

The Association of Short- and Long-term Exposures to Particulate Matters with Expression of High-sensitivity C-reactive Protein in People on Health Examination

Ching-Fang Hsu¹, Yu-Hui Tsai¹, Jung-Li Ho¹, I-Hsin Lin¹, Jing-Yuan Chen¹, Fang-Yi Cheng¹, Fu-Chien Hsieh^{2*}

¹Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei, Taiwan

²Division of Cardiovascular Surgery, Cardiovascular Center, Far Eastern Memorial Hospital, New Taipei, Taiwan

***Corresponding author:** Fu-Chien Hsieh, Division of Cardiovascular Surgery, Cardiovascular Center, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Road, Banqiao, New Taipei, Taiwan

Citation: Hsu CF, Tsai YH, Ho JL, Lin IH, Chen JY, et al. (2020) The Association of Short- and Long-term Exposures to Particulate Matters with Expression of High-sensitivity C-reactive Protein in People on Health Examination. J Urol Ren Dis 05: 1180. DOI: 10.29011/2575-7903.001180

Received Date: 19 March, 2020; **Accepted Date:** 22 April, 2020; **Published Date:** 27 April, 2020

Abstract

Introduction and Objectives: High-sensitivity c-reactive protein (hs-CRP), used to stratify the risk of cardiovascular disease on health examination, was also reported to be predictive for progression of chronic kidney disease. However, the impact of ambient exposure to particulate matters (PMs) on health examination was not clear. Thus, the association of short- and long-term exposures to PMs with hs-CRP level was surveyed among people on health examination.

Methods: People who visited the health management center for health examination were retrospectively reviewed. The clinical data, including age, gender, hs-CRP level, residential district and concentrations of PMs were collected and analyzed.

Results: During the study interval, 455 individuals on health examination were enrolled and divided into 4 groups due to the level of hs-CRP. Trend analysis revealed that long-term exposure to PMs was associated with high hs-CRP expression. Regression analysis further revealed that exposure to PM10 was seemingly associated with those who had the hs-CRP level more than 5 mg/L (OR: 1.07, 95% CI: 0.99-1.14, P=0.052), though there was no statistical significance.

Conclusion: Long-term exposure to PMs seemed to affect the level of hs-CRP to a certain extent in the population on health examination. Hence, the history of PM exposure should be taken into consideration for individuals who had a high hs-CRP level on health examination.

Keywords: Chronic kidney disease; Health examination; High-sensitivity c-reactive protein; Particulate matter 2.5; Particulate matter 10

Introduction

Chronic Kidney Disease (CKD) has been recognized as one of the risk factors developing Cardiovascular Diseases (CVD) [1]. It has been indicated that CVD is the leading cause of mortality in the CKD population [2]. Previous studies further revealed that both decreased Glomerular Filtration Rate (GFR) and significant proteinuria increased the risk of CVD. Besides, CKD patients were prone to present with atypical symptoms, which could lead

to delayed diagnosis and adverse outcomes [3,4]. On the contrary, it was reported that CKD was associated with poor prognosis in patients with co-existing CVD. Hence, a strategy ought to be established to screen and monitor the progression in healthy population and those with earlier stages of CKD. High-sensitivity C-reactive protein (hs-CRP), a biomarker commonly used to evaluate the risk of cardiovascular events and mortality in clinical, appeared to be an important tool for identifying people at risk [5,6]. Though the cut-off value of hs-CRP for risk stratification could vary in different countries, ethnics or cultures, it was generally considered that hs-CRP of 1 mg/L was associated with remarkably high risk developing CVD-related morbidity and mortality [6,7].

Recently, it was reported that hs-CRP could be predictive for progression of CKD [8]. Nevertheless, a variety of factors may interfere with the risk stratification by hs-CRP, including diabetes [9], body fat composition [10], air pollution [11], and so on. Among these, the impact of exposure time of Particulate Matter (PM) air pollution on hs-CRP could also differ. Hence, we aimed to investigate the association of short- and long-term exposures to PM2.5 and PM10 with hs-CRP level among people on health examination.

