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Abstract
Coumarin-chalcone hybrids 3a and 3b were utilized as versatile precursor for the synthesis of coumarinyl-pyridine and 

coumarinyl-pyrimidine hybrids. The reaction of chalcones 3 with malononitrile or ethyl cyanoacetate proceeded in hot glacial 
acetic acid and ammonium acetate to afford the coumarinyl 2-aminonicotinonitriles 4 and coumarinyl 2-hydroxynicotinonitriles 
derivatives 5, respectively. Heating of chalcone derivatives 3 with thiourea in refluxing sodium ethoxide furnished the 
corresponding coumarinyl-pyrimidines 6. Condensation of coumarinyl-acetohydrazide scaffold 7 various aromatic aldehydes 
afforded the corresponding acrylohydrazides 8 which underwent heterocyclization with malononitrile furnished the coumarinyl-
pyridinone derivatives 9. The constructed coumarin scaffolds were evaluated in vitro for their anticancer activity via the standard 
MTT method versus Hepatocellular Carcinoma (HepG2) and breast cancer (MCF-7).

Keywords: 3-Acetylcoumarin; Breast Cancer; Coumarinyl 
2-Aminonicotinonitriles; Isovanillin; Malononitrile 

Introduction
Coumarin scaffolds display wide range of pharmaceutical 

properties with low toxicity. They were described as anticancer 
[1-4], antioxidant [4,5], anticoagulant [6], anti HIV [7,8], 
antimicrobial [9,10] and anti-inflammatory [11] agents. The 
reported cytotoxic activity of these coumarins versus various cell 
lines is attributed to the inhibition of the cellular proliferation via 
different mechanisms such as inhibition of the telomerase enzyme 
[12], inhibition of protein kinase activity and down regulation of 
oncogene expression [13] or by inducing the caspase-9 mediated 
apoptosis [14]. In addition, coumarin derivatives exhibited high 
ability to suppress cancer cell proliferation by arresting cell 
cycle in G0/G1 [12] and G2/M phases [15]. These findings make 
coumarin derivatives (Figure 1), promising scaffolds for cytotoxic 

hybrids framework.
Chalconoid compounds, as examples of α,β-unsaturated 

carbonyl class, are utilized to inhibit cancer and have comprehensive 
cytotoxic potential in several models [16] (Figure 1). It has been 
reported in the literature that hydrazide-hydrazone scaffolds 
(-CO-NH-N=CH-) [17-19], acrylonitrile [20] and/or 2-amino-
nicotinonitrile moieties [21] display important antitumor activity 
(Figure 1).

In the present research, we focused on hybridization 
strategy to combine coumarin nucleus with three biologically 
active molecules; pyridine, pyrimidine and acryl hydrazide in an 
attempt to find bioactive pharmacophores. 3-Acetylcoumarin (1) 
was utilized as versatile precursor for the synthesis of chalcones 
and their corresponding pyridine, pyrimidine and acrylohydrazide 
derivatives. 3-Acetylcoumarin has been synthesized according to 
the reported literature procedure [26] from salicylaldehyde, and 
equimolar amount of ethyl acetoacetate.
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Figure 1: Chemical structures of anticancer scaffolds.

Thus, our strategy in this work starts by the synthesis of coumarin-chalcone hybrids containing different substituents in the aromatic 
rings that can potentially be used as new lead compounds in drug discovery, particularly as anticancer agents. Coumarin-chalcone 
hybrids 3a [27] and 3b were prepared by Claisen-Schmidt reaction of 3-acetylcoumarin (1) with substituted aromatic aldehydes 2 
(namely; 4-nitrobenzaldehyde and isovanillin). The reaction has been achieved by refluxing the reactants in ethyl alcohol and piperidine 
as catalyst.
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The 2-aminonicotinonitrile derivatives 4a [28] and 4b were synthesized through the reaction of chalcone scaffolds 3 with 
malononitrile in refluxing glacial acetic acid containing ammonium acetate (Scheme 2). Spectroscopic techniques (1H NMR, IR and 
MS) was employed to secure the structures of these synthesized 2-aminonicotinonitrile scaffolds. (cf. experimental)
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A plausible mechanism for the reaction of chalcones 3 with malononitrile is indicated in Figure (2). The reaction passes through 
addition of malononitrile and ammonia to the δ,β-unsaturated system to afford intermediate 4-i, which underwent tautomerization 
into amino form 4-ii. Intramolecular cyclization of 4-ii proceeded via nucleophilic addition of the amino function to the nitrile group 
to form the imino-tetrahydropyridine 4-iii, which underwent tautomerization into amino-dihydropyridine 4-iv. Autoxidation of this 
dihydropyridine 4-iv promoted the loss of hydrogen molecule with the formation of pyridine compound 4.    
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Figure 2: A plausible mechanism for the reaction of chalcones 3 with malononitrile.

