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Abstract
Combat instigated PTSD is one of the more complicated psychological conditions that occurs in the modern world. 

To add to the complications of treatment, PTSD is often accompanied by other injuries (such as traumatic brain injury) 
and psychological comorbidities including anxiety and substance use disorders of which the most frequent is alcoholism. 
While PTSD is normally associated with veterans (combat or non-combat), many of the studies and treatments designs 
are based on civilian or non-combat instigated PTSD. The lack of information on PTSD in veterans may weaken soci-
ety’s ability to treat one of the most affected populations and to honor the covenant made with members of the military 
by that society. Currently treatment for PTSD is still associated with a high incidence of non response and relapse. The 
purpose of the present paper is three-fold: to evaluate current guidelines for treating PTSD with an emphasis on data 
from combat veterans; to evaluate treatment of alcohol use disorder in veterans; and finally, to evaluate treatment of co-
morbid PTSD with alcohol use disorder in the veteran population.

Objectives: To evaluate current treatment of military or veteran personnel with PTSD and comorbid alcohol use disor-
der (AUD).

Methods: We compared guideline-based treatment of PTSD with pharmacotherapy effectiveness studies in veteran 
populations. We evaluated treatment of PTSD with comorbid AUD from veteran populations. Finally, we evaluated 
available pharmacotherapy against current guidelines and theories of non-medication based treatment for veterans with 
PTSD. To accomplish this we conducted Pub Med searches focusing primarily on literature from 2000 onwards in 
clini¬cal populations and available in English as free full text. This was supplemented by other papers using earlier clini-
cal samples as well as preclinical studies when warranted.

Conclusions: While comorbid PTSD and AUD has proven to be a frequent occurrence in veterans, few of the cur-
rent guidelines were designed from data generated in this at-risk population. Results from the literature suggest that 
pharma¬cotherapeutic treatments including modulation of cortisol might be beneficial in PTSD patients. By evaluating 
studies that occurred in veteran populations and taking into account new information in the changes in brain functions 
in PTSD and AUD, we suggest that more evidence-based decisions can be made for treatments. Thus, the data have sug-
gested that use of Selective Serotonin Reuptake Inhibitors (SSRIs) may warrant a reevaluation in the veteran population. 
The improved understanding of the brain processing changes that result from PTSD, AUD and their combination can 
allow clinicians to tailor pharmacotherapy to prevent the masking of the beneficial effects of trauma-focused psycho-
therapy and the natural extinction of fear responses that occur post-military service. Similarly, a greater understanding 
of changes in neurotransmitter activity in veterans with PTSD, AUD or both may yield more precise use of medications 
that target specific aspects of brain chemistry in a hypothesis driven manner. Furthermore, continuing to evaluate the 
new practice of allowing treatment of both PTSD and AUD with trauma-focused psychotherapy immediately upon diag-
nosis should increase patient compliance and length of abstinence. By taking advantage of the new developments in our 
understand¬ing of both the functions of the brain as well as the population specific data for treatment, we can continue 
to take the necessary steps to allow this population to lead a normal life after their service to our country.
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Introduction 	

Up to 25% of combat veterans develop Post-Traumatic 
Stress Disorder(PTSD) [1]. Alcohol Use Disorder(AUD) is the 
most common comorbid disorder in men with PTSD [2]. Thus, 
there is a compelling need to look closely at the treatment of this 
group of patients. Although comorbid PTSD and AUD has prov-
en to be a frequently occurring condition in veterans, few of the 
cur¬rent guidelines are designed from data generated in this at-
risk population. This is, in part due to the fact that the popula-
tion also presents with additional complications such as Traumatic 
Brain Injury (TBI) and additional psychiatric co-morbidities (in-
cluding major depressive disorder and anxiety disorders). This has 
resulted in most studies of PTSD being conducted on non-veteran 
popula¬tions.

PTSD and AUD are known to have a compounding effect 
for an unfavorable treatment outcome in veterans [3-5]. In addi-
tion, these co-morbidities add a layer of complexity to the patient’s 
treatment due to their combined effects on the brain chemistry of 
fear and memory [6]. In addition, as indicated above, the treat-
ment guidelines for PTSD are not based on data from a veteran 
popula¬tion. This is a potentially important gap, since veterans 
may, for a variety of reasons, manifest different variants of PTSD 
than non-veterans, leading to different patterns of treatment effec-
tiveness than for civilians [7].

Approach to the Literature
The focus for this review was on investigations published from 
2000 onwards using articles published in English and available as 
free full text. Searches in Pub Med were conducted for research 
on PTSD treatment in veteran populations. This was followed by 
searches of treatment for PTSD plus AUD in veteran populations. 
Results seen in veterans were compared to those in non-veterans 
populations and used to assess current PTSD treatment guidelines. 
Additional searches included preclinical and clinical studies on ex-
tinction of fear responding and pharmacological and non-pharma-
cological methods of treating PTSD or its animal models.

Disease Prevalence and Need for Treatment
AUD prevalence in veterans	

AUDs have been well documented in both general military 
populations and in veterans with diagnosed PTSD. In military 
vet¬erans, measured AUD prevalence is 15% for the previous year 
and 42% over the patient’s life-time [8,9]. Data from 2009 show 
that of the 5.5 million veterans who received health services from 

the Veterans Administration (VA), 7.8% received a diagnosis of 
either an alcohol or drug disorder. In contrast, among veterans with 
a diagnosis of PTSD 22.8% had a diagnosis of comorbid substance 
abuse, nearly 3 times the rate in the general VA patient popula-
tion [10]. This pattern highlights the need to understand AUD in 
order to treat a veteran sub-population effectively. AUD is associ-
ated with drug use disorders and, significantly, with suicide as well 
as a substantially elevated burden of psychiatric comorbidities, 
includ¬ing PTSD, general anxiety disorder and depression [10].

As with PTSD, the odds of developing AUD increase after 
deployment [11]. Also like PTSD, development of AUD strongly 
associates with the cumulative burden of trauma over the course 
of a lifetime. However, PTSD seems to occur in veterans whether 
or not they were in combat [12]. This is accounted for, in part, 
by comorbid trauma-related psychopathology in which previous 
traumatic brain injury and stressful situations may reduce a per-
son’s ability to cope with negative experiences [13,14]. As a legal 
psychotropic agent, alcohol is often used as a coping method for 
stressful situations and negative experiences [15-17], increasing 
the odds of developing AUD during or after combat exposure or 
military service [10].

PTSD prevalence in veterans
The number of combat veterans with PTSD can differ across 

reports, based on different definitions of the diagnosis, popula-
tion sampling, and geography. Combat exposure, in particular, is 
a large factor that effects the development of PTSD. Between 10 
and 13% of Gulf War [18] and Iraq or Afghanistan veteran [19] 
with combat exposure currently have PTSD. After deployment and 
combat exposure in Iraq and Afghanistan, surveys of the National 
Guard showed rates of PTSD at 25% [20], and similar surveys of 
the army and marines showed PTSD rates between 11-20% [21].

In 2016, Tsai [22] re-examined the prevalence of PTSD in 
veterans using various instruments. The authors showed that dif-
ferent scoring criteria resulted in from 62% to 84% of veterans 
scoring positive for PTSD via rating instrument versus 40% via by 
direct diagnosis. The authors suggested that the rating instruments 
might be valuable as a pre-screening tool, but that their results 
should be followed up by expert evaluation.

The effects of PTSD have often been considered to be short-
term, but the detrimental effects of the condition can extend over 
the course of a patient’s lifetime, ultimately leading to depression, 
anxiety, and substance use disorders [21]. Eleven percent of Viet-
nam veterans still reported impaired function due to PTSD symp-
toms, 40 years after returning from war [23]. These results are 
conso¬nant with those of civilian PTSD studies where, in spite 
of treat¬ment with pharmacological and psychological therapies, 
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74% of patients have symptoms lasting over 6 months, and up to 
30% of patients continued to have active PTSD symptoms after 10 
years of treatment [24].

Veterans with both PTSD and AUD
Analysis of veterans who have sought treatment for PTSD 

through VA programs, supports the finding of an increased risk 
of Substance Use Disorders (SUD) co-existing with PTSD. Fol-
low-up on data collected during 2004-2006 on veterans with war 
zone exposure from Operation Iraqi Freedom/Operation Enduring 
Free¬dom (analyzed as one set of events), the first Persian Gulf 
War and Vietnam show diagnosis of alcohol abuse and dependence 
of 20%, 25%, and 29% in outpatients and 39%, 44% and 41% 
in in¬patients. Diagnoses of drug abuse/dependence of 6%, 13%, 
13% in outpatients 20%, 34% and 25% in inpatients and were re-
ported. While the most recently exposed veterans have lower rates 
of drug abuse, the comorbidity between PTSD and substance use 
disorders remains a hazard for our veterans. These results also 
demonstrate that there was a consistent rate of diagnosis of PTSD 
and diagnosis of alcohol or drug abuse / dependence across the 
wars, but that the percentages of these symptoms did not change 
with the passage of time [25]. This confirms earlier findings that 
over half of the veter¬ans from Vietnam with PTSD continued to 
show abuse of alcohol in 1996, 21 years after the war was offi-
cially over [26]. As re¬cent reviews have noted [6,7], each of these 
disorders has distinct effects on brain activity, requiring that both 
disorders be treated concomitantly [6]. AUD is the most common 
comorbid disorder with PTSD [2], with the severity of the PTSD 
increasing the odds of developing AUD [27].

