

Short Commentary

Rijkers GT J Vaccines Immunol 5: 153.
DOI: 10.29011/2575-789X.000153

The Temptation of St. Anthony: Fighting against an Invisible Enemy in Times of Corona

Ger T. Rijkers*

Department of Science, University College Roosevelt, Lange Noordstraat 1, 4331 CB Middelburg, The Netherlands


Laboratory for Medical Microbiology and Immunology, St. Elisabeth Hospital, Tilburg, The Netherlands

*Corresponding author: GT Rijkers, Department of Science, University College Roosevelt, Lange Noordstraat 1, 4331 CB Middelburg, The Netherlands

Citation: Rijkers GT (2020) The Temptation of St. Anthony: Fighting against an Invisible Enemy in Times of Corona. J Vaccines Immunol 5: 153. DOI: 10.29011/2575-789X.000153

Received Date: 21 March, 2020; Accepted Date: 03 April, 2020; Published Date: 07 April, 2020

The function of the immune system is to offer protection against infections. Most of these micro-organisms are invisible with the naked eye, so the immune system is fighting against an invisible enemy. A strategy which can be used when fighting against an invisible enemy is first to protect yourself and at the same time being constantly on the attack. This strategy is visualized by Jheronimus Bosch in the painting “The Temptation of Saint Antony”. An unknown figure on the lower left side of the painting is waving his sword and holding his shield, while being protected and hidden in a large metal funnel (Figure 1). On the other side of the river, Saint Antony himself is totally focused inwards, quietly scooping water in his jar. He obviously is unaware of the potential thread of invisible enemies.

Figure 1: The Temptation of Saint Anthony (1500-1510) by Jheronimus Bosch. The Nelson-Atkins Museum of Art, Kansas City, USA. [https://commons.wikimedia.org/wiki/File:The_temptation_of_Saint_Anthony,_by_Jheronimus_Bosch_\(Kansas\).jpg](https://commons.wikimedia.org/wiki/File:The_temptation_of_Saint_Anthony,_by_Jheronimus_Bosch_(Kansas).jpg) Assessed March 20, 2020.

The current invisible enemy that has caused a pandemic is SARS-CoV-2. Most members of the corona virus family are rather innocent, causing milder versions of the common cold. Virtually all immune systems have no problem fighting of those corona viruses, hospital admission seldomly is needed, let alone intensive care. However, SARS, MERS, and now SARS-CoV-2 have learned that the large corona family also harbors ugly members [1-3]. SARS-CoV (severe acute respiratory syndrome coronavirus) broke out in November 2002 infected approximately 8000 patients with 744 deaths (case fatality rate 10%). Middle east respiratory syndrome coronavirus (MERS-CoV) which broke out in June 2012 had a higher case fatality rate of 37% (2500 patients, 858 deaths). Both outbreaks were more or less self-contained. With the current SARS-CoV-2 the situation is different. At the moment of writing (20 March 2020) this Coronavirus Disease 19 (COVID-19) has been officially declared a pandemic, and has 252,819 cases worldwide with 10,405 deaths (<https://www.worldometers.info/coronavirus/>). Also at the moment of writing, there is no effective treatment of the infection (yet) [4-8] and no vaccine (yet) [9,10]. Positive cases of COVID-19 definitely need hospital admission along with isolation and individual care. The supportive care of patients should allow the immune system to clear the infection.

While it is clear that the decisive factor for survival of COVID-19 is the functionality of the immune system, it is unknown what constitutes a protective immune response to SARS-CoV-2. There are indications that innate defense mechanisms could contribute to protection against the new corona virus. Innate immunity can be trained by BCG vaccination [11,12], and based on that principle a study has been started in hospital personnel in Nijmegen and Utrecht, The Netherlands on the protective effect of BCG vaccination. Whether specific antibodies to the corona spike protein would be sufficient or cytotoxic T lymphocytes

would be needed also is unknown at the moment. Yet answers to these questions are fundamental in order to be able to develop an effective vaccine [13]. Fundamental immunological questions indeed, urgently waiting for meaningful answers.

Although the current corona virus most probably originated from bats [14], the epidemiological association is that with a wet fish market [14,15]. As a consequence, the Chinese government now has imposed a ban on consumption of wild animal species. This ban includes eating frog and soft-shelled turtle. All these species are depicted as the invisible enemies in the ‘Temptation of St. Antony’ (Figure 1), underscoring the visionary talents of Jheronimus Bosch. The chicken and other bird species in the painting are potential sources of novel strains of viruses, in particular influenza virus. First things first, for now target the corona and then start to prepare for influenza.

References

1. Khan S, Siddique R, Shereen MA, Ali A, Liu J, et al. (2020) The emergence of a novel coronavirus (SARS-CoV-2), their biology and therapeutic options. *J Clin Microbiol* 2020.
2. Yang Y, Peng F, Wang R, Guan K, Jiang T, et al. (2020) The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. *J Autoimmun* 3: 102434.
3. Meo SA, Alhowikan AM, Al-Khlaiwi T, Meo IM, Halepoto DM, et al. (2020) Novel coronavirus 2019-nCoV: prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. *Eur Rev Med Pharmacol Sci* 24: 2012-2019.
4. Gurwitz D (2020) Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. *Drug Dev Res* 2020.
5. Cao B, Wang Y, Wen D, Liu W, et al. (2020) A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. *N Engl J Med* 2020.
6. Baron SA, Devaux C, Colson P, Raoult D, Rolain JM (2020) Teicoplanin: an alternative drug for the treatment of coronavirus COVID-19? *Int J Antimicrob Agents* 13: 105944.
7. Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S (2020) A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. *J Crit Care* 2020: 30390-30397.
8. Al-Tawfiq JA, Al-Homoud AH, Memish ZA (2020) Remdesivir as a possible therapeutic option for the COVID-19. *Travel Med Infect Dis* 5: 101615.
9. Bhattacharya M, Sharma AR, Patra P, Ghosh P, Sharma G, et al. (2020) Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-CoV-2): Immunoinformatics approach. *J Med Virol* 2020.
10. Wang C, Li W, Drabek D, Okba NM, van Haperen A, et al. (2020) A human monoclonal antibody blocking SARS-CoV-2 infection 2020.
11. hader SA, Divangahi M, Hanekom W, Hill PC, Maeurer M, et al. (2019) Targeting innate immunity for tuberculosis vaccination. *J Clin Invest* 129: 3482-3491.
12. Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, et al. (2020) Defining trained immunity and its role in health and disease. *Nat Rev Immunol* 2020.
13. Callaway E (2020) Coronavirus vaccines: five key questions as trials begin. *Nature* 2020.
14. Zhai SL, Wei WK, Lv DH, Xu ZH, Chen QL, et al. (2020) Where did SARS-CoV-2 come from? *Vet Rec* 186: 254.
15. Li X, Zai J, Zhao Q, Nie Q, Li Y, et al. (2020) Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. *J Med Virol* 2020.