

Short Communication

Two Pandemics: Experience In A Clinical Laboratory

Gürol Y^{1*}, Çelik G²¹Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Department of Clinical Microbiology, Istanbul, Turkey²Bahçeşehir University School of Medicine, Department of Clinical Microbiology, Istanbul, Turkey***Corresponding author:** Gürol Y, Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Department of Clinical Microbiology, Istanbul, Turkey.**Citation:** Gürol Y & Çelik G (2024) Two Pandemics: Experience In A Clinical Laboratory. Rep GlobHealth Res 7: 213. DOI: 10.29011/2690-9480.100213.**Received Date:** 19 December, 2024; **Accepted Date:** 26 December, 2024; **Published Date:** 28 December, 2024

Two Pandemics: Experience In A Clinical Laboratory

During a public health emergency, laboratories play a lead role in detection and response to infectious diseases. They must meet increasing testing demands. The laboratory professionals have had a unique pandemic experience since 2009 H1N1 influenza pandemic. The common problems were deciding which test to do, to give fast and accurate results as for the other common diseases. When the pandemic begins, using PCR which is the most sensitive is the first choice at the beginning; but then using the validated rapid antigen test with the desired sensitivity and specificity in certain settings caused uncertainty at every time. The misinformation about testing among the public always caused a problem between the patients and the microbiologists and clinicians. The most important issue in the laboratory, is the difficulty to convince the clinician and patient for the test results if it is not reported as assumed. Especially collection of sample because of not collecting according to the rules causes time consumption especially in the pandemics because of the necessity for demanding a new appropriate sample. Mostly the laboratory is used to make another test of different method. So PCR is demanded although only rapid antigen tests work in certain settings. Sometimes this may go to legal process leading the laboratory defending itself.

On 30 January 2020, the World Health Organization (WHO) declared the outbreak and a global health emergency, and on 11 March 2020, WHO declared a pandemic [1]. It was the coronavirus disease-2019 (COVID-19) pandemic originating from Wuhan, China. Since the H1N1 2009 influenza virus (formerly known as swine flu) first appeared in Mexico and the United States in March and April 2009 this was the second pandemic of 21st century.

Diagnostic tests for SARS-CoV-2 are of two broad categories: antigen tests and realtime reverse transcription polymerase chain reaction (RT-PCR) tests. First of all PCR testing was considered

as the laboratory reference standard for COVID-19 diagnosis although later the laboratories met with some limitations. The experienced staff and automated platforms were required. The shortage of reagents and swabs were the other limitations for this testing [2-6]. In February 2020, the World Health Organization (WHO) identified point-of-care (POC) testing as a number one priority to address the COVID-19 pandemic [7]. The test delays could impact the value of isolation to reduce the spread of SARS-CoV-2 [8]. The false positives or negatives prevented early identification and the spread of disease [9].

Rapid antigen tests reduce turnaround time with some processes like the sample collection [10-11]. Considering these advantages, rapid antigen tests were used worldwide for rapid COVID-19 diagnosis. The issue for this testing is a deficiency of data transmission for surveillance [12].

COVID-19 will not be the only pandemic that laboratorians will face. Clinical laboratories play a central role in pandemic response for diagnostic testing, monitoring, and research activities. Increased testing capacity, sample collection and transportation, data management and reporting should be the first step to be taken for the other pandemics [13].

The choice of testing should be decided as soon as the diagnostic tests are accepted by the worldwide and national authorities. As it was experienced during the influenza pandemic, in some countries forcing the laboratories to use only PCR tests although there were rapid antigen tests might be misleading. The tests should be chosen according to the laboratories' facilities and workload. In certain setting a simple algorithm starting with antigen test and when it is negative going on with PCR with the interpretation added to the report would be appropriate. Although there are limited articles about the laboratory personnel's burden, workload and burnout especially in COVID pandemic should be one of the most

important issues to be considered. Decisions about test's choice in certain settings should be planned as a national policy and after that it should be applied.

As CDC implements its 'Moving Forward Strategy', it will be important to continue to elevate laboratory sciences within the agency and address the urgent need for a strategy for national laboratory coordination or rather, a national laboratory system. As we look ahead, there is an urgent need for a national laboratory coordination strategy that clearly outlines a public-private laboratory system or network poised to detect the next threat [14].

