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/Abstract

Nucleic Acids, the elemental basis of living organisms, play important roles in the life continuation and development,
and also are widely used for pathological diagnosis and analysis, therefore the detection of the nucleic acid sequence is very
significant in the biological medicial science. Telomere is a special DNA structure at the end of eukaryotic chromosomal that
will shorten with age, which is the most important and accurate indicator of person’s aging rate. Therefore, the detection of
telomere length is significant for human being. This work describes a systematic study on preparation of Ultrathin Films (UTFs)
composite of fluorescent Dye 4°,6-Diamidino-2-Phenylindole (DAPI) blending with Single-Stranded DNA (ssDNA) and Lay-
ered Double Hydroxides (LDHs) nanosheets by the layer-by-layer method. This new type of bio-inorganic composite material
(ssDNA@DAPI/LDHs)n UTFs show uniform and long-range- ordered periodic layered structure that can be used to detect the
complementary ssDNA sequence including the telomere squence with various length. The UTFs exhibits excellent selectivity
and reversibility, which has potential applications in the field of bioluminescent sensoring materials.
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Introduction

Nucleic acid is a kind of biological macromolecule mainly
distributing in the cell nucleus, which is not only the basic
genetic substance, but also has important affect on the protein
replication, biosynthesis, and plays a decisive role on a series
of major life activities (growth, heredity, variation, etc). DNA is
the biological genetic information carrier, with unique sequence
for each organism, and plays a key part in the disease diagnosis
and identification, thus, the detection of the sequence is crucial
in the biological medicine[1,2]. Telomere is a specialized
DNA structure at the end of eukaryotic chromosomes used for
protecting chromosome ends. Essentially, human telomeres are
special DNA structures consisting of repetitive non-transcribed
sequences (TTAGGG) and some binding proteins. The length

of telomere reflects the cell life and its shortening limits the
lifespan of cells. The maintenance of telomere length is a
prerequisite for cell division and the average telomere length
is usually used to assess telomere function and cancer risk. So
it is significant to detect the telomere sequences with different
length. At present there are a lot of methods used for telomere
DNA detection, and the most commonly ones are Terminal
Restriction Fragment (TRF) [3,4], QuantitativePolymerase
Chain Reaction (qPCR) [5,6], Quantitative Fluorescence
In Situ Hybridization (Q-FISH) [7,8] and Single Telomere
Length Analysis (STELA) [9]. Some nanomaterials are also
used for DNA detection. Thompson and colleague [10] based
the unique properties of Oligonucleotide-Silver Nanoparticle
(OSN) conjugates to detecte target DNA by monitoring the
colour change of the hybridized conjugates. Maxwell [11] used
colloidal gold nanocrystals as both a nano-scaffold and a nano-
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quencher, and oligonucleotide molecules labelled with a thiol
group at one end and a fluorophore at the other. Binding of
target molecules results in a change of fluorescence, then it is
possible to recognize specific DNA sequences and single- base
mutations in a homogeneous format. Although these methods
have their own advantages, almost all of them cannot reuse
and require a long response time. For these reasons, a new
convenient sensor that can reuse and response quickly is in
demand.

4',6-Diamidino-2-Phenylindole (DAPI) as shown in Fig-
ure | is a fluorescence dye that was usually used for staining
live cells and immobilized cells as its penetrability of the cell
membrane. It is a common fluorescent marker for DNA with
important applications as antiparasitic, antibiotic, antiviral, and
anti-cancer drug [12,13]. The existing investigation has shown
that the structure of DAPI is similar to some 2-phenyl derivates of
classical DNA double helix groove-binding molecules, and binds
specifically to AT base pairs [14]. It was widely used as a minor
groove fluorescent probe of the DNA double helix [15] giv-
ing rise to the so-called “Light-Switch” effect [16,17] as firstly
reported by Russell et al [18]. The light-switch behavior refers
to the drastic fluorescence emission enhancement upon selec-
tively minor groove binding to dsDNA[19,20]. Actually, DAPI
interacted with polynucleotides in a non-univocal manner, both
intercalation and minor groove binding modes being possible
[21-23], and to specifically change its photophysical proper-
ties according to the different environment.It can be combined
strongly with DNA in the cell nucleus and lead to a fluores-
cence enhanced contrast.
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Figurel: The structure of DAPI.