Methods

From January 1st, 2015 to December 31st, 2016, people who visited health management center in Far Eastern Memorial Hospital for health examination were retrospectively reviewed. The clinical data, including age, gender, hs-CRP level, were collected. Four groups were divided based on the level of hs-CRP (group 1: hs-CRP < 1 mg/L; group 2: 1 mg/L ≤ hs-CRP < 3 mg/L; group 3: 3 mg/L ≤ hs-CRP < 5 mg/L; and group 4: hs-CRP > 5 mg/L). The residential district in individuals was also acquired. For data collection and analysis of PMs, the report of air quality status in Taiwan from July 1st, 2014 to December 31st, 2016 was referred to the Taiwan Air Quality Monitoring Network (TAQMN). The data of air quality were recorded by a network of 21 monitoring stations spreading in Northern part of Taiwan (Taipei city, New Taipei city, Taoyuan city and Keelung city). The parameters of air quality, PM2.5 and PM10, recorded by the nearest monitoring station to the residential district of individuals were collected. The 24-hour mean concentrations of PM2.5 and PM10 before the visiting day (lag 1 day; 1-day exposure), the lag 1 to lag 3 days (3-day exposure), the lag 1 to lag 90 days (3-month exposure), and the lag 1 to lag 180 days (6-month exposure) were calculated respectively for each individual. Statistical analyses were performed using the SPSS (version 19.0; SPSS Inc., Chicago, USA) statistical software for data analysis. The descriptive data were expressed as the mean ± standard deviation. Trend analysis using one-way Analysis of Variance (ANOVA) and multivariate binary logistic regression

analysis were performed. The data were presented with Odds Ratio (OR) with 95% Confidence Interval (CI). The P value less than 0.05 was considered statistically significant.

Results

During the study interval, a total of 455 individuals on health check-up were enrolled. Eleven was excluded due to incompleteness of clinical data. Among these, the mean age was 45.3±12.9 years, 207 were female and 175 had a hs-CRP level of 1 mg/L and more. Of those who had high hs-CRP level, 121 had the hs-CRP level of 1 mg/L and more but not more than 3 mg/L; 23 had the hs-CRP level of 3 mg/L and more but not more than 5 mg/L; and 31 had the hs-CRP level of 5 mg/L and more. As shown in Table 1, the association of short- and long-term exposures to PM2.5 and PM 10 with hs-CRP expression was analyzed in people on health examination. It revealed that 6-month exposure to PM2.5 seemed to be related to high hs-CRP level (P trend=0.067). Both 3- and 6-month exposures to PM10 were significantly associated with high hs-CRP level (P trend=0.047 and 0.020, respectively). Besides, there was no association of short-term PM exposure to hs-CRP level in individuals receiving health check-up. Since long-term exposure to PM10 were significantly associated with high hs-CRP level in people on health examination, we further performed binary univariate analysis to figure out whether 6-month exposure to PM10 was confounding factor or not. Hence, two regression models were performed for the hs-CRP level ≥1 mg/L and ≥5 mg/L, respectively. The age, gender and 6-month exposure to PM10 were also adjusted as confounding factors. As shown in Table 2, there was no effect of long-term PM10 exposure on those who had the hs-CRP level more than 1 mg/L (OR: 1.02, 95% CI: 0.99-1.05, P=0.271). Furthermore, long-term exposure to PM10 was seemingly associated with those who had the hs-CRP level more than 5 mg/L (OR: 1.07, 95% CI: 0.99-1.14, P=0.052), though there was no statistical significance. Taken together, these results suggested that long-term exposure to PMs could affect the level of hs-CRP to a certain extent in people on health check-up.

Variables	Group 1 (hs-CRP < 1 mg/L) (n=280)	Group 2 (1 mg/L ≤ hs-CRP < 3 mg/L) (n=121)	Group 3 (3 mg/L ≤ hs-CRP < 5 mg/L) (n=23)	Group 4 (hs-CRP > 5 mg/L) (n=31)	P trend
Exposure to PM2.5 concentration ($\mu\text{g}/\text{m}^3$)					
1-day exposure	17.78±10.89	17.97±11.07	16.06±9.07	17.23±13.25	0.665
3-day exposure	17.72±9.72	17.38±9.15	17.53±8.92	17.62±10.99	0.857
3-month exposure	17.75±4.55	18.17±4.65	18.92±4.74	18.37±5.41	0.217
6-month exposure	17.86±3.57	18.37±3.97	19.24±4.07	18.58±3.80	0.067
Exposure to PM10 concentration ($\mu\text{g}/\text{m}^3$)					
1-day exposure	37.43±18.12	37.11±19.21	35.48±13.72	38.44±18.04	0.987
3-day exposure	36.57±14.44	35.94±13.92	37.36±10.83	38.57±16.45	0.595
3-month exposure	36.54±6.50	36.64±6.25	39.13±5.93	38.49±8.12	0.047
6-month exposure	36.42±5.46	36.26±5.93	38.94±4.84	38.55±6.14	0.020

Data were presented with mean ± standard deviation.

Table 1: The mean concentration of Particulate Matter (PM) exposures in groups with different high-sensitivity C-reactive protein (hs-CRP) levels.

