an overview of the current evidence from clinical trials.
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Introduction

During the last two decades, the research focus of vitamin K
has shifted from coagulation to a broader range of topics involving
cardiovascular disease, osteoporosis, diabetes and cancer. Since
its discovery in the 1930s vitamin K has been most recognized
for its involvement in post-translational y-carboxylation of hepatic
clotting factors II, VII, IX and X as well as protein C, S and Z.
In addition, several vitamin K dependent proteins originating
from extra-hepatic tissues have been identified. These are
collectively named Gla proteins, referring to the transformation
of Glutamate (Glu) residues to y-carboxyglutamic (Gla) during
carboxylation upon which the protein adapts a tertiary structure
able to bind calcium ions [1]. While the introduction of new
oral anticoagulants may have diminished the research interest
of vitamin K in hemostasis, new applications are emerging for
vitamin K and the associated extra-hepatic Gla proteins. The most
extensively researched Gla proteins are Matrix Gla Protein (MGP),
Osteocalcin (OC), Growth Arrest Specific 6 protein (gas6) and
Gla Rich Protein (GRP). MGP is a potent calcification inhibitor
and high levels of desphospho-uncarboxylated MGP (dp-ucMGP)

has been correlated to increased vascular calcification score [2,3]
and mortality [4] in at-risk populations. Similar to MGP, GRP is
thought to prevent calcification in its carboxylated state [5]. OC is
involved in bone metabolism [6] and gas6 has been implicated in
proliferative and inflammatory signaling [7]. The activity of the
aforementioned Gla proteins is dependent on their y-carboxylation
status. Therefore, an inadequate intake of vitamin K may result
in suboptimal function of the Gla proteins. This is supported by
large-scale studies demonstrating inverse associations between
vitamin K intake and cancer [8] and cardiovascular disease [9].
The recommended daily intake of vitamin K is based on the
amount needed to fully carboxylate hepatic coagulation proteins
and does not take extra-hepatic Gla proteins into account.
Furthermore, different forms of vitamin K seem to have different
bioavailability for the extra-hepatic Gla proteins. Previous studies
have demonstrated that substantial fractions of MGP and OC are
uncarboxylated in healthy subjects [10], suggesting that vitamin
K insufficiency might be more common than previously thought.
The aim of this review is to summarize the source and metabolism
of different forms of vitamin K, as well as give an overview of
the current evidence from clinical trials investigating the efficacy
of vitamin K supplementation on cardiovascular disease, diabetes,
osteoporosis and cancer.
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Different Forms of Vitamin K

Vitamin K occurs naturally in two forms, vitamin K,
(Phylloquinone) and vitamin K, (Menaquinone). Together with
the other fat-soluble vitamins D, E and A, quinones belong to
the large isoprenoid (terpenoid) family, which among others
also comprise sterols and carotenoids [11]. All forms of vitamin
K share a polar, hydrophilic 2-methyl-1,4-naphthoquinone ring
structure (Menadione, vitamin K,), which is accompanied by a
hydrophobic side chain of varying length and saturation. Vitamin
K, has a phytyl side chain attached to the naphtoquinone head and
contains only one unsaturated bond. Vitamin K, is subdivided into
menaquinone-n (MK-n) where n is the number of prenyl units in
the isoprenoid side chain with repeating unsaturated bonds [12].
In addition, synthetic forms vitamin K,-K; exist. The molecular
structure of the different forms of vitamin K is shown in (Figure 1).
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Figure 1: Molecular structures of Vitamin K and menaquinone-4 and -7.

For vertebrate’s vitamin K is an essential micronutrient.
Vitamin K is synthesized by photosynthetic organisms and plays
a vital role as electron carrier in leafy plants, which is the main
dietary source of vitamin K, for humans [13]. Vitamin K is
produced by obligate and facultative anaerobic bacteria and occurs
in animal livers and fermented foods such as cheese, curd and the
Japanese specialty natto. Bacteria mainly synthesize long-chain
vitamin K, (MK-7 — MK-13) using distinct pathways reviewed
elsewhere [14]. MK-4 may be found in poultry and pork products.
This is because animal feed often use synthetic derivative vitamin
K, as a source of vitamin K [15], which is converted to MK-4 in
vivo. The conversion of vitamin K, and K, to MK-4 is described
more in detail below. Furthermore, MK-4 is a ligand to the steroid

and xenobiotic receptor (SXR) through which it can affect gene
transcription [16]. In general, tissue stores of vitamin K are low.
Hepatic stores comprise almost exclusively of long-chain vitamin
K, and the ratio of vitamin K, being only around 10%. In extra-
hepatic tissues, especially in the brain, kidney and pancreas, MK-4
is the main form [17].