Layered Double Hydroxides (LDHs) are large class of
layered inorganic solid solution materials, which can be de-
scribed by the general formula [M”l_ xM"‘X(OH)Z]Z*A"'Z/n~yH20
(M™ and M™ are divalent and trivalent metals respectively; A™
is the anion) [24,25]. The synthesis and intercalation assem-
bly of LDH, especially the preparation and the development
of the assembled films based on LDHs, attracted widespread
interest and attention in the field of functional materials re-
search [26]. As a typical anionic inorganic layered material,
LDHs crystallites can be exfoliated into nanosheets due to
their facile swelling characteristics inthe organic solvent [27-

291, which provides the building blocks for the construction
of multifunctional composite Ultrathin Film (UTF) material.
The LDHs exfoliated nanosheets are transparent, biocom-
patible and UV-light proof [30,31], therefore, it can be used
as a molecular container to stabilize and immobilize the bio-
logical macromolecules within the interlayer spaces. Cur-
rently, the DNA intercalated LDH displayed novel functions
and has drawn more and more attention. Shi [32] reported
a layer-by-layer self-assembly method to fabricate a highly
oriented DNA intercalated LDH film, and its application in
chiroptical switch was studied and demonstrated via interca-
lation/ deintercalation of an achiral molecule into the DNA
cavity. Léa Desigaux [33], synthesized LDH/DNA hybrids
by coprecipitation method, which is a new way to synthesize
new labile, nonviral gene delivery systems. Chen [34] used
a constant vibriation method to fabricate the DNA-LDH
nanohybrids composed by electrostatic forces, the DNA-
LDH nanohybrids exhibited DN A-enhanced peroxidase-like
activity and could be applicated in H,O, and glucose sens-
ing. Baccar [35] reported the development of an impedimetric
DNA-biosensorbased on LDH forthedetectionoflongssDNA
sequences, which showed a high sensitivity for the detection
of 80 bases long DNA complementary sequences.

In this paper, we demonstrated the successful fabrication
of new type of biocompatible layered composite material (ss-
DNA@DAPI/LDH)n UTFs by the co-assembly method as we
reported previously [36-38]. The UTFs show uniform and long-
range-ordered periodic layered structure. This composite sys-
tem can detect the complementary ssDNA sequence by DAPI
fluorence enhancement, and have good selectivity for the long
complementary ssDNA sequence like telomere compared to
a range of other ssDNA sequence. In addition, the (ssSDNA@
DAPI/LDH) UTFs displayed a well stability and reversiblity
fluorescence response for the complementary ssDNA sequence,
which indicates that this film can be a novel potential fluores-
cence sensor for the specific ssDNA sequence.

Experiment
Materials

All the DNA primers were purchased from Taihe Biotech-
nology Co., Ltd, and the primers ID and sequences were shown
in Table 1. the 4',6-Diamidino-2- Phenylindole (DAPI) was
purchased from J&K Chemical. Co. Ltd. Analytical grade
Mg(NO,),-6H O,AI(NO,),-9H O, HCI, HNO_,NH,-H O, etha-
nol, 95~98 wt% HZSO4, 30 wt% H202, NaCl and NaOH were
purchased from Beijing Chemical Co. Ltd. Tris (hydroxym-
ethyl) aminomethane was purchased from Shang-hai Alad-
din Bio- Chem Technology Co., Ltd. Polydimethyldiallyl-
Ammonium Chloride (PDDA, Mw = 100, 000-200, 000)
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and Poly (Styrene sulfonicacid) (PSS, Mw=70,000) were purchased from J&K Chemical. Co. Ltd. All of these reagents were
used without further purification. Deionized and decarbonated water was used throughout the experimental process. Ultra-
pure water was made by the Millipore ultrapure water purifier from RephilLe Bioscience Co., Ltd.

Primer ID 5’ Sequences 3’ Bases number
o 43 27 5’- (AAAG),, s AAA-3’ 59, 43, 27
A 5’- (AAAG), AA-3° 10, 6
: A, g 5’- (AAAG),,, -3’ 12, 8, 4
Conventional base complementary sequence - - -
T, ., o 5-TTT (CTTT),, -3 59, 43, 27
T, . 5’-TT (CTTT),, -3’ 10, 6
T, .. 5’- (CTTT),,, -3’ 12, 8, 4
tC., o s b 5’-(CCCTAA) 5, -3’ 54,36,18,12
tC,, 5’-CCCTAACCCT-3’ 10
tC, 5’-CCCTAACC-3’
tC, 5’-CCCTAA-3’ 6
The telomere sequence
Gy 3 15 1 5’«(TTAGGG),,, -3’ 54,36,18,12
tG,, 5’-TTAGGGTTAG-3’ 10
tG, 5’-TTAGGGTT-3’
tG, 5’-TTAGGG-3’ 6

Table 1: Sequences and bases number of the primers used in this work.

