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Abstract )

The research on Nitric Oxide (NO) and stem cells are the focus in recent years. However, seldom do people conclude the
function, mechanism and clinical value of NO in various stem cells including Embryonic Stem Cells (ESCs), Endothelial Progeni-
tor Cells (EPCs), Mesenchymal Stem Cells (MSCs) and Neural Stem Cells (NSCs). In the present review, we evaluate the recent
studies on NO in different stem cells and display the latest progresses of NO therapy for tumor, cardiovascular, neurologic and

immune system diseases by stem cells.
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Introduction

NO, which was first discovered as Endothelium-Derived
Relaxing Factors (EDRF) in cardiovascular system, has been
established as a diffusible universal messenger that mediates cell-
cell communication throughout the body and regulates different
physiological and pathological processes in many tissues [1-7]. It
works mainly through activation of its target receptor, the enzyme
soluble Guanylate Cyclase (sGC), which, when activated, produces
the second messenger cyclic-Guanosine Monophosphate (cGMP).
Interestingly, a functional NO-cGMP signaling system that involves
in development and early differentiation of Embryonic Stem Cells
(ESCs) can be evolutionarily conserved between vertebrates and
invertebrates [8]. In addition, NO, as a short-lived free radical gas
is synthesized from L-arginine by a family of enzymes known
as NO synthases (NOS) [9]. Three NOS isozymes encoded by
three separate genes, including the Ca2l/calmodulin-dependent
and constitutively expressed neuronal NOS (nNOS), endothelial
NOS (eNOS) enzymes, and a calmodulin-independent cytokine-
inducible NOS (iNOS) enzyme found in various cell types [10].
A small amount of NO, produced by the constitutive NOS in
response to increase in intracellular calcium, play a crucial role
in numerous physiological functions, including neurotransmission

[11], vascular tone [12] and platelet aggregation [13], whereas the
large amounts, generated by iNOS, are implicated in pathological
functions such as cytotoxicity of activated macrophages [14].
Recently, experimental evidence has been presented that not only
can stem cells produce NOS, but its production, exogenous and
endogenous NO, can also affect the proliferation, mobilization,
and differentiation of different stem cells.

Role of NO in ESCs

ESCs are pluripotent stem cells derived from the inner cell
mass of the blastocyst, an early-stage embryo. Krumenacker et
al [15-17] have examined the expression of various subunits of
sGC alpha (1), alpha (2), beta (1), beta (2), NOS, MLC2 (cardiac
marker) and a cardiac-specific transcription factor (Nkx2.5) in
human Embryonic Stem (hES) cells (H-9 cells) and differentiated
cells subjected to differentiation in cell suspension using Embryoid
Body (EB) formation. Their results clearly demonstrate the role of
NO signaling components in differentiation events or physiological
processes of human ES or ES cell-derived cardio myocytes. In
addition, cGMP analysis in undifferentiated stem cells revealed a
lack of stimulation with NO donors. Differentiated cells however,
acquired the ability to be stimulated by NO donors. Although
3-(4-amino-5-cyclopropylpyrimidin-2-yl)-1-(2-fluorobenzyl)-
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1H-pyrazolo [3,4-b] pyridine (BAY 41-2272) alone was able to
stimulate ¢cGMP accumulation, the combination of NO donors
and BAY 41-2272 stimulated cGMP levels more than either of the
agents separately. These studies demonstrate that cGMP-mediated
NO signaling plays an important role in the differentiation of ES
cells into myocardial cells. Additionally, they also found nNOS
and eNOS are detected in undifferentiated mouse ES cells while
iNOS were very low or undetectable. However, although analysis
of sGC activity in cell lysates derived from undifferentiated ES
cells revealed that NO could not stimulate cGMP, lysates from
differentiated EB outgrowths produced abundant cGMP levels
after NO stimulation. Furthermore, purification of ES-cell derived
Cardio Myocytes (CM) revealed that mRNA expression of all the
NOS isoforms was very low to absent while sGCal and 1 subunit
mRNAs were abundant and sGC-mediated cGMP production
was apparent in this population of cells. These data suggest that
cGMP-mediated NO signaling may play a minor role, if any,
in undifferentiated ES cells but could be involved in the early
differentiation events or physiological processes of ES cells or ES
cell-derived lineages. Moreover, Huang et al. [18] suggests that
NOS elements are present in Endothelial Cells (ECs) but inactive
until later stages of differentiation, during which NOS inhibition
reduces expression of EC markers and impairs angiogenic function.
Further researches has been reported by Mora-Castilla S et al.
[19] who indicate that exposure to 0.5 mM DETA-NO induces
early differentiation events of cells with acquisition of epithelial
morphology and expression of markers of definitive endoderm,
such as FoxA2, Gata4, Hfnl-beta and Sox 17.