The 2-hydroxynicotinonitrile derivatives 5a and 5b were constructed through the reaction of chalcone scaffolds 2 with ethyl 
cyanoacetate in refluxing glacial acetic acid containing ammonium acetate (Scheme 3). Spectroscopic techniques (IR, 1H NMR and MS) 
was employed to secure the structures of these synthesized 2-hydroxynicotinonitrile scaffolds. The presence of infrared absorptions, in 
the spectrum of 5a, at 3408 and 3376 cm-1 refers to the N-H and O-H functions. The stretching absorptions at 2216 and 1736 cm-1 clearly 
indicates the presence of nitrile and carbonyl functions. 1H NMR spectrum of 5a revealed, in addition to the multiplet signal of eight 
aromatic protons, two singlet signals at 7.24 and 8.70 ppm for the protons of pyridine C-5 and coumarin C-4, respectively. The singlet 
at 12.64 ppm indicated the proton of hydroxyl group. 
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A plausible mechanism for the reaction of chalcones 3 with malononitrile is indicated in (Figure 3). The reaction passes through 
addition of ethyl cyanoacetate and ammonia to the δ,β-unsaturated system to afford intermediate 5-i, which underwent tautomerization into 
amino form 5-ii. Intramolecular cyclization of 4-ii proceeded via nucleophilic addition of the -NH2 function to the C=O group followed 
by loss of ethanol molecule of to form the tetrahydropyridone 5-iii, which underwent tautomerization into hydroxy-dihydropyridine 
5-iv. Autoxidation of this dihydropyridine 5-iv promoted the loss of hydrogen molecule with the formation of pyridine compound 5.    
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Figure 3: A plausible mechanism for the reaction of chalcones 3 with ethyl cyanoacetate.

The reaction of chalcone derivatives 3 with thiourea has been carried out by refluxing in ethanolic solution of C2H5ONa to furnish 
the corresponding aryl coumarinyl-pyrimidines 6a and 6b (Scheme 4). Spectroscopic techniques (IR, 1H NMR and MS) was employed 
to secure the structures of these synthesized coumarinyl-pyrimidine scaffolds. The infrared spectrum of 6b displayed absorption bands 
at 3415, 3394 and 3213 cm-1 for the (NH and OH) functions in addition to 1717 cm-1 for the  (C=O) group. The 1H NMR spectrum of 6b 
showed signals at 3.81 ppm (s, 3H, OCH3), 4.78 ppm (d, 1H, H-6 of pyrimidine), 6.50 ppm (d, 1H, H-5 of pyrimidine), 6.88-7.76 ppm 
(m, 7H, aromatic-H), 8.39 ppm (s, 1H, H-4 of coumarin), 9.10 ppm (s, 1H, NH), 9.55 ppm (s, 1H, OH) and 9.72 ppm (s, 1H, NH). 
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The plausible reaction mechanism was indicated in Figure (4), the reaction is initiated by base-mediated aza-Michel addition of 
thiourea to chalcones 3 to form the Michel adduct 6-i. The amino group of intermediate 6-i underwent intramolecular attacked on the 
carbonyl function to give the intermediate 6-ii, followed by loss water molecule gave the target aryl coumarinyl-pyrimidine product 6.
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Figure 4: A plausible mechanism for the reaction of chalcones 3 with thiourea.

