

Editorial Article

Use of Canine-Assisted Therapy in Office-Based Flexible Cystoscopy

Lauren Folgosa Cooley¹, Sarah Caulkins¹, Rebecca Holloway², Sandra Barker³, Lance Hampton*¹

¹Virginia Commonwealth University School of Medicine, Division of Urology, Richmond, Virginia

²Virginia Commonwealth University School of Medicine, Center for Human-Animal Interaction, Richmond, Virginia

³Virginia Commonwealth University School of Medicine, Department of Psychiatry, Richmond, Virginia

***Corresponding author:** Hampton L, Department of Surgery, Virginia Commonwealth University, PO Box 980118, Richmond, VA 23298-0118, Tel: +804828-0100 ; Fax: +804-828-2157; E-mail: lance.hampton@vcuhealth.org

Citation: Hampton L, Cooley FL, Caulkins S, Holloway R, Barker S (2016) Use of Canine-Assisted Therapy in Office-Based Flexible Cystoscopy. Gavin J Surg 2016: 1-2.

Received Date: 08 August, 2016; **Accepted Date:** 17 August, 2016; **Published Date:** 24 August, 2016

Keywords

Animal assisted therapy; Cystoscopy; Visual analog scale

Editorial

While animals have been used throughout history to promote the health and well-being of humans, animal-assisted interventions have only recently emerged in mainstream healthcare as an evidence-based approach to improving human wellness and healing [1]. The use of canine assisted therapy (CAT) in health-related settings, including hospitals and nursing homes, has been dramatically increasing in recent decades [1]. CAT involves an interaction between a patient and a trained canine in addition to the canine's human owner or handler [2]. Interest in CAT is rising given increasing evidence of its therapeutic potential in targeting pain, anxiety, stress, and other health-related outcomes associated with procedures and various diseases states [1]. While it is unclear the percentage of US hospitals currently offering a CAT program, it is clear that research related to CAT has been on the rise. According to Pub Med's CSV timeline for articles related to "animal assisted therapy," there has been a steady increase since the 1980's: 1980s <10 articles/year; 1990s <50 articles/year; 2014 169 articles total. Articles related to "canine assisted therapy," specifically, totaled >50% of the articles published in 2014.

CAT research in healthcare settings has centered around improving both subjective and objective measurements related to patient health and well-being. Subjective measurements have included self-reported mood, anxiety, stress, and pain [3-10]. Barker et al. demonstrated how this canine-human interaction significantly reduced self-reported anxiety among

patients with mood and psychotic disorders compared to patients who received human only recreation group sessions [2]. Other neuropsychiatric studies have found similar benefits of CAT in reducing depression among nursing home patients [3], improving social interactions and communication in children with autism [4], and reducing post-operative pain in children following surgery [5]. Furthermore, Raina et al. demonstrated that pet ownership in geriatric populations led to improved performance of activities of daily living (ADLs) over a one-year longitudinal study [6]. Therefore, older adults are able to stay more independent and potentially avoid health-related complications from sedentary lifestyles through pet ownership [6]. CAT has also been shown to reduce objective measurements related to stress, anxiety, and pain including blood pressure [7-9], heart rate [9], and cortisol levels [10]. Allen et al. reported that while ACE inhibitor therapy alone can reduce blood pressure, heart rate, and plasma renin levels, it was only the addition of pet ownership that further reduced these parameters in response to added stressors including mental arithmetic tasks [7]. Another study found that a single 30 minute one-on-one session between a patient and therapy dog reduced cortisol, a stress hormone, and increased endorphins, hormones associated with well-being and happiness [10].

Fewer studies are available to detail the benefit of CAT in outpatient settings or during outpatient procedures. As a minimally invasive, safe, and cost-effective therapy, the use of CAT represents a desirable approach to mitigating pain, anxiety, stress, and fear associated with outpatient procedures. Flexible cystoscopy is an office-based procedure performed by

advancing a small flexible scope into the bladder via the urethra. It is performed for both diagnostic evaluation and therapeutic indications. This procedure is typically performed on the awake patient, with topical anesthetic as the only analgesia provided and may last 10-30 minutes, not including time needed for patient preparation. As this is an invasive procedure, patients often report associated pain, fear and anxiety [11-15]. While it is estimated that 6.6 million cystoscopies are performed annually with 2.3 million occurring in the US [16], few effective interventions have emerged to improve this experience for patients. Raheem et al. demonstrated that listening to music during cystoscopy significantly reduced post-procedure anxiety and pain scores [11]. However, Mirheydar et al. found the use of music did not significantly reduce pain or anxiety [12]. Furthermore, multiple other interventions have failed to demonstrate a reduction in cystoscopy-associated pain or anxiety, including the use of 2% topical lidocaine gel on the cystoscope [13], insertion of a combined local anesthetic lubricant into the urethra for 3 minutes prior to cystoscopy [14], and allowing the patient to observe his own cystoscopy [15].