Fabrication of the (ssDNA@DAPI/LDH) UTFs

A colloidal LDH suspension was prepared according to
the Separated Nucleation And Aging Steps (SNAS) method
reported previously [39,40], 80mLNaOH (0.18 mol) solution
and 70 mL salt solution (0.06 mol Mg(NO,),-6H O and 0.03
mol AI(NO,),-9H O) were simultaneously added to a colloid
mill and mixed for 2 min with a rotor speed of 4000 rpm. The
resulting slurry was removed and heated in 100 mL PTFE-
lined autoclave at 110°C for 24 hours. The product was washed
three times with deionized and decarbonated water, then a
stable homogeneous MgAI-LDH suspension with a narrow
size distribution can be obtained after washing for 4 times.
The concentration of LDH colloidal particles used for the
thin film fabrication was 0.10 wt %.

The quartz substrates were cleaned in a mixed solution
with concentrated HZSO4/30% HZO2 (VOl cvol=7: 3) for 30
min and then washed by anhydrous alcohol and deionized
water thoroughly. To improve the adhesion between the film
and the substrate, the cleaned substrates were dipped into a
cationic PDDA solution (10 g/L) for 30 min and thoroughly
rinsed with distilled water and dried in a nitrogen gas flow.
Then the substrates were dipped into an anionic PSS solu-
tion (10 g'L'") for 30 min and thoroughly rinsed with distilled
water and dried in a nitrogen gas flow. This treatment made
the quartz substrates pre-assembled with one layer polymer
UTF. The preparation of the (ssDNA@DAPI/LDH)  mul-

tilayer UTFs were carried out as the follows: the pretreated
quartz substrate was immersed in the LDH colloidal suspen-
sion (1g-L") for 15 min followed by through washing with de-
ionized water and drying in a nitrogen gas flow at room tem-
perature, and then the substrate was treated with ssDNA@
DAPI solution (ssDNA: DAPI=0.04 mg'mL": 0.02 mg-mL"!,
Tris buffer solution pH = 8) for 15 min, washed several times
with deionized water and dried in a nitrogen gas flow for 2
min at room temperature. The (ssDNA@DAPI/LDH) UTFs
were fabricated by alternatively deposition of LDH colloi-
dal suspension and ssDNA@DAPI solution for n cycles, and
after every deposition, the UTFs were washed several times
with deionized water and dried under a nitrogen gas flow for
2 min at room temperature.

The quartz substrates with (ssDNA@DAPI/LDH) UTFs
were put into the quartz cuvette. The fluorescence emission
spectra were measured after adding a certain amount of buffer
solution or testing ssDNA each time. The test process for the
reversibility is as following: (ssDNA@DAPI/LDH) was put
into the quartz cuvette, the fluorescence emission spectra were
measured after adding a certain amount of buffer solution and a
certain amount of the tested sSDNA. Then, suck out of the so-
lution, replenish the same amount of buffer solution, and put
quartz cuvette in a thermostat water bath for heating 5 min at
75°C. Thirdly, suck out of the solution in the cuvette and record
the fluorescence emission spectra after adding the same amount
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of buffer solution and the tested ssDNA. Repeat the above op-
erations several times to study the stability of the UTFs. The
fluorescence emission spectra of UTFs were measured after
adding a certain amount of different ssDNA sequences for test-
ing the selectivity of the UTFs.

Characterization

The UV-vis absorption spectra were collected on a
Shimadzu U-3600 spectrophotometer with the slit width of
1.0 nm. The fluorescence spectra were obtained on a FL-
4600 fluorospectrophotometer with an identical condition for
comparison. The Circular Dichroism (CD) spectra were recorded
using a JASCO J-815 circular dichroism spectrometer with a slit
width of 1.0 nm from 185 to 500 nm. The polarized fluorescence
spectra were recorded with an Edinburgh Instruments’ FL 900
fluorimeter. The small-angle XRD patterns of the films were
obtained with a Rigaku 2500VB2+ PC diffractometer using Cu
Ka radiation (\=1.541844 A,20=0.5—8") at 40 kV, 50 mA, with
the step-scanned mode with 0.04°(20) per step and count time of 10
s per step. A Scanning Electron Microscope (SEM Zeiss Supra 55)
was used to investigate the morphology of LDH and the thin films.

Result and Discussion
The Assembly of (ssdna@DAPI/LDH)n UTFs

ssDNA is a kind of biological polyanion, which is con-
ducive to assemble with positive-charged LDH nanosheets
by electrostatic interaction. DAPI is a small fluorescentmol-
ecule. It mixes with the ssDNA polyanions can be assembled
with LDH nanosheets via the co-assembly method as report-
ed by our previous work (Scheme 1) [36-38].
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Scheme 1: The assembly scheme of the (ssDNA@DAPI/LDH) UTFs.