The prevalence of AUD rises dramatically in the veteran 
population with PTSD. Department of Veterans Affairs (VA) data 
from 2009 show that of the 5.5 million veterans who received 
health services from the VA 8% had a diagnosis of a substance 
use disorder, but in the veterans with PTSD the number rose to 
23% [8]. The comorbidity has been measured to be as high as one-
third of individuals with life-time PTSD developing symptoms of 
alcohol disorders [28,29]. Also, fewer than 20% of veterans utilize 
VA healthcare services as their primary source of health-care [30]. 
Unfortunately, heavy use of alcohol is also as-sociated with more 
severe PTSD symptoms as well as an extended duration of the 
condition [4,5].

The patterns noted above also hold for civilian popula-
tions. Driessen and colleagues [3] examined the prevalence of 
posttrau¬matic stress disorder (PTSD) in a general population 
of individuals who sought treatment for Substance Use Disorder 
(SUD) in 14 German addiction treatment centers. The authors also 
examined the association between comorbid PTSD and the char-
acteristics of the addiction. In this population of people seeking 

treatment for an addiction, 31% had PTSD and 41% of the people 
depen¬dent on both alcohol and other drugs had PTSD. The au-
thors con¬cluded that PTSD is an independent risk factor for an 
unfavorable outcome in patients with SUD. The extent to which 
these results generalize to a population of veterans is unclear and 
determining if this is the case is one purpose of the present review. 
If it is the case that the results of Driessen and colleagues [3] do 
generalize, then it is imperative to look at possible commonali-
ties in the ef¬fects of PTSD and AUD on brain function and how 
treatment of both disorders can best use this understanding. In ad-
dition, in patients with PTSD and comorbid substance abuse, the 
treatment of PTSD improves symptoms of substance abuse. But 
unfortunately, treatment directed toward sub¬stance abuse does 
not appear to ameliorate PTSD symptoms [31].

PTSD
PTSD Overview

It has been suggested that symptoms of PTSD are directly 
related to a deficit in the extinction of traumatic memories and 
in-creased generalization of that fearful state [32]. The develop-
ment of PTSD is normally attributed to alterations of the stress 
response systems of which the Hypothalamic-Pituitary-Adrenal 
(HPA) axis is a part [33,5]. In veterans with PTSD, changes in tis-
sue volume are seen in areas of the brain that are related to memory 
and emo¬tional integration such as the hippocampus [26,34] and 
amygdale [35]. There are also changes in the negative feedback 
processes that regulate the amygdala, such as reduction in activity 
from the Medial Prefrontal Cortex (mPFC), that regulate executive 
func¬tions-decision making [36,37].

PTSD is induced when fear memories combine with current 
perceived stress / danger in both veterans and civilian populations. 
Stress exposure can enhance the effect of learned fear memories. 
This allows the instigating situation to be less intense than the 
original, but still results in a strong, quickly formed fear response 
[38-40] Because of this, a history of stress exposure well before 
the PTSD-inducing experiences can predispose people to anxiety 
disorders, phobias, and PTSD [41,42]. 

Emotionally powerful memories are more likely to be 
re¬tained by a person since these systems have evolved to help 
main¬tain organism and species survival. This is due to effects of 
stress hormones on memory consolidation [43]. Stress hormones 
originate from the sympathetic nervous system (i.e., epinephrine 
and norepineph¬rine) and the hypothalamic pituitary adrenal 
(HPA) axis (i.e., glu¬cocorticoids) [44-47].

Normally, fear memories are consolidated and stored after a 
traumatic or highly stressful experience. One of the current theories 
is that patients with PTSD have “over-consolidated” that memory 
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and highly resistant to normal extinction processes [40,48,32]. 
Also, the memory has been encoded vigorously enough to be eas-
ily recalled in situations that bear only a small resemblance to the 
original event. 

Preclinical Studies
A large amount of our understanding of PTSD developed 

via studies conducted on rodents. These designs have been based 
on the Pavlovian fear conditioning procedure in which animals 
exposed to an unconditioned stimulus (US, usually a mild foot 
shock) paired with a neutral conditioned stimulus (CS, such as a 
light or a sound) will develop a fear response to the CS. Because 
the neurological effect of rodent fear conditioning is well studied 
and reproducible, it is a popular model for a variety of conditions 
such as anxiety and fear related disorders [49,50], as well as the 
effects of particular drugs on learning mechanisms and stress re-
sponses [6].

In pre-clinical fear conditioning models, the fear condition-
ing itself does not generate PTSD. However, animals that given 
additional uncontrollable stress exposure, such as water depriva-
tion or immobilization, expressed the heightened fear response and 
increased anxiety that is observed in humans with PTSD [38,51]. 
This generation of a PTSD-like state is normally attributed to ei-
ther strengthened encoding [52] or consolidation of the fear mem-
ory [53]. Several variations of fear conditioning that contained 
ines¬capable, random, shock delivery, also generated the symp-
toms of PTSD [54,55]. Prior exposure to multiple shocks enhances 
speed of acquisition of subsequent fear conditioning that resists 
later extinction therapy [40]. 

Neurological Changes in PTSD
Among the best documented brain changes in veterans 

with PTSD are reduced volume in the amygdale [35] and the hip-
pocampus [26]. As noted above, there is an abnormal reduction in 
the activity of the mPFC that is directly related to the heightened 
amygdala activity exhibited by both veterans and civilians with 
PTSD [36,37]. Changes in the neuroendocrinology of patients 
with PTSD are also well documented. Levels of each of the stress 
hormones appear effected long-term for veterans and civilians. For 
example, despite increased levels of hypothalamic Corticotrophin-
Releasing Hormone (CRH) in the cerebrospinal fluid [56,26], 
pi¬tuitary adrenocorticotrophic hormone secretion and serum cor-
tisol levels are reduced (when they would be expected to rise) [5]. 
In addition, civilian studies have shown that lower hair cortisol 
levels were associated with a greater length of time since trauma 
expo¬sure and with higher PTSD intrusion symptoms [57,58].

The sympathetic nervous system shows similar persistent 

ac¬tivation in these populations [59]. Norepinephrine concentra-
tions are increased in the cerebrospinal fluid and serum [60,61]. 
Also, chronic PTSD patients exhibit greater 24-hour urinary 
epineph¬rine/norepinephrine excretion and higher nor epineph-
rine reactiv¬ity to psychological stress than controls than general 
population [62-65] The veteran population has confirmed evidence 
of abnor¬mal noradrenergic function in PTSD [64,66-69] and is 
expected to show similar laboratory values.  

Amygdala and Ventromedial Prefrontal Cortex 
(vmPFC).

The amygdala processes reinforcement in aversive 
situa¬tions and stress-induced enhancement of fear [51]. The 
amygdala also plays a key role in the display of anxiety in respon-
siveness to stress [70], and in the stress-related enhancement of 
long-term fear memory.51 This brain region receives sensory input 
from multi¬ple brain regions and sends projections to several lim-
bic system (Papez circuit) areas that mediate fear responses, such 
as the hip¬pocampus [71,72].

In ongoing PTSD, the amygdala is responsible for the 
gen¬eration of anxiety, and increased fear responsiveness; the 
hypo¬thalamus provides the autonomic responses; and the 
Ventrome¬dial Prefrontal Cortex (vmPFC) proves the negative 
feedback that should regulate the activity of the amygdale [1,73]. 
The vmPFC is generally underactive in PTSD, resulting in the 
continual over-expression of the fear response [51]. This response 
may be due either to the amygdala’s overactivity or the underactiv-
ity of the vmPFC [1].

During fear training in stressed mice, serotonin activity in the 
dorsal raphe and the amygdala will produce stress enhance¬ment 
of fear memory. This is consonant with the role of acute in-creases 
in 5HT in inducing anxiety. Also, previous stress exposure in-
creases amygdala sensitivity to serotonin by increasing the den-
sity of 5-HT2C receptors, allowing greater stress enhancement of 
fear memory without higher concentrations of serotonin [51]. It 
has been well documented, that impairment of the amygdala, as 
the primary neural region for fear conditioning, through lesion, 
pharmacological and neurophysiological studies will prevent the 
formation of fear memory [74-76,77].

Confirmed by data of the structural changes in stressed 
ani¬mals [78], neuroimaging studies have shown reduced amygda-
la volume in veterans with PTSD [35]. This is contrary to the in-
creased neural activity of the amygdala in PTSD. It is speculat¬ed 
that the amygdala is undergoing remodeling in the dendritic 
morphology and the spine density of neurons in the basolateral 
amygdala that may contribute to the inhibitions of the extinction 
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mechanism that are seen in PTSD [79].