Role of NO in EPC

EPCs are a controversial and hypothetical population of
rare cells believed to circulate in the blood with the ability to
differentiate into endothelial cells, the cells that make up the lining
of blood vessels. The process by which blood vessels are born de
novo from endothelial progenitor cells is known as vasculogenesis
which involves in NO that can stimulate endothelial cell
proliferation, survival and motility, and enhances matrix invasion
and tubulogenesis with the help of the pro-angiogenic activity of
Growth Factors such as VEGF, transforming growth factor-f and
FGF [20-23]. Downstream mediators of NO, including cAMP-
and cGMP-dependent protein kinases [PKA (Protein Kinase A)
and PKG (Protein Kinase G)], Rho GTPases and ROS (Reactive
Oxygen Species), are likely to play a part. Recent studies have
showed that the activity of Rho GTPases, key regulators of
endothelial cell motility and angiogenesis is modulated by altering
the metabolism of Asymmetric Dimethyl Arginine (ADMA) which
is a cardiovascular risk factor, an endogenous inhibitor of NOS,
increased when abnormal angiogenesis in cardiovascular disorder
happened, and is metabolized by Dimethylarginine Dimethyl
Amino Hydrolases (DDAHS) in vivo and in vitro. Fiedler et al. [24]
believed thatthe ADMA/DDAH pathway is to regulate angiogenesis
by influencing NO bioavailability [25]. Consistent with the role of

NO in the ADMA/DDAH pathway, DDAH I gene deletion in mice
leads to inhibition of angiogenic responses, similar to that seen in
eNOS-knockout mice [22,26-28]. Additionally, NO also modulates
gene expression of factors that promote angiogenesis, such as avf33
integrin, and suppresses the production of antiangiogenic factors
such as angiostatin, the degradation product of plasminogen [20].
And Shen et al. [29] indicate that suppressed NO production from
EPCs was involved in the glycation end products (AGE)-induced
apoptosis, which is in part mediated by Mitogen-Activated Protein
Kinases (MAPKSs) signaling.

Role of NO in MSC

MSCs are multipotent stem cells that can differentiate into
a variety of cell types include osteoblasts, chondrocytes and
adipocytes. Tatsumi R et al. [30] demonstrated that the quiescent
satellite cells of resident myogenic stem cells which are from
MSCs are activated to enter the cell proliferation cycle, divide,
differentiate, and fuse with the adjacent muscle fiber, and are
responsible for regeneration and work-induced hypertrophy of
muscle fibers by activation mechanism which is a cascade of events
including calcium ion influx, calcium-calmodulin formation, NO
synthase activation, NO radical production when muscle is injured,
exercised, overused or mechanically stretched. Therefore, MSCs
have received special attention for cardiomyoplasty. Rebelatto et
al. [31] report an investigation of the effects of two NO agents
(SNAP and DEA/NO), able to activate both cGMP-dependent and
independent pathways, on the cardio myogenic potential of bone
marrow-derived mesenchymal stem cells (BM-MSCs) and Adipose
Tissue-Derived Stem Cells (ADSCs). They found that untreated
(control) ADSCs and BM-MSCs expressed some muscle markers
and NO-derived intermediates induce an increased expression
of some cardiac function genes in BM-MSCs and ADSCs. And
NO agents considerably increased the pro-angiogenic potential
mostly of BM-MSCs as determined by VEGF mRNA levels.
Additionally, Mookerjee et al. [32] investigated the signaling
mechanisms by Human gene-2 (H2) relaxin which can inhibit
renal my fibroblast differentiation by interfering with TGF-betal/
Smad?2 signaling regulates myofibroblast differentiation in vitro
by examining its effects on mixed populations of fibroblasts and
myofibroblasts propagated from injured rat kidneys. Inhibition of
nNOS, NO, and cGMP significantly blocked the inhibitory effects
of relaxin on alpha-SMA and Smad2 phosphorylation, while the
NO inhibitor, L-Nitro Arginine Methyl Ester (hydrochloride)
(L-NAME) significantly blocked the inhibitory actions of relaxin
on collagen concentration in vivo. Moreover, Bironaite et al. [33]
clearly demonstrate sustained activation of MAPKSs which actively
participate in the regulation of cell survival and of proapoptotic
signals in myogenic stem cells after exposure to the NO inducer,
NOC-18. Inhibition of MAPKSs phosphorylation by specific
inhibitors revealed the anti-apoptotic role of MAPKSs in myogenic
stem cells. On the other hand, Kraft DCE et al. [34] indicate that
Pulsating fluid flow (PFF) stimulated NO production within 5 min
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by human dental Pulp-Derived Mesenchymal Stem Cells (PDSCs)
portraying mature (PDSC-mature) but not by PDSC immature.
The rapid stimulation of NO production by PFF in PDSCs is
probably a result of the activity of eNOS, but not iNOS, since
unlike iNOS, eNOS is constitutively expressed in bone cells and
dental pulp cells. Additionally, NO produced by eNOS is primarily
regulated by Ca?* fluxes and subsequent binding of calmodulin,
and eNOS only produces NO for minutes after stimulation [35-37]
demonstrate that NO-induced osteogenic differentiation through
Heme Oxygenase-1 (HO-1) may be an important mediator of
periodontal regeneration or bone tissue engineering.

