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Abstract
Enteric infectious disease caused by bacteria pathogens is one of the major global public health issues for centuries. 

Through the long term effort of the generations of genius scientists, to date, we have already developed many effective 
vaccines and successful antibiotics to cope with the threat. On the other hand, pathogenic strains involved to counter the 
traditional drugs and achieve immune escape, side-effects caused by broad-spectrum antibiotics, emerging diseases and 
so on, remaining request the development of novel anti-bacteria therapeutics. Nowadays, with the high throughput NGS 
screening combined with the new powerful animal models, applications of bacteria type VI secretion systems and the re-
cently boomed research of human gut microbiome, investigators have more and more pay attention to the potential to utilize 
both the intra and inter species bacterial interactions in vivo. Here, we attempt to make a mini review the recently findings 
in the field and give a perspective for the new approach to develop antimicrobial agents.

Challenges of Current Antibacterial Strategies
Diarrheal diseases such as cholera are one of the major 

threats to global public health for thousands of years and remain-
ing responsible for millions of deaths per year [1], while food 
borne infectious disease caused by bacteria pathogens in the well-
established public health systems such as United States still annu-
ally number in the millions [2]. Enteric pathogenic gram-negative 
bacteria species which can colonize the human gut are the caus-
ative agents for many of these cases. Many antibiotics can be used 
to cure such diseases and have been effective in treating infections. 
However, over the past 25 years, we are face to the challenge that 
the discovery of novel antibacterial drug classes is at extraordi-
narily low levels, even though high throughput small molecule 
screen, robust bioinformatics techniques and big data analysis are 
in use at pharmaceutical companies as well as academic labora-
tories over this period [3].Vaccination is another powerful tool to 
prevent the infection and spread, but shortages are also existing, 
such as reactogenicity, fail to prevent children under certain ages 
and hard to cope with the emerging evolutionary strains [4].

Currently booming human microbiome studies have at-

tached importance to the dynamic gut micro ecosystem. Relatively 
stable, dense microbial community contained by the gut [5] plays 
a critical role in cooperation and competition with exogenous mi-
crobe and promoting health and diseases [6]. As such, controlling 
these microbial communities is important to maintaining health 
and mitigating disease. However, under the indistinctive attack by 
traditional antibiotics and with the escalating threat of drug resis-
tance, controlling microbiome systems through drug intervention 
is becoming more challenging. The dysbiosis caused by collateral 
damage from antibiotics treatment can result in the emergence 
of even more problematic bacteria [7, 8]. Novel bacteriocins and 
phage therapy can circumvent some of these challenges, but they 
also suffer from drawbacks including resistance mechanisms, ex-
tremely narrow host range and poor stability [9].

Emerging High Specificity Anti-Bacteria Sys-
tems
Remarkably, bacteria have a plethora of immunity strategies that 
protect them not only against the host but also against attacks by 
unwanted genetic elements or aggressive bacteria cells. These 
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range from relatively nonspecific restriction-modification systems, 
to adaptable and target directed CRISPR systems [10], to highly 
specific toxin-antitoxin immunity systems [11]. In the latter case, 
immunity to toxic diffusible proteins such as bacteriocins, or toxic 
molecules associated with cell-cell contact dependent inhibitory 
systems (e.g., the CDI system of E. coli) is dependent on the abil-
ity of bacterial cell to produce proteins that bind to and inactivate 
single toxic or inhibitory effectors with a high degree of specific-
ity. Recently, immunity proteins associated with type VI secretion 
systems (T6SS)have been recognized as critical players in protect-
ing sister cells from the toxic effects of this anti-cellular system 
[11,12]. The bacterial T6SS corresponds to a dynamic, intracel-
lular contractile organelle [13], that can translocate toxic effectors 
into both prokaryotic as well as eukaryotic cells [14,15]. Immunity 
proteins to such toxic effectors protect sister cells from random 
or induced attacks, the latter being driven by elaborate regulatory 
systems in some predatory species that detect aggressive T6SS ac-
tivity in nearby prey cells [16].

A lesson from Vibrio cholerae, the causative agent of the 
severe diarrheal disease cholera recently has raised up the potential 
to use T6S as a novel anti-microbiome therapeutic in vivo [17]. In-
vestigators have used transposon mutagenesis sequencing analysis 
(Tn-Seq) and competition assays to study V.cholerae El Tor C6706 
strain intestinal colonization in the modified infant rabbit model 
[17,18]. Besides the well-known colonization factors overlapped 
with the ones previously reported in the suckling mice model and 
human patients, we found that V.cholerae also utilized different 
mechanisms to gain growth advantages in the host. A strong piece 
of evidence that V. cholera cell-cell competition occur in vivo is 
provided by phenotypes related to the T6S. Included in the severe 
colonization defect group were mutants carrying insertions in tsiV3 
and tsiV1, which encode immunity proteins for self-protection to 
neutralize the cognate bacteriocidal effector proteins VgrG3 and 
TseL of T6SS, respectively. Further experiments showed that the 
reduced in vivo fitness of tsiV3 and tsiV1 mutants depends on their 
co-colonization with strains that have an intact T6SS locus and 
cognate T6SS effector genes. These results suggest that the T6S-
Sof V. cholerae strain C6706 is functionally expressed in vivo and 
that antagonistic sister cell-sister cell interactions occur during the 
infection process. Later on, inter species bacterial competition was 
also found in planta bacterium pathogens [19] and human com-
mensal bacteroidetes [20, 21]. Besides, intra species bacteria T6S 
interactions were also found in vivo during salmonella typhi infec-
tion [22], and through the development of probiotic commensal 
strains either sensitive or resistant to the V. cholerae T6SS (Zhao, 
Fu and Robins, Mekalanos group, unpublished results). All these 
clues revealed several novel anti-microbiome strategies such like 
the small molecules that inhibit T6S immunity proteins could be 

used for highly species-specific anti-infective drugs against Gram- 
pathogens and pre- or post-inoculated T6S+ probiotic strains that 
can specific targeting sensitive bacterium.

Speculation Of Utilize the invivo Cell-Cell Con-
tact Microenvironment 

Because the T6S is thought to deliver toxic effectors to 
neighboring cells only through direct cell-cell contact, directly 
or indirectly measure the extent of cell-cell contact in the animal 
model may offer more potential for the development of contact 
dependent probiotics and novel anti-virulence therapeutics. Such 
cell-cell contact tracking assays may also subject to investigate the 
dynamics of intestinal colonization process and potential in vivo 
horizontal genes transfer.
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