Already in the late 1950s, animal experiments revealed
that animals fed vitamin K, or vitamin K, demonstrated increased
levels of MK-4 in several organs [18]. When vitamin K, was
administered parentally to pigeons the increase of MK-4 was not
seen. In a study from 2006, increased urinary excretion of vitamin
K, was seen after vitamin K, or MK-4 intake in healthy male
volunteers [19]. The authors concluded that part of the MK-4 tissue
stores derives from uptake and prenylation of circulating vitamin
K,. In vivo conversion of vitamin K| or vitamin K, to vitamin K,
form MK-4 was demonstrated in mice brain when administered
orally or enterally [20]. When administered intravenously or
intrathecally only vitamin K, produced a low increase of cerebral
MK-4 concentration. However, in cerebral slice cultures as well as
primary cultures both vitamin K, and vitamin K, were converted to
MK-4. This implies that the conversion from vitamin K, to MK-4
may happen through two routes, the first being side-chain removal
that happens during intestinal absorption and vitamin K, is then
prenylated to form MK-4 in the target tissue. The second route
is both side chain removal and prenylation taking place at tissue
level. The same research group identified UbiA prenyltransferase
containing 1 (UBIADI), a human homologue of Escheria coli
prenyltransferase MenA, as the biosynthetic enzyme responsible
for MK-4 synthesis [21]. As UBIADI was able to convert both
vitamin K, and vitamin K, to MK-4, authors postulated that
UBIADI may cleave the side chain to form vitamin K, which is
then prenylated by geranylgeranyl pyrophosphate to form MK-4.
Inhibition of UBIADI by drugs such as statins have been postulated
to contribute to vascular calcification due to depletion of vascular
vitamin K, levels [22].

The Vitamin K Cycle

Since the discovery of vitamin K’s role in post-translational
gamma-carboxylation of proteins in the 1970s there has been
extensive research surveying the reactions involved in the
transformation from Glu to Gla. This resulted in the identification
of'the vitamin K cycle, which is a series of enzymatic modifications
vitamin K undergoes in order to support in carboxylation (Figure 2).
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Figure 2: An updated Vitamin K cycle. See text for abbreviations.

In the initial step, vitamin K is reduced by Vitamin K
Reductase (VKR) to form Vitamin K Hydroquinone (KH,). KH,
is then utilized by Gamma-Glutamyl Carboxylase (GGCX) which
modifies glutamic acid residues to gamma-carboxy glutamic acid
in Gla proteins. This reaction also requires presence of oxygen and
carbon dioxide. GGCX recognizes its substrates through an amino
acid sequence called the propeptide [23]. Despite comparatively
high homology among the propeptides the affinity of GGCX
for different Gla proteins varies significantly [24]. During the
carboxylation process, KH, is oxidized to vitamin K ,.-epoxide
(KO), from which vitamin K is regenerated by the enzyme Vitamin
K Epoxide Reductase (VKOR) and re-enters the cycle. VKOR is
the target of vitamin K antagonists such as warfarin [25]. The
reducing equivalents necessary for the VKOR reaction require a
redox partner. The donated electrons have been proposed to derive
from Thioredoxin (Trx)-like Protein disulfide reductase (PDI) in
the Endoplasmic Reticulum (ER) [26] as well as ER membrane-
anchored Trx-like protein TMX [27]. Several factors are involved
in the regulation of the vitamin K cycle. Among them, there is
the endogenous ER chaperone protein calumenin which has been
shown to function as a negative regulator by inhibiting GGCX and
VKOR in rats [28]. In vitro studies using short interfering RNA
(siRNA) silencing calumenin demonstrated a significant increase
in functional FIX [29]. Similarly, in vitro animal experiments
showed that overexpression of VKOR subunit vitamin K epoxide
reductase complex subunit 1 (VKORC,) increased production of
FIX [30].

Gla Proteins

In 1974, the vitamin K dependent modification where
glutamic acid residues are transformed to y-carboxy-glutamic
acid were first described in coagulation proteins [31]. Since then,
several vitamin K dependent proteins have been identified and
some of them have become subject to extensive research due to
their reported involvement in various conditions. Among these
proteins, there are OC, MGP, gas6 and GRP. Identified in the

1970s, OC was the first Gla protein discovered that originated from
extra-hepatic tissues [32]. OC is mainly produced by osteoblasts
and has been suggested to affect bone metabolism by regulating
osteoblast activity and bone mineralization [6]. More recently, OC
was unexpectedly reported to be involved in glucose metabolism
after studies showing that OC-deficient animals demonstrated
hyperglycemia, hypoinsulinemia and increased visceral fat as
compared to wild type animals [33]. Further animal studies
suggested that the uncarboxylated form of OC (ucOC) mediated
the endocrine properties by interacting with the pancreatic -cells
through the G protein-coupled receptor class C group 6 member
A (Gprcb6a) receptor [34]. UcOC was also reported to affect male
fertility via Gprc6a in mice. However, some controversy as to
whether these results can be applied to humans exists. The current
evidence is discussed more in depth in the section about studies on
vitamin K supplementation.