Cortical regions, particularly the various sections of the 
mPFC, act as modulators of the fear responses of the amygdale 
[73] and contribute to the response inhibition that occurs during 
extinction [80,81]. Abnormal reductions are shown in the me-
dial prefrontal cortex activity of both veteran and general popu-
lation patients with PTSD [36,37]. The mPFC normally inhibits 
the amygdala. With mPFC activity reduced impairments in the 
extinc¬tion of fear should occur, resulting in prolonged condi-
tioned re¬sponding over time [82]. The symptoms of PTSD may 
be a result of the hyper-responding of the amygdala to fear stimuli, 
without the extinction mechanisms of the cortical regions that re-
sults in the miscalibrated circuit between the mPFC, the amygdala, 
and the HPA axis [83]. It is hypothesized that the suppression of 
the medial prefrontal cortex, resulting in increased generalization 
and a reduced extinction ability are the foundation of the behaviors 
associated with PTSD. This suggests that the enhanced acquisition 
and consolidation of fear memories due to the heightened activ-
ity of the amygdala are secondary effects in the development of 
PTSD [32]. As stated before, because of the connections between 
the mPFC and the amygdala, the hyper-aroused state may be from 
either the suppression of the medial prefrontal cortex, or the over 
activity of the amygdale [1].

The connections between the mPFC and the amygdala have 
mostly been described in primates but have recently also been ob-
served in humans. The connectivity has been observed using new-
er techniques such as the Functional Magnetic Resonance Imaging 
(FMRI) combination with diffusion tensor imaging [84]. In healthy 
patients, increasing levels of anxiety corresponded to increased ac-
tivity of the pathways between the vmPFC to the amygdala, result-
ing in the conclusion that persons with higher levels of anxiety 
would have well developed white matter tracts between amygdala 
and PFC [85].

Hippocampus

Both veteran and general population patients with PTSD 
show decreased hippocampal volumes [26,34]. The reduced hip-
pocampal volume in PTSD can impair the normal HPA response 
as well as memory processes [86]. The hippocampal reduction is 
thought to be due to neurotoxicity via increased levels of cortisol 
during the time of the initial trauma or increased sensitivity [5] of 
the hippocampus’s high concentration of glucocorticoid recep-tors 
[87]. Resolution of PTSD symptoms and treatment with parox-
etine are associated with an increase in hippocampal volume [88]. 
The hippocampus is an important region for memory forma¬tion, 
modulation and learning, including fear conditioning [89]. It 
is also important for the termination of the stress response [87]. 

While the amygdala is more responsible for emotional memories, 
the hippocampus is more important for contextual learning and 
trace fear conditioning [71,90,91]. If the amygdala is damaged or 
suppressed a patient will remember the US (e.g. mild shock, or 
unpleasant sound) paired with a neutral conditioned stimulus but 
not remember the fear [92]. However, if the hippocampus is dam-
aged or suppressed, a patient will recall the fear but not what hap-
pened, the unconditioned stimulus [93]. The hippocampus is also 
involved as a suppressive factor to the stress response of the HPA 
[89]. Lesions of the hippocampus increase CRH in the brain [87]. 
This increase in CRH is seen in veteran PTSD populations [56,26] 
and is a mechanism that is known to increase the effect of the 
amygdala on memory consolidation, adding an additional pathway 
of the hippocampal dysfunction to the symptoms of PTSD [1,94].

Hypothalamic-Pituitary-Adrenal Axis (HPA) 

The HPA axis is activated by stress, involving activation 
from the amygdala, resulting in an increase of the release of corti-
sol (corticesterone in rodents) and other glucocorticoids from the 
adrenal gland [5]. The increase in cortisol garners the fight or flight 
response, and eventually inhibits the HPA axis in the self-regu-
lating termination of the stress response [95]. However chronic 
or extreme stress can cause HPA axis dysregula¬tion. This type 
of dysregulation is seen in PTSD with low cortisol levels and an 
enhanced cortisol suppression response in dexam¬ethasone chal-
lenge testing [95]. In addition to glucocorticoids, the HPA releases 
epinephrine/norepinephrine but with a faster peak onset [96].

As mentioned above, HPA axis stress activation results in 
the release of glucocorticoids. These, in addition to a variety of 
responses in the body to adapt to confrontation and challenge 
[96], also act as negative feedback to the acute stress response of 
the sympathetic nervous system [97] and have an effect on stress 
relat¬ed memory. Glucocorticoid effects on memory appear to be 
time dependent. During stress exposure glucocorticoids act in the 
baso¬lateral amygdala. They appear to allow epinephrine and nor 
epi¬nephrine to enhance memory of the stress inducing situation 
[98] After an hour or more, the function of the glucocorticoids 
changes to suppress new information while shutting down the 
acute stress responses [99].

The information encountered during the stressor is given 
pri¬ority in two ways. First, the information encountered during 
the event is promoted for consolidation and later retrieval. Second, 
by reducing competing information from the stressor, the formation 
of memories is enhanced [59]. If the levels of cortisol are already 
altered before the stressor, the result may be “over-consolidation” 
and impaired memory retrieval [59]. This explains the studies 
identifying low cortisol in the face of trauma as a predisposing fac-
tor for the development of PTSD [100]. The primary hypothesis is 
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that the reduced cortisol signaling would impede the cortisol lev-
els necessary to extinguish the HPA axis generated stress response 
that would result in the mounting fear response characteristic of 
PTSD. This appears plausible based on corticosterone treatment 
after stress being able to rescue PTSD like behavioral effects in 
animal models [101].

Patients with PTSD have increased levels of CRH in the ce-
rebrospinal fluid. This is often released from the hypothalamus dur-
ing the stress response [102]. However, unlike the normal stress, 
processing in the presence of CRH, patients with PTSD retain re-
duced levels of serum cortisol and adrenocorticotropic hormone 
from the pituitary [5]. The reduction of cortisol levels in patients 
has been correlated with a greater length of time since the trauma, 
and higher PTSD intrusion symptoms [58]. In addition as men-
tioned above, the response suppression to both CRH and cortisol 
are strongly enhanced in patients with PTSD during a dexametha-
sone suppression test. Patients also exhibit an elevated sensitiv-
ity to glucocorticoids in lymphocytes [53]. The elevated levels of 
CRH may bias the sensitivity to the negative feedback of cortisol 
at the pituitary [5]. Also due to the effect of CRH on the basolateral 
complex of the amygdala, the elevated levels of CRH enhance the 
influence of the amygdala on mem¬ory consolidation, which may 
be one pathway to the development of the condition [94].

Sympathetic Nervous System

In response to stress, the sympathetic nervous system rap-
idly releases epinephrine and norepinephrine. Through second 
messen¬gers in the basolateral amygdala, the Noradrenergic/
Norepineph¬rine (NE) system is a largely implicated in memory 
consolidation during stress [103]. Epinephrine and norepinephrine 
are influential in the consolidation and retention of memories dur-
ing emotional events [59]. Noradrenergic signaling is also critical 
for the later reconsolidation of fear learning [104]. Abnormal no-
radrenergic function in PTSD has been found in both general and 
veteran pa¬tients [5]. As mentioned earlier, veteran and general 
population PTSD patients show heightened levels of norepineph-
rine in the cerebrospinal fluid and in serum than civilian controls 
[60,105]. This is similar to what has been observed for civilians 
with greater 24-hour urinary excretion of epinephrine/norepineph-
rine metabo¬lites [5]. 

In PTSD, abnormal noradrenergic function is theorized to 
contribute to the deficits in fear acquisition and extinction, and 
to symptoms of hyper-arousal [106]. Patients with PTSD also 
exhibit an enhanced norepinephrine response to stress relative 
to controls [65]. This has led to the theory that the sympathetic 
nervous sys¬tem is consistently overactive in patients with PTSD 
[59], which correlates well with the extended low cortisol levels in 
PTSD pa¬tients. Like CRH, norepinephrine trig¬gers consolida-

tion of fear memory [107]. Noradrenergic blockade by propranolol 
injection into the lateral nucleus of the amygdala in rats, blocks 
reconsolidation of fear memory [104,108]. This manipulation was 
also shown to work with systemic dosing in humans by block-
ing reconsolidation of cue and context fear conditioning if given 
within a matter of hours after the trauma [104,108].There are sev-
eral drug treatment methods that rely on immediate treatment after 
trauma to block the development of PTSD. Treatment strategies 
include administering β-adrenergic receptor antagonists following 
retrieval of fear memories to block the reconsolidation of the fear 
memory, as secondary prevention with administration directly af-
ter the traumatic event. While β-antagonists appear to have poten-
tial, α2-agonists such as clonidine, also show promise. In contrast, 
the β-agonist isoproterenol and the α2-antagonist yohimbine show 
the reverse effect, enhancing reconsolidation of the fear memory 
and blocking extinction [104,108,109-111].

Alcohol Use Disorder (AUD) AUD
AUD Overview

AUD has been characterized as a chronic relapsing brain dis-
order as with many other SUDs [112]. A pattern of both posi¬tive 
and negative affective states is associated with substance use – ear-
ly stages and the rising of the brain levels of the drug tend to be as-
sociated in at-risk persons with pleasure. In contrast, in later stages 
of the disorder and falling brain drug levels tend to be associated 
with negative effect. Elsewhere, we have discussed these ideas in 
greater detail as reflecting want and need for the drug [113,114]. 
These changes are thought to be due to adaptations in the brain that 
constitute the addictive process [115-117].

Animal Model
Exposure to alcohol-associated environments or triggers 

can cause relapse in abstinent alcoholics [118,119]. This mecha-
nism is often modeled in rats strains bred for high alcohol intake 
us¬ing a training period of alcohol self-administration, followed 
by extinction training. Various models [120] have been used to test 
reinstatement and extinction patterns and to study the addiction 
process [121,122].