Condensation of 1 with cyanoacetic acid hydrazide in methyl alcohol containing drops of glacial CH3COOH furnished the 
corresponding acetohydrazide scaffold 7 [29], which underwent subsequent condensation with various aromatic aldehydes by heating 
in ethyl alcohol containing three drops of piperidine to afford the corresponding acrylohydrazide compounds 8a and 8b (Scheme 5). To 
explore the synthetic potentially of compounds 8a and 8b, the reactivity of 8 towards Michael addition with malononitrile as a possible 
synthetic route to get pyridinone derivatives 9 was examined. Compounds 9a and 9b were achieved by refluxing compounds 8a and 8b 
with malononitrile and triethylamine in ethyl alcohol. Elucidation of the new synthesized derivatives 9a and 9b was based on elemental 
analysis, IR, 1H NMR and mass spectroscopy (cf. Experimental Section).
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Biological Evaluation (Anti-cancer activity) 
The constructed seventy coumarin scaffolds were evaluated 

in vitro for their anticancer activity via the standard MTT method 
[30-32] versus two human tumor cell lines; Hepatocellular 
Carcinoma (HepG2) and breast cancer (MCF-7). Doxorubicin has 
been used as standard anticancer drug for comparison. MTT assay 
is a standard colorimetric assay for measuring the inhibit effects of 
compounds on cell growth. 

Yellow MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 
tetrazolium bromide is reduced to purple formazan derivative 
by mitochondria succinate dehydrogenase of viable cells. The 
absorbance of this colored formazan solution in DMSO is measured 
and recorded at certain wave length 570 nm by using a plate reader 
(EXL 800, USA). the relative cell viability in percentage was 
calculated as (A570 of treated sample / A570 of untreated samples) 
x 100.

The results of anticancer activity of the chalconoid 
compounds are depicted in (Table 1). They revealed that compounds 
and revealed that compounds 7, 8b and 5b exhibited the highest 
cytotoxic activity against the tested cell lines HepG2 and MCF-7. 
Their IC50 values (ranges from 5.81 to 11.26 µM) were very close 
to the reference drug (Doxorubicin, IC50 = 4.17-4.50 µM).

The coumarin compound 9b showed strong cytotoxic 
activity with the percentage viability IC50 at 13.68 and 17.01 µM 
for the hepatocellular carcinoma (HepG2) and the breast cancer 
(MCF-7), respectively. The coumarin-chalconoid compound 3b, 
substituted with methoxy and hydroxy groups at the benzene ring, 
displayed moderate inhibitory activity for both cell lines (HepG2 
and MCF-7) with the percentage viability IC50 at 22.96 and 29.54 
µM, respectively. The coumarinyl-nicotinonitrile compound 4b 
displayed also moderate inhibitory activity against HepG2 and 
MCF-7 with the percentage viability IC50 at 28.60 and 24.89 µM, 
respectively. 

Structure Activity Relation (SAR)
In an attempt to find a relationship between the Structure and 

their Anticancer Activity (SAR), we can assume that the presence 
of methoxy group in the skeleton of chalcone is responsible for the 
broad spectrum of anti-cancer activity towards the tested cell lines 
(HepG2 and MCF-7) and makes the compounds very stronger as 
anti-cancer agents. This assumption finds support from the results 
(Table 1), the anticancer activity of the chalconoid compounds 
substituted (3b, 4b, 5b, 6b, 8b and 9b) with methoxy at the para-
position and hydroxy group at the meta-position of the benzene 
ring is higher than its corresponding chalconoid compounds (3b, 
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4b, 5b, 6b, 8b and 9b) substituted with nitro group at the para-
position of the benzene ring.   