MGP was identified in the 1980s from bovine bone matrix
[35], and shortly thereafter MGP expression was demonstrated in
endothelial cells, fibroblasts, chondrocytes and vascular smooth
muscle cells (VSMC). The function of carboxylated MGP as a
calcification inhibitor has been confirmed in several preclinical
studies [36]. A recent observational study demonstrated that
elevated plasma dp-ucMGP was associated with increased
cardiovascular mortality [37]. The significance of MGP for vascular
health and whether increased carboxylation of MGP could reduce
the progression of arterial calcification in risk group populations
is currently being investigated in several clinical trials [38].
Arterial calcification may be present in the intimae as obstructing
macrophage- and lipid-rich plaques or in the media leading to vessel
stiffness. The process of calcification is thought to be regulated
by VSMCs, which are plastic in nature and may differentiate into
different phenotypes. The characteristics and specific drives for
intimal and medial calcification have been reviewed elsewhere
[39]. Accumulation of uncarboxylated MGP has been demonstrated
in both intimal and medial calcification [40]. Gas6 is structurally
similar to protein S and both function as ligands to the Tyro3,
Axl and MerTK (TAM) receptor family. TAM receptors activate
downstream signalling pathways involved in inflammation,
hemostasis, cell cycle regulation and proliferation [41]. Previous
studies have suggested that Gas6 is involved in the carcinogenesis
[7], diabetes [42] and inflammation [43]. However, results conflict
and no clear role has been established. In several studies the degree
of y-carboxylation was not considered. In its uncarboxylated state,
Gas6 does not activate TAM receptors [44]. To date, no in vivo
studies on humans investigating Gas6 carboxylation degree and
how it responds to vitamin K supplementation exist. GRP is the most
recently identified Gla protein. Previous studies suggest that GRP
is involved in cardiovascular calcification, possibly functioning in
a complex together with MGP and fetuin-A. Similar to MGP, the
calcification inhibition is dependent on y-carboxylation status [5].
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Dietary Sources of Vitamin K

As mentioned above the main source of vitamin K| is leafy
vegetables, which have been reported to contain 400-700 pg vitamin
K, per 100 g, with the highest concentrations reported for the
vegetables with the darkest green leaves [45]. In addition, vegetable
oils provide an important contribution with concentrations ranging
from 50-200 pg vitamin K, per 100 g. Principal sources of vitamin
K, in the Western diet are fermented dairy products, with MK-9
and MK-8 being the predominating forms [46]. However, a wide
intervariability in the vitamin K, content between the different
dairy products have been demonstrated. Soft and blue cheese have
very high concentrations which might be attributed to their lactic
acid bacteria species. The Japanese soy dish natto contains very
high levels of MK-7 due to its fermentation with Bacillus subtilis,
which is also capable of synthesizing MK-7 in the intestines several
days after ingestion. As this may result in unpredictable plasma
levels of vitamin K, patients undergoing anticoagulant treatment
with vitamin K antagonists (VKA) such as warfarin are strongly
discouraged from eating natto. However, a study on healthy
volunteers demonstrated only mild increases in plasma MK-7 with
relatively stable levels up to 48 hours after ingestion when eating
boiled natto, compared to markedly increased concentrations with
regular natto, most likely since the boiling process eliminated the
Bacillus species [47]. Another source of vitamin K., in the form of
MK-4, is pork and poultry products from animals supplemented
with vitamin K,, which as described above can be converted to
MK-4 in vivo. The dietary sources of different forms of vitamin K
are summarized in Table 1.

In a study published in 2000, vitamin K, and K, contents
of a large number of food items were analyzed [48]. Vitamin
K, occurred most abundantly in kale, spinach and broccoli with
concentration ranging from 156-817 pg per 100 grams. Vitamin K,
was divided into MK-4 - MK-9. The highest MK-4 concentrations
were found in goose liver paste (369 pg per 100 gram), goose leg
(31 pg per 100 gram) and egg yolk (31.4 pg per 100 gram). MK-8
and MK-9 were mainly present in hard and soft cheeses as well as
curd cheese (MK-9), with a peak concentration of 51.1 pg per 100
gram. MK-7 was found in unparallel concentrations in natto (998
pg per 100 gram), which also contained smaller amounts of vitamin
K,, MK-5, MK-6 and MK-8. With the exception of natto, MK-5
and MK-6 were only found in very low concentrations. Another
study analyzing vitamin K content in fresh and processed pork
products found high concentrations of MK-10 (289-492 ng per
100 gram), as well as MK-4 concentrations ranging from 3 to 27
pg per 100 gram [49]. Authors speculated that these products might
be important contributors to overall vitamin K intake and hepatic
stores, but since no studies have investigated the bioavailability
of MK-10 it is difficult to draw any conclusions on its effect on
vitamin K status in extra-hepatic tissues.