Variables	OR (95% CI)	P value
hs-CRP ≥ 1 mg/L		
Age	1.01 (0.99-1.02)	0.494
Female gender	0.91 (0.62-1.33)	0.623
Six-month exposure to PM10	1.02 (0.99-1.05)	0.271
hs-CRP ≥ 5 mg/L		
Age	0.99 (0.97-1.02)	0.693
Female gender	1.16 (0.55-2.44)	0.697
Six-month exposure to PM10	1.07 (0.99-1.14)	0.052

Multivariate binary logistic regression analysis was performed by adjusting by age, female gender and 6-month exposure to PM10 for those who had hs-CRP level ≥ 1 mg/L and ≥ 5 mg/L. hs-CRP, high-sensitivity c-reactive protein; PM, particulate matter; OR, odds ratio; CI, confidence interval.

Table 2: The association of hs-CRP level with 6-month exposure to PM10.

Discussion

The present study revealed that people who had a long-term exposure to PMs were prone to have a higher hs-CRP level on health check-up. Although multivariate binary logistic regression analysis indicated that 6-month exposure to PM10 was not significantly associated with hs-CRP expression, the

long-term exposure to PMs could affect the level of hs-CRP to a certain extent in the population on health examination. Thereby, the history of PM exposure should be taken into consideration for individuals who had a high hs-CRP level on health check-up. PMs were mainly composed of sulfate, nitrate, ammonium, organic and elemental carbons, trace metals, geological materials, and so on [12,13]. The significant impact of PMs on health has been

reported, affecting the occurrence and outcomes in a spectrum of diseases including respiratory and cardiovascular disorders, lung cancers, as well as non-respiratory diseases, such as liver cancers, Out-Of-Hospital Cardiac Arrest (OHCA), ischemic stroke, and so on [14-20]. The underlying mechanism has been investigated and proposed in the previous studies and it revealed that PMs could trigger inflammatory response, oxidative stress and mitochondrial dysfunction [21-23]. It also revealed that acute exposure to PM increased plasma expression of proinflammatory cytokines including interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-alpha, and activated polymorphonuclear leukocytes systemically [24]. Besides, it was demonstrated that antioxidant treatment suppressed PM2.5-induced oxidative stress rather than the inflammatory response [25]. Although accumulating evidence suggested that environmental PMs elicited systemic inflammation and oxidative stress by multiple pathways, the detailed mechanism of PMs-induced inflammation on hs-CRP expression remains to be disclosed. Hence, the strategies concerning the hs-CRP testing and interpretation on health examination were warranted to be established in perspective of prevention medicine. Some major limitations existed in the present study. First, this is a retrospective study design in a single medical center. Additionally, it was unknown whether the individual on health check-up had any underlying disease or not. Furthermore, the measured PM levels could have been inadequate indices of actual exposure for people on health examination due to the unavailability of indoor air quality, leading to overestimated or underestimated correlation between hs-CRP level and environmental PMs.

Conclusions

In the present study, it revealed that individuals who had long-term exposure to PMs were prone to have a higher hs-CRP level on health examination. Although multivariate binary logistic regression analysis indicated that 6-month exposure to PM10 was not significantly associated with hs-CRP expression, the long-term exposure to PMs could partially affect the level of hs-CRP in the population on health examination. Hence, the history of PM exposure should be taken into consideration for individuals who had a high hs-CRP level on health examination.

Acknowledgments: This study was supported by grants of Far Eastern Memorial Hospital (FEMH-2019-C-053), Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

Author Contributions: Ching-Fang Hsu and Yu-Hui Tsai worked as co-first authors. Fu-Chien Hsieh contributed as the corresponding author. All authors read and approved the manuscript.