To our knowledge, CAT has never been implemented during outpatient cystoscopy. Given its efficacy profile detailed above, we believe this is a greatly underutilized tool that can safely be implemented to alleviate the pain, fear, stress and anxiety associated with outpatient flexible cystoscopy. Furthermore, given the lack of current interventions to improve patient experience and stress during cystoscopy, we aim to demonstrate the benefits of CAT in outpatient flexible cystoscopy in an upcoming study with the hopes of improving patient care.

References

1. Morrison ML (2007) Health Benefits of Animal-Assisted Interventions. *Complementary Health Practice Review* 12: 51-62.
2. Barker S and Dawson K (1998) The effects of animal-assisted therapy on anxiety ratings of hospitalized psychiatric patients. *Psychiatric Services* 49: 797801.
3. Colombo G, Buno MD, Smania K, Raviola R, De Leo D (2006) Pet therapy and institutionalized elderly: A study of 144 cognitively unimpaired subjects. *Archives of Gerontology and Geriatrics* 42: 207-216.
4. Sams MJ, Fortney EV, Willenbring S (2006) Occupational therapy incorporating animals for children with autism: A pilot investigation. *American Occupational Therapy Association* 60: 268-274.
5. Sobo EJ, Eng B, Kassity-Krich N (2006) Canine visitation (pet) therapy: pilot data on decreases in child pain perception. *Journal of Holistic Nursing* 24: 51-57.
6. Raina P, Waltner-Toews D, Bonnett B, Woodward C, Abernathy T (1999) Influence of Companion Animals on the Physical and Psychological Health of Older People: An Analysis of a One-Year Longitudinal Study. *Journal of American Geriatrics Society* 47: 323-329.
7. Allen K, Shykoff B, Izzo JL (2001) Pet ownership, but not ACE inhibitor therapy, blunts home blood pressure responses to mental stress. *Hypertension* 38: 815-820.
8. Stasi MF, Amati D, Costa C, Resta D, Senepa G, et al. (2004) Pet therapy: A trial for institutionalized frail elderly patients. *Archives of Gerontology and Geriatrics* 9: 407-412.
9. Wells DL (2005) The effect of videotapes of animals on cardiovascular responses to stress. *Stress and Health* 21: 209-213.
10. Odendaal JS (2000) Animal Assisted Therapy - magic or medicine? *Journal of Psychosomatic Research* 49: 275-280.
11. Raheem OA, Mirheydar HS, Lee HJ, Patel ND, Godebu E, et al. (2015) Does listening to music during officebased flexible cystoscopy decrease anxiety in patients: a prospective randomized trial. *J Endourology* 29: 791796.
12. Mirheydar HS, Raheem OA, Palazzi KL, Patel N, Sakamoto K (2015) Modern advances in reducing anxiety and pain associated with cystoscopy: Systemic Review. *World Journal of Translational Medicine* 4: 38-43.
13. CanoGarcia MC, CasaresPerez R, ArrabalMartin M, MerinoSalas S, ArrabalPolo MA (2015) Use of lidocaine 2% gel does not reduce pain during flexible cystoscopy and is not costeffective. *Urol J* 12: 23622365.
14. Losco G, Antoniou S, Mark S (2011) Male flexible cystoscopy: does waiting after insertion of topical anaesthetic lubricant improve patient comfort? *BJU Int* 108: 42-44.
15. Cornel EB, Oosterwijk E, Kiemeney LA (2008) The effect on pain experienced by male patients of watching their officebased flexible cystoscopy. *BJU Int* 102: 14451446.
16. Thompson H (2013) An endoscopic system reducing costs by 50%. *Medical Device and Diagnostic Industry*.