Suggested
. . . effects from
Type of Vitamin K Dietary source supplementation
trials
Increased insulin
sensitivity in
Leafy vegetables predlab[est z)c] women
Vitamin K , (e.g. kale, spinach, B .
, ] . Decreased insulin
phylloquinone broccoli), vegetable . .
oils resistance n
nondiabetic adults
[51].
Positive effects
Vitamin K., Pork and poultry on bone health.m
. products (e.g. goose osteoporotic subjects
Menagquinone (MK) liver paste, € olk) [52]
MEK-4 ver paste, egg yolk). .
Fermented foods Positive effects
MK-7 (e.g. cheese, Japanese on cardiovascular
specialty natto) health in renal
transplant patients
[53].
o Synthetic form, used CytOtO).ﬂC’ may
Vitamin K., in animal feed be used in cancer
menadione ’ therapy[54,55].

Table 1: Different forms of Vitamin K.

Vitamin K in the Intestines

As the human gut flora contains bacterial species capable
of vitamin K, synthesis, it was initially thought these contributed
significantly to vitamin K status. This perception was supported
by studies reporting antibiotics-induced hypoprothrombinaemia
attributed to the elimination of intestinal bacteria [56]. However,
a comprehensive review published in 1995 concluded that even
though gut microbes provided some contribution to human vitamin
K status, it was much less than previously thought. The majority of
vitamin K, producing bacteria is present in the colon, where gall
salts and pancreatic enzymes required for vitamin absorption are
missing [57].

The Absorption and Transport of Vitamin K

Similar to other fat-soluble nutrients, vitamin K absorption
in the intestines is dependent on pancreatic enzymes and gall salts
to form micelles that enterocytes can take up. Previous studies
suggest that the bioavailability of vitamin K varies significantly
between different foods, for instance the availability from spinach
was reported to be only 4% of that from the liquid formulation
Konakion [58]. Other studies suggest that vitamin K| absorption is
significantly greater after consumption of vegetable oil compared
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to broccoli [59]. Following intestinal absorption, vitamin K
is incorporated into chylomicrons and enters the lymphatic
circulation. Chylomicrons are degraded by endothelial lipoprotein
lipases to chylomicron remnants, which together with very low-
density lipoproteins (VLDL) are referred to as triglyceride-rich
lipoproteins (TRL). A smaller but significant fraction of Vitamin
K is also transported with low density lipoproteins (LDL) and
high-density lipoproteins (HDL). Using deuterium-labeled greens,
studies have shown that the plasma vitamin K concentration peaks
approximately 6 to 9 hours after ingestion and baseline levels are
restored within 24 hours [60]. Vitamin K, shows large variation
between the subspecies in terms of bioavailability and lipoprotein
transport. MK-4 is rapidly cleared from the circulation and
distributed equally between TRL, LDL and HDL whereas MK-9
was initially only found in TRL and later in LDL where it remained
for up to 48 hours [61]. MK-7 has been shown to be present in
circulation for up to 96 hours, suggesting it has higher availability
for both hepatic and extra-hepatic Gla proteins [62]. Another
factor suggested to impact vitamin K status is polymorphisms in
Apolipoprotein E (ApoE), which is a LDL component and related
to cellular uptake of lipoproteins. Among the three human alleles
E2, E3 and E4, studies have shown that ApoE4 carriers clear
vitamin K from the circulation more efficiently which results in
lower plasma levels of vitamin K [63]. However, another recent
study reported that the ApoE2 allele was associated with markedly
decreased urinary Gla excretion indicative of a poor vitamin K
status [64].

Vitamin K Deficiency

In the adult population, hepatic vitamin K deficiency
resulting in impaired coagulation is extremely rare. However,
studies on perioperative changes in uncarboxylated prothrombin
(Proteins induced by vitamin K absence factor II, PIVKA-II) have
demonstrated increased PIVKA-II levels preoperatively without
bleeding diathesis, suggesting that subclinical hepatic deficiency
might be widespread [65,66]. Furthermore, studies on healthy
subjects imply a suboptimal vitamin K status in extrahepatic
tissues, which is more pronounced in children and adults above
40 years old [67]. Populations at-risk for developing vitamin K
deficiency include patients with impaired intestinal absorption
[68,69], and patients with chronic kidney disease as it was recently
demonstrated that experimentally induced uremia in rats decreases
GGCX activity in the liver and kidneys [70]. Substantial evidence
from several independent studies suggest that vitamin K deficiency
is common in patients with Chronic Kidney Disease (CKD), both in
carly stages and in those receiving dialysis [71]. CKD patients are
also especially at-risk for cardiovascular disease and demonstrate
increased vascular calcification. Results from intervention trials
with vitamin K in CKD patients are discussed in the section about
vitamin K supplementation. In 1996, a study on the dihydro-vitamin