Compounds
In vitro Cytotoxicity IC50 (µM)

HepG2 MCF-7

DOX 4.50±0.3 4.17±0.2

3a 31.23±2.4 36.91±2.6

3b 22.96±1.8 29.54±2.0

4a 63.49±3.7 61.18±4.1

4b 28.60±2.1 24.89±1.9

5a 60.48±3.6 51.85±3.5

5b 9.24±1.0 11.26±1.1

6a 56.73±3.4 42.38±3.1

6b 46.41±3.0 30.42±2.3

7 5.81±0.4 6.34±0.5

8a 39.76±2.7 59.12±3.9

8b 7.73±0.8 8.92±0.7

9a 38.12±2.6 48.50±3.3

9b 13.68±1.2 17.01±1.4

• IC50 (µM): 1-10 (very strong), 11-20 (strong), 21-50 (moderate), 51-
100 (weak) and higher than 100 (non-cytotoxic). DOX (Doxorubicin)

Table 1: Cytotoxic activity of the synthesized coumarin scaffolds versus 
HePG2 and MCF-7.

Experimental
General Remarks 

Melting points (uncorrected) have been determined on 
Gallenkamp electric apparatus. IR spectra were registered on a 
Nicolet 5000 FT-IR spectrophotometer. The 1H NMR and 13C NMR 
spectra were obtained by JEOL’s NMR spectrometer (500 MHz) in 
DMSO-d6. Mass analyses were registered on Quadrupole GC/MS 
Thermo Scientific Focus/DSQII at 70 eV. Elemental analyses (C, 
H and N) were determined on Perkin Elmer 2400 analyzer. 

Synthesis of coumarin-Chalcone hybrids 3a and 3b

To a well-stirred suspension of 3-acetylcoumarin (0.02 mol) 
in ethyl alcohol, 4-nitrobenzaldehyde or isovanillin (0.02 mol) and 
few drops of piperidine were added. The mixture was refluxed 
for 6 hours and the resulting solid was picked up by filtration and 
recrystallized via boiling in MeOH.

1-(Coumarin-3-yl)-3-(4-nitrophenyl)-prop-2-en-1-one (3a)
Yellow powder, yield = 78%, m.p. 265-266°C, lit. m.p. 

267°C [27]. IR (νmax/cm-1): 1671 (C=O, conjugated), 1723 (C=O, 
coumarin). 1H NMR (DMSO-d6): δppm 7.34 (d, 1H, J = 8.50 Hz), 
7.40-7.81 (m, 4H), 7.94 (d, 1H, J = 8.50 Hz), 8.05 (d, 2H, J = 
8.80 Hz), 8.24 (d, 2H, J = 8.40 Hz), 8.60 (s, 1H). Analysis for 
C18H11NO5 (321), Calcd: C, 67.29; H, 3.45; N, 4.36%. Found: C, 
67.16; H, 3.49; N, 4.28%.
1-(Coumarin-3-yl)-3-(3-hydroxy-4-methoxyphenyl)-prop-2-
en-1-one (3b)

Yellow powder, yield = 72%, m.p. 218-219°C.  IR (νmax/cm-1): 
3435 (O-H), 1676 (C=O, conjugated), 1722 (C=O, coumarin), 
1608 (C=C). 1H NMR (DMSO-d6): δppm 3.85 (s, 3H), 6.82 (d, 1H, 
J = 8.40 Hz), 7.00 (d, 1H, J = 8.60 Hz), 7.08 (d, 1H, J = 8.50 Hz), 
7.18 (s, 1H), 7.41-7.82 (m, 4H), 7.84 (d, 1H, J = 8.50 Hz), 8.61 (s, 
1H), 9.48 (s, 1H). Analysis for C19H14O5 (322), Calcd: C, 70.80; H, 
4.38%. Found: C, 70.96; H, 4.44%.
Synthesis of 2-amino-4-aryl-6-(coumarin-3-yl)-
nicotinonitriles 4a and 4b

A solution of coumarin-chalcone hybrids 3a or 3b (0.003 
mol), malononitrile (0.006 mol) and ammonium acetate (1.2 mol) in 
glacial acetic acid (15 mL) was refluxed for 6 hours. After cooling, 
15 mL water was added to the reaction mixture and the solid that 
formed was collected by filtration. Recrystallization was carried 
out from AcOH/H2O to furnish the corresponding nicotinonitriles 
4a and 4b.
2-Amino-4-(4-nitrophenyl)-6-(coumarin-3-yl) nicotinonitrile 
(4a)