Neurological Changes in AUD
Effect of Acute Alcohol Abuse and the Self Treatment of PTSD 
Symptoms.

One of the factors that may lead to comorbid AUD for pa-
tients with PTSD is the attempt to self-medicate PTSD symptoms 
with alcohol. The acute effect of alcohol on the anterior cingulate 
cortex may, in part, be responsible for the perpetuation of the al-
cohol use in these patients. Images or triggers of alcohol activate 
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several regions of the “emotional” brain including the anterior 
cingulate cortex and the mPFC [123,124]. The taste of alcohol 
in heavy drinkers also activates the mPFC [125]. PTSD patients 
have a hypo-activity in the anterior cingulate cortex [126] and in 
the mPFC [36,37], with a correspondingly hyperactive amygdala. 
This change in pattern of brain activity appears to leave leaving 
PTSD patients with a higher susceptibility for continued AUD.

Effect of Chronic Alcohol Abuse

After alcohol use becomes chronic, individuals exhibit 
corti¬cal shrinkage [127] and white matter changes [128,129] that 
are most pronounced in the PFC and orbitofrontal regions of the 
brain. The abnormal prefrontal activity suppresses executive func-
tion and has been associated with the decreased ability to monitor 
and resolve conflict [130]. Chronic AUD also leads to a reduced 
activity of the rostral anterior cingulate cortex that has been linked 
to inappropriate evaluation of negative emotions displayed by 
other people [131]. Animal and human neuroimaging studies have 
also shown changes in several neural circuits within the limbic 
system due to AUD that provide glutamine and dopamine input 
to other emotion-associated brain structures [125]. These include 
the ventral striatum - involved in cue-induced drug seeking [132], 
striatal-palladic-thalamic loop–associated with automaticity of be-
havior [133], and prefrontal cortices that are directly involved in 
atten¬tional selection / executive control [134].

The connection between the posterior cingulate cortex, cu-
neus, and mPFC is referred to as the default mode network [135]. 
During rest, this network is highly connected, but is decoupled 
during task performance, which is thought to increase processing 
efficiency [136]. The connectivity of this network is reduced in 
alcoholics, but appears to undergo a functional restoration after 
prolonged periods of alcohol abstinence [137]. The white matter 
connecting subcortical and cortical portions of the limbic system 
is also altered in AUD [138,139]. Together, the changes lead to 
a reduced ability to override learned behavior such as inhibit-
ing strongly incorporated habits and reactive behaviors such as 
drink¬ing. It appears that the neural changes prevent the patient 
from overcoming old habits, because of the inability to deactivate 
the posterior cingulate cortex. These individuals also show a re-
duced ability to learn some new behaviors [140].

In normal individuals, the posterior cingulate cortex and 
midbrain are inactive during repetitive or automatic tasks, and 
ac¬tive during tasks that required flexibility or modification of 
previ¬ous routines. In alcoholics, the brain activity patterns are 
reversed [140]. Because the midbrain regions are involved in re-
wards [133,141], sensorimotor integration [142], and motor based 
learn¬ing [143], the reduced down regulation of midbrain activ-
ity during repetitive tasks is consistent with the reduced ability to 

learn new repetitive behaviors [125].

AUD also alters executive control and repetition learning 
through decreased input from the posterior and middle cingulate 
cortices. The middle cingulate cortex is associated with response 
selection and decision-making [144]. The middle cingulate is more 
active during difficult tasks in chronic alcoholics. This is thought 
to be because of the deterioration in the activation of the posterior 
portion of the system [125]. There is also an increased connectivity 
between the striatal regions and the middle cingulate cortex.

Increased activity of the mid plus dorsal anterior cingulate 
cortices at rest is considered a risk factor for the development of 
PTSD [126]. Furthermore, smaller brain volumes in the meso-
cortical limbic system have been linked to relapse in patients with 
AUDs. As already noted, the limbic system is involved in impulse 
control, emotional regulation, and craving as a part of providing 
the links between the current situation and memory and the energy 
/ motivation to carry out behaviors than enhance organismic and 
species survival [145]. Unfortunately the reduced activity of the 
mPFC in PTSD may enhance alcoholic relapse. AUD suppresses 
the cognitive control mechanisms typically invoked to process high 
conflict and error learning paradigms [146]. This would be expect-
ed to complicate the already altered decision making pro¬cesses 
and baseline anxiety levels of a patient with PTSD.  

Effect on reward pathways

There is consensus that dopaminergic transmission in the 
midbrain and ventral striatum occurs in response to the drug trig-
ger in a person with AUD [1,13,114]. This follows from the con-
cept of “incentive salience” or the role of dopamine in determining 
which stimuli in the environment are significant to the organism 
[113,114,147]. Drug exposure elicits a “want” response in the indi-
vidual [140, 148-150]. The dopaminergic connection between the 
Ventral Tegmental Area (VTA) and the limbic system, including 
the nucleus accumbens, and the frontal and prefrontal cortices, is 
known as the “pleasure pathway” of the brain [113,151]. In AUD, 
images of alcoholic drinks activate brain regions of the brain asso-
ciated with “want” (including the anterior cingulate cortex, mPFC, 
insula and ventral striatum) [123,124,152,153]. Overall, data sug-
gest an important role for limbic system dopamine and the rostral 
anterior cingulate cortex as well as dopamine receptor concentra-
tions and reactivity in the reward and trigger- processing of drug 
addiction [140].

Treatment
Review of Ethanol Use Disorder Treatments

The treatment of AUDs, after the acute intoxication is past, 
is focused on reducing the cravings for the drug. Current theo-
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ries indicate that returning the activity of limbic system pathways 
to-wards normal will reduce drug cravings [113,114]. Three tar-
gets that have shown response in reducing alcohol cravings are 
opi¬ate receptors and voltage gated sodium and calcium channels. 
By blocking opioid receptors, further development of the addictive 
process may be halted and the patient’s neural firing in the VTA 
pathways can begin to be normalized [114]. Patient adherence to 
opioid antagonist therapy (naltrexone or nalmefene) can be an is-
sue since opioid antagonists block en¬dogenous opioids and can 
induce a hyperalgesic conditions in which normal sensory stim-
uli can become uncomfortable [154]. Naltrexone (a competitive 
antagonist at mu and kappa opioid receptors) was one of several 
agents shown to reduce alcohol cravings and normalize some of 
biological markers in the treatment of AUDs [114]. There also has 
been evidence of reduced ethanol cravings from medications that 
block voltage-gated sodium and calcium channels, including lam-
otragine, gabapentin and topiramate [155,114]. The major drugs 
with addictive potential also act on the extended amygdala and the 
HPA axis, leading to changes in limbic system CRH [44]. Patients 
with PTSD already have elevations in CRH [56,156] and increased 
amygdala activity. Thus, such medications might have multiple 
benefits for patients with PTSD. It is possible that more links be-
tween the treatment of PTSD and substance use disorders will be 
found as the understanding of the brain stress systems develops.

Non pharmacological Treatment of PTSD 

Non-drug treatment overview

Currently, the first-line treatment for PTSD is behavioral 
therapy in one of several forms. Pharmacological treatment is seen 
as second-line. The US Department of Defense and VA prac¬tice 
protocols [157], as well as all other major clinical guidelines 
[158,159] including those of Austria [157] and Australia [160] cite 
psychotherapy as the predominant treatment approach for PTSD. 
In particular, Eye Movement Desensitization Reprocess¬ing 
(EMDR), Cognitive Processing Therapy (CPT), and Prolonged 
Exposure Therapy (PET) are the most used forms of therapy for 
these patients [157,158,160,161]. As of 2015, 98% of VA centers 
in the US offered both CPT and PETs [162-164]. EMDR is not as 
easily available, but as evi¬dence in veteran populations increase, 
it is expected to be utilized more widely because of results in civil-
ian studies [162].

Trauma- vs Non-trauma-focused therapy

The behavioral therapies for PTSD are classified into two 
main types, trauma-focused and non-trauma-focused. Non- 
trau¬ma focused therapies include supportive therapy, psychody-
namic therapy, hypnotherapy and stress management [165]. These 
thera¬pies focus on current situations, stress and recent reactions 

as well as personal interactions and future goals [162]. Support-
ive therapy often relies on active listening and emotional support 
and encour¬agement. Psychodynamic therapy places more of an 
emphasis of analyzing unconscious mental processing or confront-
ing and dis¬cussing the underlying sources of a patients actions. 
Hypnothera¬py, also deals with the subconscious, focuses on in-
ducing a relaxed state in the patient that would be more open to at-
titude changes. With the exception of stress management therapy, 
non-trauma based therapies have not shown to reduce the symp-
toms of PTSD in either civilians or veterans to a significant extent 
[160,161,166]. Stress management (also called stress inoculation 
training), is often recommended as an adjunct to trauma-based 
therapies. This ther¬apy teaches the patient anxiety management 
skills. This includes, but is not limited to, breathing exercises and 
methods of positive thinking to help control negative thought pat-
terns [162,167].