K, content in various foods was published. Dihydro-vitamin K is
a vitamin K, derivative which is generated from hydrogenation of
vegetable oils and thus occurs in fast foods such as French fries
and chicken nuggets. This study demonstrated that in some age
groups in the American population dihydro-vitamin K, accounts
for roughly 30% of the total vitamin K intake [72]. Animal studies
have shown that dihydro-vitamin K is able to function as a
cofactor in gamma-carboxylation, but it is not converted to MK-4
in extra-hepatic tissues [73,74]. Therefore, groups who consume
less vegetables and more processed food, such as socioeconomic
disadvantaged groups [75], might be prone to develop extra-hepatic
vitamin K deficiency. Another population at risk for developing
vitamin K deficiency are neonates as the transplacental passage of
vitamin K is limited [76]. A coagulopathy with all the attributes
of Vitamin K deficiency bleeding (VKDB) was first described in
1894. Neonatal vitamin K deficiency can be classified as early,
classical and late [77]. Early VKDB presents within the first 24
hours of life and is often associated with maternal drugs such as
warfarin and anticonvulsants. Classical VKDB manifests during
the first week of life, typically between day 2 and 3 due to a natural
dip in prothrombin activity [78]. In previous studies, infant vitamin
K status has been related to the intake of milk [79], stressing the
importance of adequate nutrition. Late VKDB presents after the first
week with a peak incidence between 3 and 8 weeks. Late VKDB
tend to be more severe and is associated with a high incidence of
intracranial hemorrhage. The late form of VKDB may be idiopathic
or secondary to insufficient breast feeding or underlying diseases
such as biliary atresia or a -antitrypsin deficiency [77]. In the 1950s
it was demonstrated that antepartum administration of vitamin K
to mothers decreased the incidence of neonatal hemorrhage [80].
Initially, water-soluble vitamin K, (e.g. Synkavit) was used as
prophylaxis but it had rare albeit serious side effects in the form of
hematological toxicities such as hemolytic anemia and kernicterus,
probably related to erythrocyte glutathione metabolism [81,82].
Therefore, intramuscular administration of vitamin K, is the
most commonly used prophylactic agent, although vitamin K, is
still used in developing countries [83,84]. In 1990, a publication
claiming intramuscular vitamin K administration to neonates
was associated with increased risk of childhood leukemia gained
widespread attention [85]. However, several studies since found
no evidence for this association [86,87]. Lastly, anticoagulant
treatment with VK As impairs recycling of vitamin K and increases
the risk of suboptimal carboxylation of Gla proteins. This is in line
with several studies demonstrating negative effects of warfarin
treatment of cardiovascular health [88,89].

Recommended Daily intake and Supplementation

Initially, dietary recommendations were based on the
amount of vitamin K needed to correct bleeding diathesis in
elderly hospitalized men, which was estimated to 0.03 pg per kg
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body weight daily [90]. This has been revised multiple times and
currently global guidelines vary between 50 to 120 pg per day [91]
for adults. For infants aged 0-6 months a reference daily intake
of 10 pg has been suggested, and is satisfied either by a single
intramuscular dose of 1 mg vitamin K at birth or repeated oral
doses during the first 6-8 weeks [92]. These recommendations are
based on vitamin K, which is the main form in Western diets.
However, studies suggest that an intake between 200 to 500 pg per
day may be needed to ensure optimal carboxylation of the extra-
hepatic Gla proteins [93]. Vitamin K, has better bioavailability
for extra-hepatic Gla proteins. When administered daily, 25 pg
MK-7 daily has been shown to be more efficacious than 100 pg
Vitamin K , and 50 ug MK-7 has been suggested to interfere with
anticoagulant therapy [62]. Currently, there are no dietary reference
values for vitamin K,, and challenges in establishing reference
limits include lack of accurate data on food content and intake of
different MK species [94]. A complicating factor in establishing
adequate reference intervals for vitamin K intake is the lack of a
gold standard method for assessing vitamin K status. Measuring
vitamin K in plasma is difficult due to the low circulating levels
and interference from triglycerides [95]. However, in recent studies
determination of vitamin K|, MK-4 and MK-7 were performed
using liquid chromatography tandem mass spectrometry [96].
Another approach is to measure the carboxylation degree of Gla
proteins. In a previous review, authors proposed a combination
of biomarkers as this might better reflect vitamin K status [97].
Several vitamin K supplements are available today. However,
there is a significant cost difference between the different vitamin
K forms. Whereas supplementation with vitamin K, has been
estimated to cost $199.8, vitamin K, yields costs estimated to
be $865.2 annually [98]. The different strategies to produce MK
species include liquid and solid state fermentation, and research
on how to improve efficacy and reduce cost in MK production is
ongoing [99].