Yellow powder, yield = 70%, m.p. 250-251°C, lit. m.p. 252-
254°C [28]. IR (νmax/cm-1): 3456, 3365 (NH2), 2212 (C≡N), 1721 
(C=O). 1H NMR: δppm 7.21 (s, 2H), 7.38-7.87 (m, 8H), 8.36 (s, 
1H), 8.76 (s, 1H). MS (EI, m/z): 384 (M+, 100%). Analysis for 
C21H12N4O4 (384), Calcd: C, 65.63; H, 3.15; N, 14.58%. Found: C, 
65.46; H, 3.21; N, 14.47%.
2-Amino-4-(3-hydroxy-4-methoxyphenyl)-6-(coumarin-3-yl)-
nicotinonitrile (4b)

Yellow powder, yield = 66%, m.p. 257-258°C. IR (νmax/
cm-1): 3432, 3378 (NH2 and O-H), 2218 (C≡N), 1727 (C=O).  1H 
NMR: δppm 3.82 (s, 3H), 6.98-7.56 (m, 9H), 7.68 (s, 1H), 8.72 (s, 
1H), 9.54 (s, 1H). MS (EI, m/z): 385 (M+, 71.6%). Analysis for 
C22H15N3O4 (385), Calcd: C, 68.57; H, 3.92; N, 10.90%. Found: C, 
68.69; H, 3.96; N, 10.96%.
Synthesis of 2-hydroxy-4-aryl-6-(coumarin-3-yl)-
nicotinonitriles 5a and 5b
A solution of coumarin-chalcone hybrids 3a or 3b (0.003 mol), 
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ethyl cyanoacetate (0.006 mol) and ammonium acetate (1.2 mol) in 
glacial acetic acid (15 mL) was refluxed for 6 hours. After cooling, 
the reaction mixture was diluted with 15 mL water and the solid 
that formed was collected by filtration, dried and recrystallized 
from AcOH/H2O to furnish the corresponding nicotinonitriles 5a 
and 5b.

2-Hydroxy-4-(4-nitrophenyl)-6-(coumarin-3-yl) nicotinonitrile 
(5a)

Brown powder, yield = 62%, m.p. 284-284°C. IR (νmax/cm-1): 
3408, 3376 (NH and OH), 2216 (C≡N), broad centered at 1736 
(C=O). 1H NMR: δppm 7.24 (s, 1H), 7.35-7.89 (m, 8H), 8.70 (s, 
1H), 12.64 (s, 1H). MS (EI, m/z): 385 (M+, 84.5%). Analysis for 
C21H11N3O5 (385), Calcd: C, 65.46; H, 2.88; N, 10.91%. Found: C, 
65.67; H, 2.81; N, 10.79%.

2-Hydroxy-4-(3-hydroxy-4-methoxyphenyl)-6-(coumarin-3-
yl) nicotinonitrile (5b)

Yellowish brown powder, yield = 68%, m.p. 240-242°C. IR 
(νmax/cm-1): 3341, 3337 (NH and OH), 2213 (C≡N), broad centered 
at 1726 (C=O). 1H NMR: δppm 3.85 (s, 3H), 6.92-7.62 (m, 7H), 7.74 
(s, 1H), 8.70 (s, 1H), 9.58 (s, 1H), 12.64 (s, 1H). MS (EI, m/z): 386 
(M+, 48.3%). Analysis for C22H14N2O5 (386), Calcd: C, 68.39; H, 
3.65; N, 7.25%. Found: C, 68.21; H, 3.58; N, 7.36%.

Synthesis of 3-(6-aryl-2-thioxo-1,2,3,6-tetrahydropyrim-
idin-4-yl)-2H-chromen-2-ones 6a and 6b

A solution of sodium ethoxide was intended by dissolving fine 
pieces of sodium (0.006 mol) in 20 ml dry ethanol. To this ethoxide 
solution, the coumarin-chalcone hybrids 3a or 3b (0.003 mol) and 
thiourea (0.003 mol) were added. The mixture was refluxed for 4 
hours, then cooled to 25°C and diluted with 20 ml cold water. The 
solid that formed, after acidification with dilute HCl, was filtered 
and purified by recrystallization from ethyl alcohol.   