Role of NO in NSCs

NSCs can be propagated for extended periods of time and
differentiated into both neuronal and glia cells. Tegenge et al.
[38] indicate that NO plays a role in the development of the
human nervous system. They used a model of human Neuronal
Precursor Cells (NPCs) from a well-characterized teratocarcinoma
cell line (NT2). Their results from the differentiating NT2 model
neurons point towards a vital role of the NO/cGMP/PKG signaling
cascade as positive regulator of cell migration in the developing
human brain. And Yoneyama et al. [39] also suggest that NO and
endogenous ROS are essential for the proliferation of embryonic
NSCs and NPCs. However, NO can also cause apoptosis of Neural
Progenitor Cells (NPCs). Hung et al. [40] studied the role of p53
in the NO-induced apoptosis was examined in an in vitro model
of NPCs. Their results suggest a central role of p53 in the NO-
induced apoptotic pathway in NPCs, which may hence provide
new insights into the regulation of cell death in NPCs that respond
to overproduction of NO in injured brain.

Current NO Research on Various Diseases by
Stem Cells

Gene Therapy Techniques for Pulmonary Hypertension

NO synthesized by eNOS is important in regulating vascular
resistance and in vascular remodeling in the lung. NO deficiency
due to endothelial dysfunction plays an important role in the
pathogenesis of Pulmonary Hypertension (PH) which is a serious,
often fatal disease characterized by remodeling of the pulmonary
vascular bed, increase pulmonary arterial pressure, and right heart
failure. Deng et al. [41] describe the use of two gene transfer
techniques, i.e., adenoviral gene transfers of eNOS and eNOS
gene-modified rat marrow stromal cells, for eNOS gene delivery to
the lung of laboratory animals for the treatment of PH. Therefore,
local eNOS gene delivery to the lung is a promising approach for
the treatment of PH and Adenoviral-mediated in vivo gene therapy
and adult stem cell-based ex vivo gene therapy are two attractive
current gene therapies for the treatment of cardiovascular and
pulmonary diseases.

Gene Therapy Techniques for Fibro Sarcoma

Emerging evidence suggests that MSC are able to migrate
to sites of tissue injury and have immunosuppressive properties
that may be useful in targeted gene therapy for sustained specific
tissue engraftment. Xiang et al. [42] observed that xenogenic MSC
selectively migrated to the tumor site, proliferated and expressed
the exogenous gene in subcutaneous fibro sarcoma transplants and
no MSC distribution was detected in other organs, such as the liver,
spleen, colon and kidney. They further showed that the FGF2/FGFR
pathways may play a role in the directional movement of MSC to
the Rif-1 fibro sarcoma and they performed in vitro co-culture and
in vivo tumor growth analysis, showing that MSC did not affect
the proliferation of Rif-1 cells and fibro sarcoma growth compared
with an untreated control group. Finally, they demonstrated that
the xenogenic MSC stably expressing iNOS protein transferred by
a lentivirus-based system had a significant inhibitory effect on the
growth of Rif-1 tumors compared with MSC alone and the non-
treatment control group. Therefore, iNOS delivered by genetically
modified iNOS-MSC showed a significant anti-tumor effect both
in vitro and in vivo. MSC may be used as a target gene delivery
vehicle for the treatment of fibro sarcoma and other tumors.