Studies on Vitamin K Supplementation

Cardiovascular Disease

The discovery of MGP and the accumulating evidence from
preclinical studies that improved vitamin K status may prevent
progression of or even reduce existing vascular calcification have
motivated several clinical trials.

In 2004, a randomized case-control study showed that
postmenopausal women who were supplemented with vitamin
K, during three years demonstrated unchanged elastic properties
of the common carotid artery whereas these properties were
decreased in the other study groups [100]. In 2009, the results
of a 3-year double-blind Randomized Controlled Trial (RCT)
where 388 healthy older adults were given a daily multivitamin
with or without 500 pg vitamin K, were published. In unadjusted

results there were no differences in the progression of Coronary
Artery Calcification (CAC) between the groups, but in secondary
analyzes restricted to participants who were > 85% adherent, the
vitamin K, supplemented group has 6% less progression compared
to controls [101]. However, a recently published RCT on 80 older
adults with established vascular disease who were given 100 pg
MK-7 or placebo daily during six months failed to demonstrate
any significant improvement of markers of vascular health. A
modest non-significant improvement of pulse-wave velocity was
seen in the vitamin K supplemented group. Authors speculated that
the lack of significant effects could be related to insufficient doses
or too short observation time [102]. Currently, trials evaluating
the efficacy of vitamin K, supplements in reducing progression
of vascular calcification in patients with severe kidney disease
are ongoing. In the VitaVask trial 348 hemodialysis patients are
randomized to receive either 5 mg of vitamin K| thrice weekly or
stay on standard care. Using Multi-Slice Computed Tomography
(MSCT) thoracic aortic and coronary artery calcification will be
evaluated after 12 and 18 months and compared to baseline scans
[103]. The iPACK-HD Randomized Controlled Trial (RCT) has
a similar aim and enrolls end stage kidney disease patients who
receive either 10 mg vitamin K, or placebo three times weekly
after dialysis. High-Resolution Computed Tomography (HRCT) is
performed at baseline and after 12 months to evaluate progression
of CAC [104]. In 2014, a randomized, single-blinded dose-finding
study evaluated the effect of MK-7 on dp-ucMGP. Two hundred
hemodialysis patients received 360, 720 or 1080 pg MK-7
thrice weekly during 8 weeks. MK-7 dose-dependently reduced
circulating levels of dp-ucMGP [105]. Similar results were
repeated by another study including 50 hemodialysis patients who
received 360 pg MK-7 daily during four weeks, with a resulting
drop of dp-ucMGP levels of 86% [106]. This has motivated
further research with larger study populations and increased trial
length. A three-year double-blind RCT investigating the effect
of daily supplementation with 180 pg MK-7 in healthy post-
menopausal women demonstrated decreased arterial stiffness in
the supplemented group [107]. Currently, several clinical trials
investigating the effect of vitamin K, (MK-7) on progression
of vascular calcification are ongoing. Among them, there is the
vitaK-CAC trial in which patients with pre-existing CAC will be
randomized to receive 360 ug MK-7 or placebo during 24 months
after which vascular health will be evaluated to determine whether
MK-7 slows down the rate of progression [108]. As mentioned
before, patients suffering from CKD are of particular interest as
several studies suggest that they have a high prevalence of both
vitamin K deficiency and cardiovascular disease. Some of the
aforementioned clinical trials specifically include subjects with
severe kidney disease or dialysis. In a randomized trial including
53 long-term hemodialysis patients receiving placebo or MK-7
(doses 45 pg, 135 pg or 360 pg) daily for 6 weeks a dose- and
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time-dependent reduction of dp-ucMGP, ucOC and PIVKA-II
was demonstrated [109]. In the recently published KING trial,
comprising 60 renal transplant recipients supplemented with 360
ug MK-7 daily for 8 weeks, supplementation resulted in decreased
dp-ucMGP levels and a 14.2 % reduction in mean carotid-femoral
pulse wave velocity [53].