3-(6-(4-Nitrophenyl)-2-thioxo-1,2,3,6-tetrahydropyrimidin-4-
yl)-2H-chromen-2-one (6a)

Brown powder, yield = 54%, m.p. 204-205°C. IR (νmax/cm-1): 
3394, 3213 (NH), 1706 (C=O). 1H NMR: δppm 4.82 (d, 1H, J = 7.80 
Hz), 6.56 (d, 1H, J = 8.60 Hz), 7.38-8.04 (m, 8H), 8.46 (s, 1H), 9.12 
(s, 1H), 9.68 (s, 1H). MS (EI, m/z): 379 (M+, 62.7%). Analysis for 
C19H13N3O4S (379), Calcd: C, 60.15; H, 3.45; N, 11.08%. Found: 
C, 60.01; H, 3.51; N, 11.19%.

3-(6-(3-Hydroxy-4-methoxyphenyl)-2-thioxo-1,2,3,6-
tetrahydro-pyrimidin-4-yl)-2H-chromen-2-one (6b)

Brown powder, yield = 62%, m.p. 194-196°C. IR (νmax/cm-1): 
3415, 3394, 3213 (OH and NH), 1717 (C=O). 1H NMR: δppm 3.81 
(s, 3H), 4.78 (d, 1H, J = 7.80 Hz), 6.50 (d, 1H, J = 8.55 Hz), 6.88-
7.76 (m, 7H), 8.39 (s, 1H), 9.10 (s, 1H), 9.55 (s, 1H), 9.72 (s, 1H). 
MS (EI, m/z): 380 (M+, 32.8%). Analysis for C20H16N2O4S (380), 

Calcd: C, 63.15; H, 4.24; N, 7.36%. Found: C, 63.31; H, 4.17; N, 
7.46%.
Preparation of 2-cyano-N’-(1-(coumarin-3-yl) 
ethylidene)-acetohydrazide (7)

To a solution of cyanoacetic acid hydrazide (0.01 mol) in 
methyl alcohol (40 mL), 3-acetyl-coumarin (0.01 mol, 2.18 g) and 
1 mL CH3COOH were added. The reaction was completed after 
reflux for 2 hours and then the solid that formed was filtered, and 
recrystallized from EtOH/CHCl3 mixture (1:1).

Yellow crystals, yield = 80%, m.p. 171-173°C, lit. m.p. 
172°C [29]. IR (νmax/cm-1): 3193 (NH), 2227 (C≡N), 1691 (C=O, 
amide), 1722 (C=O, coumarin).  1H NMR: δppm 2.22 (s, 3H), 4.18 
(s, 2H), 7.32-7.91 (m, 4H), 8.82 (s, 1H), 11.06 (s, 1H). 

Preparation of 2-cyano-3-aryl-N’-(1-(coumarin-3-yl)-
ethylidene)-acrylohydrazide 8a and 8b

To a solution of 7 (0.005 mol) and 4-nitrobenzaldehyde or 
isovanillin (0.005 mol) in ethyl alcohol (30 mL), three drops of 
piperidine were added. The reaction was completed after reflux 
for 2 hours. The solid that obtained while hot was picked up by 
filtration, dried and recrystallized from ethyl alcohol.

2-Cyano-3-(4-nitrophenyl)-N’-(1-(coumarin-3-yl) ethylidene)-
acrylohydrazide (8a)

Yellow crystals, yield = 81%, m.p. 204-205°C. IR (νmax/
cm-1): 3446 (NH), 2227 (C≡N), 1721 (C=O, coumarin), 1681 
(C=O, amide). 1H NMR: δppm 2.17 (s, 3H), 7.45-8.14 (m, 8H), 
8.34 (s, 1H), 8.62 (s, 1H), 11.48 (s, 1H). MS (EI, m/z): 402 (M+, 
46.7%). Analysis for C21H14N4O5 (402), Calcd: C, 62.69; H, 3.51; 
N, 13.92%. Found: C, 62.51; H, 3.58; N, 13.81%.