Perivascular NO Involved in Stem-Like Character in
PDGF-Induced Glioma Cells

eNOS expression is elevated in human glioblastomas and
correlated with increased tumor growth and aggressive character.
Charles et al. [43] investigated the potential role of NO activity in
the Perivascular Niche (PVN) using a genetic engineered mouse
model of PDGF-induced gliomas. eNOS expression is highly
elevated in tumor vascular endothelium adjacent to perivascular
glioma cells expressing Nestin, Notch, and the NO receptor, sGC.
In addition, the NO/cGMP/PKG pathway drives Notch signaling
in PDGF-induced gliomas in vitro, and induces the side population
phenotype in primary glioma cell cultures. NO also increases
neurosphere forming capacity of PDGF-driven glioma primary
cultures, and enhances their tumorigenic capacity in vivo. Loss of
NO activity in these tumors suppresses Notch signaling in vivo
and prolongs survival of mice. This mechanism is conserved in
human PDGFR amplified gliomas. The NO/cGMP/PKG pathway’s
promotion of stem cell-like character in the tumor PVN may
identify therapeutic targets for this subset of gliomas.

NO Involved in The Therapy for Cardiovascular
Disease

Recent studies have reported a marked impairment in the
number and functions of EPCs in patients with Coronary Artery
Disease (CAD). LiN [44] found that eNOS in the host myocardium
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promotes MSC migration to the ischemic myocardium and
improves cardiac function through cGMP-dependent increases in
cell-derived factor-1lalpha (SDF-1alpha) expression. Furthermore,
Kaur et al. [45] conclude that eNOS gene transfection is a valuable
approach to augment angiogenic properties of ex vivo expanded
EPCs and eNOS-modified EPCs may offer significant advantages
than EPCs alone in terms of their clinical use in patients with
myocardial ischemia. Moreover, Spallotta et al. [46] found that
NO-treated ES injected into the cardiac left ventricle selectively
localized in the ischemic hind limb and contributed to the
regeneration of muscular and vascular structures. These findings
establish a key role for NO in therapy of cardiovascular diseases.

NO Involved in The Immunosuppression

MSCs hold great promise for treating immune disorders
because of their immunoregulatory capacity and the mechanism
of MSC-mediated immunosuppression varies among different
species. Immunosuppression by human- or monkey-derived MSCs
is mediated by Indole amine 2,3-Dioxygenase (IDO), whereas
mouse MSCs utilize NO, under the same culture conditions. When
the expression of IDO and iNOS were examined in human and
mouse MSCs after stimulation with their respective inflammatory
cytokines, Ren et al. [47] found that human MSCs expressed
extremely high levels of IDO, and very low levels of iNOS,
whereas mouse MSCs expressed abundant iNOS and very little
IDO. However, immunosuppression by human MSCs was not
intrinsic, but was induced by inflammatory cytokines and was
chemokine-dependent, as it is in mouse. Further studies have
reported that NSCs may exert direct anti-inflammatory activity.
This action has been attributed, in part, to T-cell suppression. Wang
et al. [48] indicate that NSCs appear to suppress T-cells, at least in
part, by NO and Prostaglandin E2 (PGE2) production which, in
turn, would account for the well-documented reduction of central
nervous system immunopathology by transplanted NSCs. These
findings provide critical information about the immunosuppression
of MSCs and for better application of MSCs in treating immune
disorders.

Conclusions

In summary, the downstream mediators of NO and NO itself
are likely to exert the function of modulation in the process of
EPCs differentiation. Although scarcely can NO influence the
undifferentiated ESCs, it can be dramatically involved in the early
differentiation events or physiological processes of ES cells or ES
cell-derived lineages. Nevertheless, overproduction of NO may
induce the apoptosis of NPCs. Therefore, NO plays an important
role in physiological and pathological processes of stem cells
and we can utilize these characters in the treatment of various
diseases by various methods like gene transfer techniques, stem
cell transplantation et al.
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