Bone Disease

Due to the aforementioned relationship between Vitamin K
and bone health several clinical trials have evaluated the effect of
vitamin K supplementation on bone turnover. In 2006 a systematic
review comprising 13 studies concluded that both vitamin K|
and vitamin K, had a protective effect by reducing bone loss as
well as a strong decreasing effect of vitamin K, on bone fracture
incident rate in Japanese patients [110]. Another review published
in 2009 included seven RCTs where postmenopausal women
were supplemented with vitamin K or K, for at least two years.
Supplementation with high doses (5 mg vitamin K, and 45 mg
vitamin K, MK-4 daily) consistently decreased ucOC levels
and albeit bone resorption markers were unaffected the bone
strength measured as femoral neck width was improved and
fracture incidence was reduced [111]. The modest effect on bone
resorption was explained by the fact that OC and MK-4-mediated
activation of SXR rather stimulates osteoblast differentiation.
However, the largest RCT included in this review, comprising
around 4000 women with osteoporosis supplemented with 45
mg MK-4, only demonstrated beneficial effects in women with
advanced osteoporosis. The cumulative 2-year incident rate was
lower among supplemented subjects but the difference was not
statistically significant. However, vitamin K-substituted subjects
experienced improvement of several activities of daily living
(ADL) parameters during the first 12 months of the study compared
to controls [112]. In 2015 a systematic review of nineteen RCTs
enrolling 6759 participants was performed. Results showed that
medium and long-term treatment with vitamin K, improved
vertebral bone mineral density (BMD) in osteoporotic women, but
did not affect BMD in the non-osteoporotic subgroup. Fracture
incidence was decreased in the vitamin K -treated subjects after
sensitivity analysis excluded one study, however the remaining
studies had limiting factors such as small sample sizes and lack of
critical data such as fracture incidence rate. Nevertheless, authors
concluded that osteoporotic women had encouraging results, and
that vitamin K, may reduce fracture incidence [52]. In summary,
many RCTs evaluating the efficacy of vitamin K on bone loss have
been performed. However, due to different limitations such as
small study samples, it is difficult to confirm the role of vitamin K
and to what extent it may affect bone pathology. Currently, studies
on concurrent therapy with vitamin K, and bisphosphonates are
ongoing comprisingroughly 1000 study subjectsineach group[113].

Cancer

Vitamin K has gained attention in cancer research after several
preclinical studies have shown anti-tumour responses produced by
different vitamin K forms [114]. Also, large population studies
have demonstrated inverse correlations between vitamin K intake
and cancer incidence and mortality [8,115]. Few clinical trials
exist, and have mainly focused on whether MK-4 supplementation
prevents recurrence of hepatocellular carcinoma (HCC) after
curative resection. A systematic review analyzing these trials
found no beneficial effect on overall survival or improved tumour
recurrence with MK-4 [116]. Vitamin K, has the ability to generate
ROS, therefore it has been of interest in cancer research [117].
Vitamin K, administration to patients with advanced HCC yielded
reduction of tumour size in 17% of the patient population. These
patients also had increased mean survival time, even though
overall mortality remained unchanged [54]. In 2008 a clinical trial
comprising 17 patients suffering from therapy-resistant prostate
cancer demonstrated significant decrease in prostate specific
antigen (PSA) increase rate after receiving concomitant vitamin K,
and vitamin C treatment during 12 weeks. However, no decrease
of absolute PSA was observed [55].

Metabolic Disease

Not many large-scale studies on the effect of vitamin K
on diabetes exist. In a prospective cohort study encompassing
38 094 Dutch men and women, dietary intake of both vitamin
K, and vitamin K, was inversely associated with type 2 diabetes.
Furthermore, vitamin K, intake was correlated to a favorable lipid
profile and lower CRP levels [118]. Cross-sectional analyses from
the PREDIMED study showed that dietary vitamin K, estimated
from a food frequency questionnaire was associated with reduced
risk of type 2 diabetes [119]. Data from the National Health and
Nutrition Examination Survey (NHANES) study comprising
5800 US adults suggested that vitamin K, intake had a positive
influence on the metabolic syndrome and that the highest quartile
of intake was associated with significantly reduced risk of low
HDL level, hypertriglyceridemia, and hyperglycemia compared to
the lowest quartile [120]. Similarly, a high vitamin K, intake has
been associated with lower occurrence of the metabolic syndrome
in a 10-year follow-up study on adults [121].

Supplementation trials investigating the relationship between
vitamin K and diabetes are scarce. In a study where prediabetic
women were randomized to receive either 1000 pg Vitamin
K, or placebo once daily during four weeks, the supplemented
group demonstrated increased insulin sensitivity and glycemic
status. However, insulin resistance was not affected [50]. Another
study found that daily supplementation with 500 pg vitamin K|
to older non-diabetic adults during three years, decreased insulin
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resistance defined as the Homeostasis Model Assessment of Insulin
Resistance (HOMA-IR) [51]. However, a meta-analysis published
in 2017 comprising eight RCTs with a total of 1077 participants
found no effect of vitamin K supplementation on insulin
sensitivity. The authors suggested that larger, well-designed RCTs
are needed to establish whether any association exists and if so
determine its clinical relevance [122]. The relationships between
OC and glucose homeostasis observed in animal studies have
warranted several studies aiming to determine if the preclinical
results can be extrapolated to humans. Variations of the gene bone
gamma carboxyglutamate protein (BGLAP),which encodes OC,
have been linked to alterations in body mass index (BMI) in an
European population [123]. In 2015, several meta-analyses were
published. Two of them looked specifically at type 2 diabetes and
found that type 2 diabetes patients had significantly lower plasma
levels of OC. Furthermore, an inverse association between OC
levels and risk of developing type 2 diabetes were demonstrated
in these studies [124,125]. Another meta-analysis showed inverse
correlations between both total OC and ucOC with fasting plasma
glucose (FPG) and glycated hemoglobin Alc (HbAlc) [126].
However, in a 3-year prospective study of high-risk individuals
OC did not predict diabetes [127] and in a nested case-control
study monitoring the risk of type 2 diabetes over a 10-year follow-
up OC and ucOC were not associated with increased risk of type
2 diabetes [128].