The assembly process of the (ssDNA@DAPI/LDH) UTFs
deposited on quartz substrates was similar to the ordinary
electrostatic assembly of polyanions with LDHs nanosheets,
except that the LDH nanosheets were prepared by SNAS method
as reported previously [39,40] and the XRD pattern and SEM
image of the Mg AI-NO, LDH powders were shown in Figure
S1. The multilayer assembly process of the (ssDNA-A59@
DAPILDH) (n =4 — 16), (ssDNA- T59@DAPI/LDH) (n =
4 = 16), (ssDNA-tC54@DAPI/LDH) (n =3 — 12) UTFs and
(ssDNA- tG54@DAPI/LDH)n (n =3 —12) on quartz substrates
were were monitored by UV-vis absorption spectra (Figure 2)
and fluorescence spectra (Figure 3). The absorption intensities
of the bands at 258, 267 and 348 nm for (ssDNA- A59@DAPL/
LDH)n and (ssDNA—T59@DAPI/LDH)n (n=4—16) correlated
nearly linearly with the number of bilayers n (Figures 2A, B),
indicating the UTFs were LbL linearly grown. The absorption
bands at 258 and 267 nm of the UTFs are mainly attributed
to the characteristic absorption of ssDNA, and the absorption
band at 348 nm of the UTFs may be attributed to that of DAPI,
all of which corresponded to the those of pristine ssDNA and
DAPI solution (Figures S2 and S3A).
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Figures 2(A-D): Absorption spectra of (A) (ssDNA-A5S9@DAPI/LDH),_
and (B) (ssDNA- TS9@DAPI/LDH), (n = 4-16) UTFs, insert: the plot of
the absorbance vs. n at 258 and 348 nm of the UTFs. (C) (ssDNA- tC54@
DAPI/LDH), and (D) (ssDNA-tG54@DAPI/LDH)_(n = 3- 12, Aex= 370
nm) UTFs, insert: the plot of the fluorescence intensity vs. n at 224,264
and 354 nm of the UTFs.
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Figures 3(A-D): Fluorescence spectra of (A) (ssDNA-AS9@DAPI/LDH), and (B) (ssDNA- T59@DAPI/LDH), (n=4-16) UTFs, (C) (ssDNA- tC54@
DAPI/LDH), and (D) (ssDNA-tG54@DAPI/LDH), (n = 3-12) UTFs, insert: the plot of the fluorescence intensity of the UTFs vs. the bilayers number

at the maximum emission wavelength.
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Figure S1: (A) XRD pattern and (B) SEM image of Mg, Al-NO, LDH powders prepared by SNAS method.
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Figures S2(A,B): UV-vis absorption spectra of (A) ssDNA-A59 and
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Figures S3(A,B): (A) UV-vis absorption spectra and (B) fluorescence
spectra of DAPI.

The intensity of the sharp luminescence peak with a max-
imum at 446 and 488 nm of the (SSDNA—AS9@QDAPI/LDH)n (n
=4 - 16), (ssDNA-T59@DAPI/LDH) (n = 4 — 16) (Figure
3A.B), (ssDNA-tC54@DAPI/LDH) (n = 3 — 12) and (ss-
DNA- tG54@DAPVLDH) (n =3 — 12) (Figure 3C,D) UTFs
also displays a monotonic increase with n, which further sug-
gests that a stepwise and regular deposition procedure with al-
most equal amounts of ssDNA@DAPI and LDH incorporated
in each cycle. And the fluorescence emission wavelength of the
(ssDNA@DAPI/LDH) UTFs was similar to that of the origi-
nal DAPI solution (Figure S3B), suggesting the absence of ag-
gregates of DAPI in the (ssSDNA@DAPI/LDH) UTFs through-
out the whole assembly. The absorption and nd fluorescence
spectra indicated the successful co-assembly of ssDNA@DAPI
with LDH nanosheets on the quartz substrate and the regular
growth during the assembly process. The small angle XRD pat-
terns show a sharp Bragg peaks at 20=1.20°, 1.24°, 1.23" and
1.28" for (ssDNA -A59@DAPI/LDH), , (ssDNA- TS9@DAPL/
LDH), . (ssDNA-tC54@DAPVLDH), UTFs and (ssDNA-
tG54@DAPI/LDH), UTFs respectively (Figure 4), indicating
an ordered periodical structure perpendicular to the substrate
with a period length of 7.12 nm, 7.35 nm, 7.17 nm, 6.89 nm,
respectively.
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Figure 4: The small-angle XRD patterns of (A) (ssDNA-A59@DAPI/
LDHs),,, (B) (ssDNA-T59@DAPI/LDHs), , (C) (ssDNA- tC54@DAPI/
LDH),, and (D) (ssDNA- tG54@DAPI/LDH),  UTF.