Trauma-based therapies

These include CPT a specific form of Cognitive Behavior 
Therapy (CBT), Prolonged Exposure Therapy (PET), and Eye 
Movement Desensitization Reprocessing (EMDR). Each will be 
discussed in turn.

Cognitive processing therapy

CPT induces the patient to reprocess the traumatic event(s) 
through writing, and subsequently speaking about the details of 
the event. The therapist also questions the patient about the event. 
Thus, this method is analogous to the reprogramming of memo-
ry during a reprocessing window that has been effective in pre-
clin¬ical and clinical studies in addicted populations [168]. CPT 
has shown positive outcomes in veterans [158,169-171]. CPT in-
cludes aspects of the more general CBT [158,169-174]. In CBT, 
the patient works to identify problem behaviors and develops cop-
ing strategies and emotional regulation to reduce the problematic 
behavior [175,176]. Formal CBT has also shown to be effective in 
veterans [158,169-171,177,178]. Unlike CPT, CBT does not focus 
on exposure or re-experiencing the traumatic event.

Prolonged Exposure Therapy

PET, (also termed flooding) is similar to the above in that the 
patient repeatedly recounts, men¬tally re-experiences, and is en-
couraged to process the trauma from different perspectives using 
cues from the therapist. The patient also repeatedly engages with 
their fear triggers [179].

Eye Movement Desensitization Reprocessing (EMDR)

EMDR is an extension of PET in which the patient is exposed 
to the traumatic memories coincident with a small distrac¬tion. In 
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the original version of EMDR, the distraction consisted of hand 
movements of the therapist to direct movements of the pa¬tient’s 
eyes. More recent versions of EMDR include other types of dis-
tractions such as hand-tapping or audio cues [162,180]. Results 
with EMDR have been obtained from a few studies showing large 
symptom reduction in veterans [181], including results maintained 
at 9-month follow-up and 78% of completers no longer meeting 
criteria for PTSD [182,183-185]. Much of the evidence supporting 
EMDR is still from studies in civilians [186].

Therapeutic Commonalities

Each of the PTSD treatments discussed above focuses on 
the idea that learning to reprocess the old emotional memory will 
allow the patient to develop less dramatically fearful responses to 
triggers of that memory and help the patient to extinguish their 
original responses to the memory through re-experiencing the 
trauma in a safe setting. Trauma based treatments focus on extinc-
tion of the original emotional, fearful response. This neurological 
response will be discussed in greater detail later, as it is also a 
target for adjunctive pharmacotherapy.

This is expected to be more difficult in the veteran PTSD 
population than in the general population, in part because a veteran 
is highly unlikely to have had only one traumatic experience [187-
190]. Single versus multiple traumatic exposures may help explain 
the finding that outcomes for PTSD treatment in civilians tend to 
be more positive than in the veteran population [191].Veterans and 
refugees are exposed to chronic and complex trauma, unlike the 
majority of the general population who are treated for PTSD. This 
may help explain the higher effectiveness of trauma-based versus 
non- trauma based therapies in veterans versus the general popula-
tion [192].

Since the traumatic memories are brought to conscious-
ness in the patient many times during the therapy, such sessions 
are emotionally demanding and unpleasant, and are intention-
ally de¬signed to increase the patient’s level of anxiety [160]. 
Also, each session requires from 30-90 minutes and 12 sessions 
are typically expected for these types of therapy to have an effect 
[162,193]. The number of required sessions is still a matter of de-
bate, with numbers ranging from 9 to 12 [160, 165, 191]. As men-
tioned earlier, reducing the required time in sessions is considered 
an impor¬tant step in increasing patient compliance and reducing 
drop-out rate in treatment. Options have included a more intense 
2-week process [191], decreasing the trauma sessions to 30 min, 
and adding medications.

Behavioral therapy in veterans

As mentioned above, most studies on PTSD treatment are 
done in the general population, and this may have led to some 

disparities in the literature due to differences in gender, types of 
trauma, and length of time before the initial trauma was treated. 
Steenkamp and associates [160] conducted a meta-analysis on the 
current data available from randomized, intent to treat, trials for 
psychotherapy for military-related PTSD. While only 36 of the 
available 891 publications qualified for the study, the authors’ main 
conclusion was that trauma-focused therapy, specifically CPT and 
PET both yielded clinically meaningful improvements, even with 
high dropout rates. The authors indicated two study weaknesses: 
up to three quarters of the patients in behavior therapy studies were 
also on uncategorized psychotropic medications and many stud-
ies have been quoted as using “treatment-as-usual” as a control 
group without further information.158 This meta-analysis defined 
clinically meaningful symptom improvement as a 10 -12 point 
re¬duction in PTSD symptoms, as reported by either the patient 
or the interviewer with either the PTSD Checklist or the Clinician 
Administered PTSD Scales. However, mean post treatment scores 
for both types of treatment remained at or above the diagnostic 
cutoff for PTSD. Thus, 60-72% of the enrolled patients retained 
their PTSD status at the end of the studies. It should be noted that 
the two trauma-focused psychotherapy approaches still performed 
better than non-trauma-based protocols. Overall, CPT has shown 
large effect sizes when compared with both non-treatment and 
treatment as usual patients [160]. There is an ongoing multisite tri-
al directly comparing cognitive processing therapy and prolonged 
exposure in 900 male and female veterans that should yield helpful 
results [194].

Extinction Training
Extinction is normally associated with the removal or deg-

radation of a consolidated memory response. The response can be 
a positive response to the stimulus such as reducing craving by 
taking a drug; it can also be a negative response such as a fear 
response to a stimulus. Extinction is considered an active learning 
process where the brain incorporates new information to memo-
ries and experiences from the past that have been learned. It thus 
represents an active inhibition of previously learned emotional and 
physical responses. Although both AUD and PTSD have shown 
promise in terms of responses to extinction training in labora-
tory settings, the treatment of PTSD patients has shown greater 
prog¬ress in applications in non-laboratory settings. While areas 
of in¬terest include SUD, anxiety disorders and PTSD [195] the 
majority of extant extinction research focused on the extinction 
of aversive memories [196,114]. The goal of extinction therapy 
in PTSD treatment is to allow the patient to have a new neutral 
response to a stimulus previously associated with intense fear. In 
SUD (including AUD) treatment, extinction training focuses on 
reducing the cravings instigated by objects or situations that the 
patient associates with alcohol or drinking. The extinction training 



Citation: Loggins, K., Wilcox RE, Gutierrez CA (2017) Treatment of Co-Morbid Alcohol Use Disorder and PTSD In Veterans. J Addict Ther 2017: J112

Volume 2017; Issue 0310

for both PTSD and AUD is intended to reduce the consolidated 
responses of fear or alcohol craving to the stimuli that would nor-
mally instigate the condition dependent response in the patient.

Drawbacks of Extinction

One of the primary concerns about extinction therapy is 
the change from a treatment setting to normal life [195,197]. The 
treatment is time consuming, and not normally considered pleas-
ant for the patient, and a portion of patients will not respond to 
treat¬ment, relapse or drop out of treatment [198,199]. Because of 
this and the possibility of improving the efficiency of the extinc-
tion process, pharmaceutical augmentation continues to be an area 
of strong interest [200]. 

Extinction in PTSD

Extinction methods have shown to be effective in PTSD 
therapy and show increasing potential with adjunct pharmaceuti-
cal treatment; the extinction mechanism is part of each style of 
trauma-focused psychotherapy. PTSD is thought to be a result of 
fear memories that are resistant to extinction. The current theory 
is that individuals with PTSD have a fear inducing memory that 
is resistant to extinction or modification via new experiences, 
due in part to the state of hyper-arousal that a mortally danger-
ous situ¬ation can cause. It has also been theorized that substance 
craving triggers are also resistant to extinction because their effect 
on do¬paminergic pathways is more intense than that of natural 
reward [196].

As stated above, exposure procedures are a first-line treat-
ment for PTSD [201,202]. Continued exposure of the patients 
to the fear triggers in a safe environment has shown relative ef-
ficacy in the extinction of the fear response in PTSD [186] and 
anxiety [202,203]. Unlike extinction techniques in substance use 
disorders which focus on the stimulus-reward pathway, extinction 
tech¬niques in PTSD also involve fear acquisition. Because of 
the emo¬tional component in neurological processing of the fear 
response, extinction therapy for PTSD is thought to focus in the 
amygdala, the HPA axis and the PFC. This gives additional tar-
gets for phar¬maceutical modification [204,205] with promising 
clinical trials [206]. Adjunctive pharmaceutical treatment is being 
perused to increase the likelihood that the memories of safety will 
dominate over the original emotional response of fear [197].