Other Diseases

In addition to the aforementioned areas, vitamin K has
been suggested to be involved in other diseases. One of these
is osteoarthritis where elevated levels of dp-ucMGP have been
associated with presence of osteophytes, meniscal damage and
subcondral cysts, but not with progression of the disease [129].
Subjects in this study with low plasma vitamin K, were more
likely to have progression of articular cartilage damage. Genome-
wide association and functional studies with low expression of
MGP are linked to an increased risk for hand osteoarthritis [130].
Other studies have identified vitamin K deficiency as a risk factor
for osteoarthritis and have suggested supplementation studies to
evaluate the effect of vitamin K on osteoarthritis [131,132]. To
date only one such study has been published. In that study subjects
received vitamin K, supplementation during three years and hand
x-rays were performed at baseline and after the supplementation
period. No effect of vitamin K, supplementation was seen [133].
Possible reasons include insufficient doses and observation period,
underpowered study or wrong vitamin K subspecies as vitamin
K, has a better bioavailability for extra-hepatic Gla proteins.
Another research area where vitamin K supplementation has been
suggested is neurodegenerative diseases such as Alzheimer’s
disease. Possible mechanisms of action involving sphingolipid
metabolism, Gas6-mediated Axl stimulation and apolipoprotein E

genotypes are discussed in a previously published review article
[134]. Furthermore, vitamin K, analogues have demonstrated
inhibition of AP aggregation in vitro and in silico, and might be
potential anti-amyloidogenic drug targets [135]. Another possible
area of application for vitamin K, is as an antimicrobial agent as in
vitro studies have demonstrated growth inhibition and decreased
exotoxin production in both gram-positive and gram-negative
bacteria exposed to vitamin K, [136]. An additional antimicrobial
strategy, could be inhibition of menaquinone biosynthesis, as
several bacteria require menaquinones for their respiratory chain.
In vitro studies have demonstrated that inhibition of menaquinone
synthesis resulted in inhibition of both replicating and non-
replicating as well as drug-resistant strains of Mycobacterium
tuberculosis [137].

Conclusions

During the past decades evidence that vitamin K is involved
in areas extending far beyond hemostasis has accumulated.
Several mechanisms of action involving both direct interaction
via receptors such as the SXR and indirect via post-translational
modification of Gla proteins have been proposed. The metabolism
of vitamin K is complex and has large interspecies variation.
Furthermore, limited knowledge about bioavailability and the lack
of a gold standard biomarker complicate creating optimal vitamin
K intake guidelines for different populations.

Pre-clinical studies have suggested involvement of vitamin K
and Gla proteins in cardiovascular disease, diabetes, osteoporosis
and cancer, which has motivated several clinical trials evaluating
the effect of supplementation with different forms of vitamin
K. In general, the bulk of the trials considered in this review
comprise a small number of subjects making it hard to draw
definitive conclusions. The involvement of vitamin K and MGP
in cardiovascular disease is among the most extensively studied
and the limited number of completed studies shows promising
results for the vitamin K, form MK-7. Larger, well-designed trials
are ongoing and results are expected within the next few years.
Studies on whether vitamin K supplementation is beneficial for
patients with osteoporosis have shown reduced fracture incidence
and improved bone health in patients with advanced disease. The
least explored area in terms of clinical trials is whether vitamin
K can be used in cancer therapy. MK-4 was initially reported to
have anti-tumour effects on HCC, but this was not confirmed in a
recent systematic review. Vitamin K, produces ROS which have
been utilized in clinical trials but not enough data exist on this
issue. The involvement of vitamin K in metabolic disease has been
investigated after large population studies suggested an inverse
relationship between vitamin K intake and type 2 diabetes, but
so far results have been inconclusive. The latest debated topic is
whether uncarboxylated OC affects glucose homeostasis, but no
consensus has been reached and studies show conflicting results.
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In conclusion, clinical trials indicate that supplementation with
vitamin K has beneficial effects on various diseases with the most
compelling evidence for cardiovascular disease.
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