2-Cyano-3-(3-hydroxy-4-methoxyphenyl)-N’-(1-(coumarin-3-
yl)-ethylidene) acrylohydrazide (8b)

Yellow crystals, yield = 77%, m.p. 158-160°C. IR (νmax/
cm-1): 3439 (NH and OH), 2221 (C≡N), 1722 (C=O, coumarin), 
1675 (C=O, amide). 1H NMR: δppm 2.19 (s, 3H), 3.82 (s, 3H), 6.98-
7.80 (m, 7H), 8.18 (s, 1H), 8.68 (s, 1H), 9.58 (s, 1H), 11.64 (s, 1H). 
MS (EI, m/z): 403 (M+, 26.1%). Analysis for C22H17N3O5 (403), 
Calcd: C, 65.50; H, 4.25; N, 10.42%. Found: C, 65.28; H, 4.32; 
N, 10.54%.

Synthesis of 6-amino-4-aryl-2-oxo-1-((1-(coumarin-
3-yl)-ethylidene)amino)-1,2-dihydropyridine-3,5-
dicarbonitrile 9a and 9b

To a well-stirred suspension of acrylohydrazide 8 (0.002 
mol) in 30 mL ethyl alcohol, malononitrile (0.002 mol) and 0.5 
mL of triethylamine were added. The reaction was completed after 
refluxing the reactants for 4 hours and then cooled to 25°C. The 
solid that formed was picked up by filtration and recrystallized 
from ethyl alcohol.       
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6-Amino-4-(4-nitrophenyl)-2-oxo-1-((1-(coumarin-3-yl)-
ethylidene) amino)-1,2-dihydropyridine-3,5-dicarbonitrile 
(9a)

Brown powder, yield = 68%, m.p. > 300°C. IR (νmax/cm-1): 
3438, 3347 (NH2), strong broad at 2200 (C≡N), 1724 (C=O, 
coumarin), 1687 (C=O, pyridone). 1H NMR: δppm 2.08 (s, 3H), 6.54 
(s, 2H), 7.35-8.05 (m, 8H), 8.41 (s, 1H). MS (EI, m/z): 466 (M+, 
86.3%). Analysis for C24H14N6O5 (466): Calcd: C, 61.80; H, 3.03; 
N, 18.02%. Found: C, 61.91; H, 3.07; N, 18.10%.

6-Amino-4-(3-hydroxy-4-methoxyphenyl)-2-oxo-1-((1-
(coumarin-3-yl)-ethylidene)-amino)-1,2-dihydropyridine-3,5-
dicarbonitrile (9b)

Brown powder, yield = 73%, m.p. >300°C. IR (νmax/cm-1): 
3430, 3348, 3237 (NH2 and OH), strong broad at 2205 (C≡N), 
1721 (C=O, coumarin), 1688 (C=O, pyridone). 1H NMR: δppm 
2.11 (s, 3H), 3.84 (s, 3H), 6.63 (s, 2H), 6.91-7.65 (m, 7H), 8.47 
(s, 1H), 9.61 (s, 1H). MS (EI, m/z): 467 (M+, 69.4%). Analysis for 
C25H17N5O5 (467): Calcd: C, 64.24; H, 3.67; N, 14.98%. Found: C, 
64.36; H, 3.62; N, 14.88%. 

Conclusion
The target of this work involved the preparation and 

evaluation the anti-cancer activity of some coumarinyl-pyridine 
and coumarinyl-pyrimidine scaffolds with the hope of discovering 
new structure leads serving as anticancer agents. Compounds 7 
and 8b proved to be the most important compounds in this study; 
they displayed very strong activity against the human HepG2 
and MCF-7. The other synthesized coumarin scaffolds displayed 
different degrees of anti-cancer effect, compounds substituted 
with methoxy and hydroxy groups in benzene ring (derived 
from isovanillin) showed stronger anticancer activity than their 
corresponding compounds substituted with nitro group (derived 
from 4-nitrobenzaldhyde), which displayed moderate and/or weak 
anti-cancer effect.
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