Neurochemical Changes In PTSD and Pharma-
cotheapy
Serotonin

Affective disorders, including PTSD, are linked to 
dys¬regulation of serotonergic systems. Serotonin is one of the 
car¬dinal mediators involved in the amygdala’s ability to con-
solidate fear memories and regulate anxiety and emotions such 
as anger [207]. Studies of civilians with PTSD show patterns of 
decreased amygdala Serotonin Transporter Protein (SERT) bind-
ing [208]. Above, we noted a loss of amygdala volume. Together 
such chang¬es may contribute to the loss of extinction and to a 
hyper-excitable state. The result is less control over anger and 
other emotions. The amygdala’s enhanced consolidation of fear 
memory in people with PTSD is mediated by serotonin, primarily 
through serotonin-2 re¬ceptors. As indicated above, the enhanced 
consolidation is selec¬tively enabled by a prior history of ines-
capable stress exposure [51]. Both animal and human studies of 
control subjects show an increase in fear memory acquisition and 
expression after Selective Serotonin Reuptake Inhibitor (SSRI) 
treatment [209-211]. The re¬duced expression of the SERT leads 
to serotonin remaining in the synaptic cleft for a longer period and 
greater stimulation of sero¬tonin receptors and a net increase in 
serotonin activity. Excess sero¬tonin activity is linked to altered 
threat processing, with increased amygdala reactivity to phasic 
aversive stimuli [212]. Essentially, excess serotonin during the 
time of fear conditioning increased the fear response generated by 
the experimental protocol. Administra¬tion of a serotonin 2A re-
ceptor agonist (that mimics endogenous serotonin) after fear con-
ditioning increases the expression of the fear, and concordant with 
the expected pattern; administration of a serotonin 2A receptor an-
tagonist blocks acquisition of the fear memory [213]. These results 
support a therapeutic opportunity to modulate fear processing us-
ing serotonin-2 receptor antagonists. In basolateral amygdala neu-
rons there is a high concentration of serotonin-2 receptors; these 
are thought to help to regulate anxiety [214]. Similar to the sero-
tonin 2A receptor responses to agonists and antagonists, increased 
expression of the receptors (through gene modification therapy in 
animals) increases sensitivity to sero¬tonin induced anxiety levels 
[215], and pharmacologic blockade of the serotonin-2C receptor 
prevents stress induced anxiety [216].

The amygdala, hippocampus, and frontal cortex receive se-
rotonergic input via projections form the dorsal and median raphe 
nucleus [217-219]. During rodent aversive learning, serotonin 
is released in the dorsal raphe nucleus projection regions [220-
222], where it remains elevated in the downstream target of the 
baso¬lateral amygdala for an hour or more after training is com-
plete [223,224]. Rodent studies have shown that repeated stress 
expo¬sure increases the intensity of fear learning [38] that is in-
duced due to the serotonergic processes involved in the consolida-
tion of fear training. Fear learning requires serotonin activity in the 
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dorsal raphe nucleus during fear conditioning as well as serotonin 
activ¬ity at the serotonin-2 receptor of the basolateral amygdala 
after the fear conditioning is complete [217,225-228]. Stress en-
hances the expression of serotonin-2 receptors in the amygdala, but 
does not alter the serotonin levels present during fear conditioning. 
This allows serotonin stimulation in the dornal raphe nuclei that is 
not present in unstressed animals and may alter processing of fear 
con¬ditioning in a stressed animal. Also, inhibition of the seroton-
ergic dorsal raphe during fear conditioning prevents the stress in-
duced enhancement of the fear training [51]. Consistent with these 
re-sults, administration of a serotonin-2C antagonist agomelatine 
seems to reduce the consolidation or reconsolidation of traumatic 
memories; this agent has had beneficial effects in PTSD [229].

Role of Serotonin in Extinction Therapy

Fear-learning and extinction are fundamentally controlled 
via the amygdala, interacting with the hippocampus and the mPFC 
[80,230,231]. Serotonin is expected to play a pivotal part in fear 
acquisition, expression and extinction, since (as noted above) acute 
administration of a serotonin-2A receptor agonist can change the 
development and processing of fear. If the serotonin 2A agonist 
is administered after fear conditioning, it increases the expression 
of the conditioned fear [232]. If the serotonin 2A antagonist is 
admin¬istered before fear conditioning, the fear development is 
blocked [213]. If the serotonin 2A agonist is administered before 
extinction, extinction is enhanced [232]. However, chronic SSRI 
use impairs fear learning, and interferes with the extinction of fear 
memories [233]. It is well documented that SSRIs increased cued 
fear acqui¬sition and expression in rodents and human patients 
[209-211].

It is thought that the serotonin decreases the activity of the 
amygdala during the extinction process and during initial fear 
con¬ditioning by down-regulating the NR2B subunit of the N-
Methyl-D-Aspartate (NMDA) receptors in the lateral and basal 
nuclei of the amygdala through a change in glutamate transmis-
sion. Fear learning during both initial fear conditioning and ex-
tinction de¬pends on the activation of these receptors [233,234]. 
SSRI’s are a first line pharmacological treatment for PTSD. Thus, 
the effects of such medications on extinction treatments is of direct 
clinical importance, since it may explain the lack of clinical effec-
tiveness in SSRI treatment with psychological fear extinguishing 
[233].

Glucocorticoids

As mentioned above, the HPA releases cortisol (a gluco-
corticoid) as a response to stress. Patients and rodent models of 
PTSD show that dysregula¬tion of cortisol during or after chronic 
or extreme stress is linked to symptoms of PTSD, with reduction 

of symptoms of veterans with PTSD reduced by treating with a 
combination of hydrocortisone and traumatic memory reactivation 
therapy [235]. Glucocorticoid modulation enhances extinction, 
since extinction therapy using a combination of such medications 
with behavioral therapy has been shown effective in non-PTSD 
disorders [236,237]. Glucocor¬ticoid modulation in the forms of 
hydrocortisone combined with prolonged exposure therapy has 
resulted in greater patient reten¬tion during fear extinction ther-
apy sessions [238]. In preclinical studies, glucocorticoids are also 
linked to modulation of memory consolidation [106, 237,239].

Opioids

Opioids are involved in the regulation of conditioned fear 
extinction. Opioid signaling in the ventro-laterial periaqueductal 
gray matter is thought to be responsible for the activation of the 
mPFC and the baso-lateral nucleus of the amygdale [240,241]. 
Opioid antagonists increase conditioned fear [32]. In rodent stud-
ies, opioid antagonists either prevent fear extinction or enhance 
fear acquisition [242-244]. In rodent studies, mu opioid receptor 
antagonism increases contextual fear conditioning [245,246] and 
prevents the extinction of previous trained fear responses [247]. 
This represents a problem for individuals suffering from both 
PTSD and AUD. This is because mu opioid receptor antagonists 
(naltrexone and nalmefene) are considered first-line for the treat-
ment of AUD and opioid use disorders.

Kappa opioid receptor antagonism decreases condi-
tioned fear, in both the baso-lateral and the central nuclei of the 
amygda¬la. If the antagonism is only in the central nuclei, there 
is a gener¬alized anxiolytic effect. Fear conditioning increases 
the density of kappa opioid receptors in the baso-lateral amygdala 
while reduc-ing them in the corpus striatum (of the basal ganglia) 
[245,246]. In humans, lower kappa opioid receptor expression is 
associated with greater symptoms following trauma [248]. Opioid 
agonists, such as morphine have been shown to block conditioned 
fear ac-quisition in both rodent and human testing in normal fear 
train-ing and post-stress fear training [249,250]. This model is be-
ing investigated for secondary preventative treatment after trauma 
to prevent PTSD [32]. In rodents, nociceptin/orphanin FQ recep-
tors (also known as the kappa-type 3 opioid receptor), activation 
ap¬pears to block contextual and cued fear consolidation in con-
trols and model-PTSD subjects. 

Post retrieval Extinction

The normal pattern of extinction training appears more 
ef¬fective if the patient or subject receives a memory cue before 
the extinction therapy (post-retrieval extinction) [195]. This ap-
pears to be because activation of the PFC allows more effective 
extinction of the fear mechanism than during the normal extinc-
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tion training when the PFC is not activated [251]. In rodents the 
memory cue is a reminder foot shock paired with the conditioned 
stimulus 10 minutes before the extinction training takes place. This 
is thought to reactivate the original memory and to expose the sub-
ject to the extinction training during the reconsolidation window. 
This window is speculated to close within 6 hours of the memory 
retrieval, but during that period the original memory is thought 
to be altered (instead of layering on new conflicting memories) 
[251-253]. The reconsolidation system seems to be a method for 
the brain to update an old memory or response to be consistent 
with current contexts [254,255]. This effect on fear extinction was 
reduced when rodents were housed in groups as opposed to the 
dramatic effects when the animals were housed separately [195]. 
This may be due to increased stress on the animals effecting the 
extinction learning of fear responses [ 256-258] In humans, the 
effect of post-retrieval extinction therapy has been classified as 
moderate in preventing the return of fear [195]. Mirroring the ef-
fectiveness in animal models, convincing suppression of heroin 
use for 180 days in humans has been shown [259,195]. The effect 
of post-retrieval extinction vs. standard extinction therapy for fear 
is also time dependent. Studies that tested return of fear after a 
long delay after training (6-30 days) showed large and significant 
effects. Studies that tested the return of fear after a shorter delay 
(1-3 days) only showed small and non-significant effects. This pat-
tern was not seen in extinction of appetitive studies. This is an area 
that requires more research [195].