As experienced in this second devastating pandemic of COVID-19, US as a developed country, in search for accurate, rapid and easy-to-use tests required for the nation's safely return to normal life, launched a national initiative to speed innovation in the development, commercialization, and implementation of technologies for the new virus. Rapid Acceleration of Diagnostics (RADx®) Tech established by The National Institutes of Health has successfully created a new model for rapidly translating diagnostic tests from the laboratory to widely use. ECDC is another good example publishing guides and recommendations that EU Member States should perform independent and setting-specific validations of rapid antigen tests before their implementation and use in the algorithms of laboratory tests. Unfortunately the disadvantage for such validated international kits for Covid-19 diagnosis was their high price, therefore rapid antigen tests even when they were necessary they were not successfully and widely used or not perfectly validated rapid antigen tests were used and mostly not properly. Therefore considering these experiences one of the important lessons to be learnt by developing countries is not only build up strategies to improve development and commercialization of newrapid diagnostic tests but also establish independent bodies and settings-specific validations of rapid antigen tests before their implementation in colloboration with universities and professional organizations to be able to combat emerging infectious diseases [15-16].

Conflict of interest statement: There is no conflict interest.

Funding: There is no funding in this work.

References

1. Kahwati L V M, Jahn B, Giger K, Dobrescu AI, Hill C, et al. (2020) Universal screening for SARS-CoV-2 infection: a rapid review. Cochrane Database of Systematic Reviews 2020:CD013718.
2. Wu Z, McGoogan JM (2020) Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. *JAMA* 323:1239 –1242.
3. Reusken CBEM, Broberg EK, Haagmans B, Meijer A, Corman VM, et al. (2020) Laboratory readiness and response for novel coronavirus (2019-nCoV) in expert laboratories in EU/EEA countries, January 2020. *Eurosurveillance* 25:2000082.
4. Sheridan C (2020) Fast, portable tests come online to curb coronavirus pandemic. *Nat Biotechnol* 38:515–518.
5. Babiker A, Myers CW, Hill CE, Guarner J (2020). SARS-CoV-2 testing. *Am J Clin Pathol* 153:706 –708.
6. Ravi N, Cortade DL, Ng E, Wang SX (2020). Diagnostics for SARS-CoV-2 detection: a comprehensive review of the FDA-EUA COVID-19 testing landscape. *Biosens Bioelectron* 165:112454.
7. World Health Organization (2020) Global research collaboration for infectious disease preparedness-COVID 19: Public Health Emergency of International Concern (PHEIC). Global research and innovation forum: towards a research roadmap, 02/11/2020–02/12/2020. World Health Organization, Geneva, Switzerland.
8. Larremore DB, Wilder B, Lester E, Shehata S, Burke JM, et al. (2020) Test sensitivity is secondary to frequency and turnaround time for COVID-19 surveillance. *medRxiv*:2020.06.22.20136309.
9. Young S, Taylor SN, Cammarata CL, Varnado KG, Roger-Dalbert C, et al. (2021) Clinical evaluation of BD Veritor SARS-CoV-2 point-of-care test performance compared to PCR-based testing and versus the Sofia 2 SARS antigen point of care test. *J Clin Microbiol* 59:e02338-20.
10. Roca AA, Bach D D (2019) Critical issues and new trends on stattests in clinical laboratory. *EJIFCC* 30:59-66.
11. Singh M, Anand L (2014) Bedside procalcitonin and acute care. *Int J Crit Illn Inj Sci* 4:233-237.
12. Luo YT, Wang JH, Zhang MM, Wang QZ, Chen R, et al. (2021) COVID-19 Another influential event impacts on laboratory medicine management. *J Clin Lab Anal* 35:e23804.
13. International Journal of Community Medicine and Public Health | March 2024 | Vol 11 | Issue 3.
14. Wolford T, Sutton J, Mangal C N (2023) Laboratory Response to Pandemic Threats: Challenges, Needs, and Solutions. *Health Security* 21:S56-S59.
15. <https://www.nih.gov/research-training/medical-research-initiatives/radx/radx-programs>
16. ESCDC (2020) Options for the use of rapid antigen tests for COVID-19 in the EU/EEA and the UK.