References

1. Herzog CA, Asinger RW, Berger AK, Charytan DM, Díez J, et al. (2011) Cardiovascular disease in chronic kidney disease. A clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). *Kidney Int* 80: 572-586.
2. Sarnak MJ, Amann K, Bangalore S, Cavalcante JL, Charytan DM, et al. (2019) Conference Participants. Chronic Kidney Disease and Coronary Artery Disease: JACC State-of-the-Art Review. *J Am Coll Cardiol* 74: 1823-1838.
3. Sosnow J, Lessard D, Goldberg RJ, Yarzebski J, Gore JM (2006) Differential symptoms of acute myocardial infarction in patients with kidney disease: a community-wide perspective. *Am J Kidney Dis* 47: 378.
4. Herzog CA, Littrell K, Arko C, Frederick PD, Blaney M (2007) Clinical characteristics of dialysis patients with acute myocardial infarction in the United States: a collaborative project of the United States Renal Data System and the National Registry of Myocardial Infarction. *Circulation* 116: 1465.
5. Silva D, Pais de Lacerda A (2012) High-sensitivity C-reactive protein as a biomarker of risk in coronary artery disease. *Rev Port Cardiol* 31:733-745.
6. Fonseca FA, Izar MC (2016) High-Sensitivity C-Reactive Protein and Cardiovascular Disease Across Countries and Ethnicities. *Clinics (Sao Paulo)* 71: 235-242.
7. Sabatine MS, Morrow DA, Jablonski KA, Rice MM, Warnica JW, et al. (2007) PEACE Investigators. Prognostic significance of the Centers for Disease Control/American Heart Association high-sensitivity C-reactive protein cut points for cardiovascular and other outcomes in patients with stable coronary artery disease. *Circulation* 115: 1528-1536.
8. Kubo S, Kitamura A, Imano H, Cui R, Yamagishi K, et al. (2016) Serum Albumin and High-Sensitivity C-reactive Protein Are Independent Risk Factors of Chronic Kidney Disease in Middle-Aged Japanese Individuals: The Circulatory Risk in Communities Study. *J Atheroscler Thromb* 23: 1089-1098.
9. Bin-Jalilah I, Sakr HF, Morsy MD, Dallak M, Haidara MA (2018) Modulatory Effect of Concomitant Administration of Insulin and Vanadium on Inflammatory Biomarkers in Type 2 Diabetic Rats: Role of Adiponectin. *Chin J Physiol* 61: 42-49.
10. Tsai YW, Chan YL, Chen YC, Chen YH, Chang SS (2018) Association of elevated blood serum high-sensitivity C-reactive protein levels and body composition with chronic kidney disease: A population-based study in Taiwan. *Medicine (Baltimore)* 97: e11896.
11. Hennig F, Fuks K, Moebus S, Weinmayr G, Memmesheimer M, et al. (2014) Association between source-specific particulate matter air pollution and hs-CRP: local traffic and industrial emissions. *Environ Health Perspect* 122: 703-710.
12. Ye B, Ji X, Yang H, Yao X, Chan CK, et al. (2003) Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. *Atmos Environ* 37: 499-510.
13. Cheng Y, Lee S, Gu Z, et al. (2015) PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. *Particulology* 18: 96-104.

14. Dominici F, Peng RD, Bell ML, Pham L, McDermott A, et al. (2006) Fine Particulate Air Pollution and Hospital Admission for Cardiovascular and Respiratory Diseases. *JAMA* 295: 1127-1134.
15. Pan WC, Wu CD, Chen MJ, Huang YT, Chen CJ, et al. (2015) Fine Particle Pollution, Alanine Transaminase, and Liver Cancer: A Taiwanese Prospective Cohort Study (REVEAL-HBV). *J Natl Cancer Inst* 108.
16. VoPham T, Bertrand KA, Tamimi RM, Laden F, Hart JE (2018) Ambient PM2.5 air pollution exposure and hepatocellular carcinoma incidence in the United States. *Cancer Causes Control* 29: 563-572.
17. Straney L, Finn J, Dennekamp M, Bremner A, Tonkin A, et al. (2014) Evaluating the impact of air pollution on the incidence of out-of-hospital cardiac arrest in the Perth Metropolitan Region: 2000-2010. *J Epidemiol Community Health* 68: 6-12.
18. Kang SH, Heo J, Oh IY, et al. (2016) Ambient air pollution and out-of-hospital cardiac arrest. *Int J Cardiol* 203: 1086-1092.
19. Zhao R, Chen S, Wang W, et al. (2017) The impact of short-term exposure to air pollutants on the onset of out-of-hospital cardiac arrest: A systematic review and meta-analysis. *Int J Cardiol* 226: 110-117.
20. Matsuo R, Michikawa T, Ueda K, Ago T, Nitta H, et al. (2016) Short-Term Exposure to Fine Particulate Matter and Risk of Ischemic Stroke. *Stroke* 47: 3032-3034.
21. Guo Z, Hong Z, Dong W, Deng C, Zhao R, et al. (2017) PM2.5-Induced Oxidative Stress and Mitochondrial Damage in the Nasal Mucosa of Rats. *Int J Environ Res Public Health* 14: 134.
22. Jin X, Su R, Li R, Cheng L, Li Z (2017) Crucial role of pro-inflammatory cytokines from respiratory tract upon PM2.5 exposure in causing the BMSCs differentiation in cells and animals. *Oncotarget* 9: 1745-1759.
23. Chen T, Zhang J, Zeng H, Zhang Y, Zhang Y, et al. (2018) The impact of inflammation and cytokine expression of PM2.5 in AML. *Oncol Lett* 16: 2732-2740.
24. Marchini T, Magnani ND, Paz ML, Vanasco V, Tasat D, et al. (2014) Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly Ash. *Toxicol Appl Pharmacol* 274: 274-282.
25. Bekki K, Ito T, Yoshida Y, He C, Arashidani K, et al. (2016) PM2.5 collected in China causes inflammatory and oxidative stress responses in macrophages through the multiple pathways. *Environ Toxicol Pharmacol* 45: 362-369.