Pharmacological effects

One of the effective treatments in fear [252] and appeti-
tive memory training in animals is the use of protein-synthesis 
inhibi-tors or receptor blockers, to interfere with the original 
memory. For example, the administration of a beta-adrenergic or 
NMDA receptor antagonist during the reconsolidation window 
can block the return of the fear or the craving [252]. Thus far, the 
pharmaco¬logic blockade approach has a moderate effect size in 
reducing ap¬petitive responses in animals [260] and fear responses 
in humans [261,195]. Extinction in both PTSD and drug-seeking 
for ethanol [262], and nicotine (smoking) [262-264] was facili-
tated with the administration of d-cycloserine (a partial agonist at 
NMDA receptors, producing some of the effects of glutamate) af-
ter extinction training. Propranolol (beta-adrenergic blocker) has 
been used in post-retrieval sessions to lower sympathetic nervous 
system reactivity to mental imagery of the trauma a week after 
treatment [265]. This was replicated in PTSD patients and yielded 
a reduction of PTSD symptoms over time [266]. These approaches 
appear promising, as post-retrieval extinction strategies become 
more common in clinical practice.

Pharmacological Treatment Of Veteran PTSD 

Patients
Pharmacological treatment of PTSD

Guidelines agree that pharmacotherapy should occur in 
conjunction with behavior therapy. However, most medication 
regimens have inadequate evidence for treating PTSD even in the 
general population [267]. As stated above, most guidelines are es-
tablished in civilians; also, these studies utilize a greater propor-
tion of females than occurs with veterans. Female veterans need 
to be treated for PTSD just as much as their male counterparts. 
However, gender differences in response may dictate additional 
studies to insure that both male and female veterans receive opti-
mal therapies. 

Serotonin Reuptake Inhibitors

Based on the discussion above that serotonergic dysfunc-
tion underlie many PTSD symptoms, both first -line treatments for 
PTSD include Selective Serotonin Reuptake Inhibitors (SSRIs) or 
Selective Norepinephrine Serotonin Reuptake Inhibitors (SNRI). 
The most commonly cited SSRIs are fluoxetine, paroxetine or 
sertraline, or the SNRI venlafaxine XR [159-161,165]. Veteran 
PTSD has had positive results using paroxetine (SSRI) [268] and 
flu¬voxamine (SSRI) [269,270] in open trials. Additional medica-
tion classes such as Tricyclic Antidepressants (TCA) and Monoam-
ine Oxidase (MAO) inhibitors are normally either not encouraged 
or not considered until SSRI’s or SNRI’s have been attempted be-
cause of the greater risk for side effects with these agents [160]. In 
veterans, this approach has been questioned [271]. There is a lower 
proportion of female veterans with PTSD [9]. Also, most veterans 
are exposed to a multiple traumatic experiences over an extended 
time period often in conjunction with traumatic brain injury. Fi-
nally, we noted above that SSRI’s may interfere with the extinc-
tion process, although this remains a topic of some controversy. 
We note that newer drug treatments for PTSD are often compared 
against an SSRI because it is often considered a standard of care, 
or because an SSRI is allowed during evaluations of behavioral 
therapy.

According to the VA DoD Clinical Practice Guidelines, 
af¬ter an adequate trial of SSRI/SNRI, agents with different mech-
anisms of action (such as the G-protein coupled receptor blocker 
mirtazepine) should be considered [272,165] and this agent has 
shown with good responses in civilians [273]. Also, mirtazepine 
has shown high response rates in the treatment of veteran PTSD in 
two open trials [274,275] and a randomized, open label trail in the 
military population compared with sertraline (SSRI) [274]. 

Tricyclic antidepressants

TCAs are effective in treat¬ing major depressive disorder 
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but considered to be third-line agents because of a host of signifi-
cant side effects. Two TCAs, imipramine [276,277] and amitrip-
tyline [278], are considered 3rd line treatments [159] with good 
responses in civilians with PTSD. The effectiveness of TCAs in 
the treatment of PTSD is thought to be related to their reuptake 
inhibition of norepinephrine rather than the lesser reuptake inhibi-
tion of serotonin. Desipramine (TCA), an additional 3rd line agent 
in the treatment of civilian PTSD, was more effective than parox-
etine (SSRI) in a double blind study in veterans with PTSD plus 
comorbid AUD [268].

Antipsychotics

The so-called atypical antipsychotics (that either block 
sero¬tonin-2A plus dopamine receptors or act as partial dopamine 
and serotonin agonists) olanzapine, risperidone, quetiapine, zip-
rasidone and aripiprazole have used as monotherapy to reduce 
PTSD symptoms [279]. In treatment algorithms for PTSD these 
agents are currently considered to be 3rd line agents. Their ef-
fectiveness in PTSD appears to be due to their ability to restore 
the balance in dopamine modulation of the limbic system (in-
cluding mPFC and amygdala) [159]. This is the same mechanism 
and neural substrate upon which these agents act in persons with 
schizophrenia. In the general population, a meta-analysis of antip-
sychotics showed a reduction of PTSD re-experiencing and intru-
sion symptoms [280]. However, the extrapyramidal side effects 
of weight gain, dyslipidemia and elevated blood glucose that may 
be present with the atypical antipsychotics suggest that metabolic 
monitoring should be considered during the course of treatment 
[160]. Aripiprazole and ziprasidone are considered less likely to be 
induce extrapy-ramidal side effects. Quetiapine has also been used 
as a treatment for PTSD associated insomnia [159], and is often 
preferred by clinicians vs. olanzapine and risperidone [193] due to 
it’s reduced likelihood of causing extrapyramidal or metabolic side 
effects [160]. Consultation with a specialist is normally advised, 
especially because this is recommended after several other therapy 
regimens have failed [193]. 

In the veteran population, quetiapine was shown by some 
studies to be effective as monotherapy in comparison to SSRIs 
[281,282]. As adjunctive therapy to SSRI treatment, risperidone 
failed to show improvements in PTSD symptoms in a large six-
month randomized controlled trial of 250 veterans with SSRI-re-
sistant PTSD symptoms [283]. This result is not consistent with 
the trends from previous small trials showing the effectiveness of 
risperidone as adjunctive therapy in veterans [284], and civilians 
[285-287]. Olanzapine has been shown to be effective as adjunc-
tive therapy in military patients with treatment resistant PTSD 
[288].

Benzodiazepines

At best, benzodiazepines have only very limited value 
in the treatment of PTSD and may actually worsen the disorder 
[159,160,165]. Nevertheless benzodiazepines are still often used 
as adjunctive therapy, often as treatment to improve sleep quality 
and reduce nightmares [9]. Benzodiazepine has also been shown 
to treat irritability and hyper-arousal in veterans [289]. In con-
trolled studies in the general population, benzodiazepine adjunc-
tive therapy did not prove to be effective in the treatment of PTSD 
[290,291,292] The modest efficacy of the benzodiazepines in the 
treatment of veterans with PTSD, may be explained by the use of 
nighttime dosing, that improves symptoms of insomnia. 

Adrenergic agents

Prazosin (an alpha-1 adrenergic antagonist) has shown con-
sistent efficacy in improving sleep quality and decreasing night-
mares in veterans [293] by blocking the changes in sleep architec-
ture mediated by norepinephrine [159,159]. Also, because prazosin 
is not itself an addictive agent (versus benzodiazepines), it holds 
a prominent position in PTSD treatment guidelines for sleep aug-
mentation [159-161,165]. Trials in military populations of various 
ages have confirmed prazosin’s effectiveness as a treatment for 
sleep disturbances and nightmares [282,294-297]. A larger study 
was more recently done that confirmed the effective use of pra-
zosin over the course of 15 weeks in a military population, giving 
credence to safety and the long term effectiveness of prazosin sleep 
augmentation in both male and female veterans [293]. Although 
the indication would require further study [159], prazosin has also 
shown promise as a preventative treatment for the prevention of 
PTSD and this is expected to be due to it’s effect on the extinction 
mechanism [298].

Opioids

While it has been thought that opiates, such as morphine, 
may confer protective effects if given immediately afterwards or 
during trauma, this may not be a practical solution for veteran or 
combat induced PTSD that is not related to a physical trauma and 
may need to be repeated many times during a deployment. The 
use of morphine in military personnel and civilians who sustained 
physical trauma during combat has been tied to decreased devel-
opment of PTSD [299] in part due to morphine’s ability to block 
the acquisition of conditioned fears [249,250,32].

Opioid antagonists provide a well-documented component 
in the treatment of the SUD to opioids and ethanol, but opioids 
have shown mixed effects in the treatment of PTSD [159]. Some 
open label data from both civilian [300-302] and veteran [303] 
populations, indicate that naltrexone also treats flashbacks asso-
ciated with PTSD. In civilian studies opioid antagonists shown 
promise in the treatment of depersonalization and derealization 
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symptoms that can be induced by trauma [304,305]. This contrasts 
with the actions noted above that blocking opioid receptors may 
enhance fear memory.

Naloxone and naltrexone can also aggravate symptoms of 
opiate withdrawal after trauma exposure and may increase the 
pre¬senting symptoms of PTSD such as stress, and anxiety by 
blocking the effects of endogenous endorphins and enkephalins 
[159]. Also, discordant opioid signaling may be an underlying 
cause of PTSD [306]. Also, as opioids are among the most com-
monly abused agents in the PTSD population, opiate antagonists 
as therapy may have an additional risk in this population by induc-
ing opioid withdrawal. Current guidelines do not support the use 
of opiate antagonists in the treatment of PTSD at this time and a 
broader understanding of the role of endogenous opioids and the 
effects of exogenous opioids on brain function is needed before 
agents acting on this system can be used safely and effectively.

Hydrocortisone

Current guidelines include hydrocortisone as an experi-
mental treatment option [159]. As we noted above, glucocorti-
coids may act in PTSD by facilitating the extinction mechanism 
[307]. Hydrocortisone has been shown to resolve the symptoms 
of model-PTSD in rodent studies when administered after stress 
exposure. As discussed earlier, hydrocortisone normalizes the low 
cortisol associated with PTSD [308]. Previously, hydrocortisone 
had been investigated primarily as a secondary prevention thera-
py after trauma to minimize PTSD. As such it was hypothesized 
to reduce“PTSD” development in rodent models when admin-
istered within a short time window after trauma [101,309-311]. 
More re¬cent humans studies expanded the use of this approach, 
showing that in veterans with PTSD, hydrocortisone administra-
tion com¬bined with behavior therapy induced traumatic memory 
reactiva¬tion in therapeutic settings and resulted in a reduction 
of PTSD symptoms. Studies in the general population showed 
increased patient acceptance of prolonged exposure therapy with 
concomi¬tant hydrocortisone use [238]. Of course there are sub-
stantial risks associated with long-term systemic dosing with glu-
cocorticoids that need to be weighed against the potential benefits 
in patients. However, such studies suggested that glucocorticoid 
modulation enhances the extinction mechanism, with promising re-
sults in augmenting exposure therapy in other fear-based disorders 
and phobias [246,312,236-238]. Yehuda, et al. [247] conducted a 
double blind randomized trial in 24 veterans, comparing prolonged 
exposure therapy augmented with hydrocortisone versus placebo. 
In addition, receptor sensitivity to glucocorticoids was assessed 
via pre- and post-treatment cultured peripheral blood mononuclear 
cell response in the in vitro lysozyme inhibition test. In this small 
study, hydrocortisone augmentation was shown to be significantly 

more effective in reducing PTSD symptoms than placebo. This ef-
fect was attributed to the greater patient retention in the hydro-
cortisone treatment group. An additional feature noted was that 
complete responders also had the highest pre-treatment sensitivity 
to glucocorticoids in vitro that diminished over the course of treat-
ment. Thus, patients may well need to be phenotyped for glucocor-
ticoid response prior to initiation of therapy [238].

Others approaches

Additional treatment possibilities for veteran PTSD are now 
under investigation that are based on a better understanding of 
fear extinction and retrieval processes. Human studies in civilians 
show promise in the use of the protein synthesis inhibitor D-cy-
closerine and the alpha-2 adrenergic antagonist yohimbine, as well 
as deep brain stimulation to enhance the effects of extinction train-
ing [206,235-238,313-318]. The toxicity and side effects of such 
pharmacological agents and the dangers associated with the im-
plantation of electrodes for chronic brain stimulation render these 
options not appropriate for treatment but of potential value in elu-
cidating novel mechanisms upon which practical therapies could 
be based. As indicated above, propranolol (which is thought to 
block the norepinephrine triggered fear response in the amygdala), 
is also under study for use in human patients. Like hydrocortisone, 
D-cycloserine (a modulator of NMDA receptors), memantine (an 
NMDA antagonist used in Alzheimer’s disease patients) and even 
ketamine-like drugs (a blocker of NMDA receptors) are thought to 
enhance extinction and might improve the effects of such training 
in humans. 

Relationship Between non-Drug Therapies For 
PTSD And AUD

The relationship between behavioral treatments of comorbid 
PTSD and AUD have not been well explored. This may in part 
be due to the idea that exposure therapy and cognitive process-
ing therapy could cause relapse in SUD patients [319]. This is be-
cause such treatments are designed to increase anxiety and stress 
in a safe environment. As mentioned earlier, treatment studies for 
PTSD typically exclude individuals with conditions such as AUD 
[320]. In the past, trauma-focused treatment was not allowed for 
a patient with comorbid substance abuse until they had been in 
remission for at least 6 months to prevent relapse of the substance 
and because the SUD was thought to directly hinder effectiveness 
of the treatment of the patient’s PTSD [321-327]. While studies 
addressing these concerns exist, the data is still sparse [319]. How-
ever, recent research evaluating the exposure-based treatment for 
patients with comorbid PTSD and AUD supports the initiation of 
trauma-based treatment [328-331]. Unfortunately cognitive treat-
ments have been less well studied at this point.
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The veteran population mimics the general population in 
that not treating PTSD increases the possibility of relapse for 
SUD [332].Furthermore, alcohol consumption is likely to impair 
desensitization to stressors and modification of maladaptive men-
tal paradigms [333]. Currently, the focus has shifted to treat both 
conditions simultaneously [319]. Randomized control studies in 
the general population showed that patients with comorbid PTSD 
and AUD receiving exposure therapy for PTSD showed less cue-
reactivity (in the form of alcohol craving) in response to trauma 
or traumatic memories and significantly greater decreases in trig-
gered distress than non-trauma focused therapy [334].

In 2014, Kaysen and colleagues [319] conducted a chart 
review comparing the effectiveness of CPT(cognitive processing 
therapy) for over 500 veterans with PTSD and AUD past and pres-
ent against PTSD without AUD that participated in a VA outpatient 
treatment program. This study did not show strong differences in 
drop-out rate in the treatment groups, and showed similar atten-
dance rates among the three groups. As expected, in this study the 
PTSD patients with comorbid AUD had more severe self-reported 
PTSD symptoms before treatment was initiated [335-337]. How-
ever, treatment effectiveness appeared unaffected by AUD diag-
nosis. This study helps support the growing concept that CPT, and 
other trauma focused therapies should be initiated for the treat-
ment of PTSD even if the patient has AUD or another SUD [338].

As non-pharmacological therapies have gained interest, vet-
eran studies are still less abundant and less statistically powerful 
than those in the general population. However, available results 
suggest that trauma related psychotherapy is well tolerated in the 
dual diagnosis population, and improves the symptoms of both 
PTSD and AUD [325,339,340].

Conclusions and Future Directions
The above discussion has highlighted that some behavioral 

therapies may work well in persons with PTSD and AUD. Little 
has yet been done to determine the effects of medications plus be-
havior therapy in veterans with both PTSD and AUD and these 
complex studies need to be done. While not a focus of the present 
paper, the clinical and preclinical literature also suggests that there 
may be gender differences in response to therapy that must be ad-
dressed in future work. New agents continue to be evaluated. For 
example, clinical trials are being conducted with the agent MDMA 
(3,4-Methylenedioxymethamphetamine, “ecstasy”) [341,342] and 
of BNC210 (also known as IW-4123, a negative allosteric modu-
lator of the alpha7-nicotinic acetylcholine receptor found to be an 
effective anti-anxiety agent [343]. 

Studies are currently being conducted on device-based treat-
ments for the enhancement of extinction learning for anxiety dis-

orders and PTSD [313,317,318]. Some the techniques under in-
vestigation include including deep brain stimulation, vagus nerve 
stimulation, transcranial direct current stimulation and transcranial 
magnetic stimulation [344,345]. Deep brain stimulation is one of 
the most extensively studied for the treatment of psychiatric disor-
der and shows promise for the treatment of PTSD [344,346-349]. 
Transcranial magnetic stimulation of the mPFC is also under study 
as a noninvasive alternative [350]. This has shown reduction of 
PTSD symptoms when combined with exposure therapy, over the 
course of 2 weeks [351-353]. These techniques are thought to be a 
promising option for future treatments and offer a potential way to 
complement behavioral therapy and medications.

Although comorbid PTSD and AUD has proven to be a com-
mon and chronic syndrome in veterans, few of the current guide-
lines are designed from data generated in this at-risk population. In 
the future, treatments based on an improved knowledge of the role 
of the stress systems of the brain (including the HPA axis and sym-
pathetic nervous systems) could be expected to take a more central 
role in the treatment of PTSD patients. Also, it is now being rec-
ognized that the nature of PTSD in veterans may be fundamentally 
different than that in civilians because of the greater likelihood of 
coexistent traumatic brain injury and of repeated traumatic expe-
riences in this population. By evaluating studies of veterans and 
taking into account new information in the neurological changes in 
brain that occur in both PTSD and AUD, more appropriate clinical 
decisions can be made for behavioral and pharmacological treat-
ments. Furthermore, the appreciation of the potential importance 
of combination behavioral plus medication therapy is allowing 
more effective treatments to be explored. Also, it will be important 
to evaluate the use of current medications including SSRIs and 
opioid antagonists that may be beneficial in AUD but not in PTSD 
since the literature demonstrates that these therapies may actually 
have negative effects on persons with PTSD. By having additional 
information about the changes in the processing of the brain we 
can tailor pharmacotherapy to refrain from hindering trauma-fo-
cused therapy and the natural extinction of fear responses that can 
occur over time.

By understanding more about the consequences of neu-
rotransmitter change in both PTSD and AUD more stringent pa-
rameters for pharmacotherapy during future studies would yield 
less variability between studies. Continuing to evaluate the new 
practice of allowing treatment of both PTSD and AUD with trau-
ma-focused therapy immediately upon diagnosis should increase 
patient compliance and length of abstinence. By taking advantage 
of the new developments in our understanding of the functions of 
the brain as well as the population specific data for treatment, we 
can continue to take the necessary steps to allow this population to 
lead a normal life after their service.
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