Morphology and Structure Characterization of the
(ssDNA@DAPI/ LDH)

The CD spectra were measured to characterize the sec-
ondary structure of the embedded ssDNA in the (ssDNA-@
DAPI/LDH)8 UTFs (Figure 5). The strong negative band at
258 nm and positive band at 221 nm of the (ssDNA- AS9@
DAPI/LDH) UTF (Figure 5A), corresponding to the negative
band at 250 nm and positive band at 217 nm of the original
ssDNA-A59 solution , indicated the secondary structure of the
ssDNA-A59 in the UTFs had changed obviously, which was
mainly attributed to the electrostatic interaction between the
ssDNA- A59 and LDH nanosheets. It is also the case for the
secondary structure of ssDNA- tC54 in the UTFs which has
also changed due to the electrostatic interaction between the
ssDNA-tC54 and LDH nanosheets (Figure SC). Nevertheless,
the CD spectra of (ssDNA-T59@DAPI/LDH) and (ssDNA-
tG54@DAPI/LDH)n show great changes compared with the of
the original ssDNA-T59 and ssDNA-tG54 solution respectively
(Figure 5C,D). The positive band nearly disappeared and negative
band became stronger. This phenomenon may be not only due to
the interaction between the ssDNA and LDH nanosheetsbutalsore-
lated to the special interaction betweenthe specific ssDNA sequence,
the interlayer DAPI and the host lamellar LDH nanosheets.
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Figures 5(A-D): CD spectra of (A) ssDNA-A59, (ssDNA-AS9@DAPI/LDH) (n=8, 12) UTFs, (B) ssDNA-T59, (ssDNA-TS9@DAPI/LDH) (n=8,
12) UTFs, (C) ssDNA- tC54, (ssDNA- tC54@DAPI/LDH) (n= 6, 12) UTFs and (D) ssDNA- tG54, (ssDNA- tG54@DAPI/LDH) (n= 6, 12) UTFs.

All the peak intensity of UTFs are magnified by 10 times.

The SEM images were measured to probe the surface morphology and the thickness of the (ssDNA@DAPI/LDH) UTFs.
The top-view of SEM image shows that the film surface is microscopically continuous and homogenous and the surface roughness
of the UTFs increase with the bilayer number n (Figure 6). The side view of SEM images (Figure 6) show that the thickness of
the (ssSDNA@DAPI/LDH) UTFs approximately linearly increased upon the bilayer number n, and the average thickness of one

bilayer of (ssDNA- AS9@DAPI/LDH) (ssDNAT59@DAPI/LDH) ,(ssDNA-
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(ssDNA-A59@DAPI/LDH), (ssDNA-T59@DAPI/LDH),
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42.7nm

Figure 6: Top and side-view SEM images of (ssDNA—AS‘)@DAPI/LDH)n (n=8-16), (ssDNA- T59@DAPI/LDH)_(n = 8-16), (ssDNA-tC54@DAPI/
LDH) (n=6-12) and (ssDNA- tG54@DAPI/LDH) (n= 6-12) UTFs.

'[C54@DAPI/LDH)n UTFs and (ssDNA—tG54@DAPI/LDH)n UTF can be estimated to be 6.9, 7.3, 7.19 and 7.07 nm, respectively,
which are approximately close to the basal spacing observed by small-angle XRD (ca. 7.12 - 7.35 nm) (Figure 4). Moreover, the surface
morphology keeps homogenous and continuous and the bilayer number # can be up to 40 at least. This further confirms that the (ss-
DNA@DAPI/LDH) UTFs present uniform and periodic layered structure, in agreement with the behaviors revealed by their absorption
and fluorescence spectra.

Selective Fluorescence Response for the Conventional Complementary ssDNA Sequence

The fluorescence intensity of DAPI molecules bound to Double- Stranded DNA (dsDNA) can be enhanced by about 20-fold,
compared with its free state [41]. Therefore, the presence and the amount of dsSDNA can be detected depending on the fluorescence
intensity. Based on this property of DAPI, we studied the fluorescence response of the (ssDNA@DAPI/LDH) UTFs for different
lengths of its complementary ssDNA sequences. Experimentally, the (ssDNA- A59@DAPI/LDH) and (ssDNA-T59@DAPI/
LDH) UTFs both exhibited a significantly fluorescence variation for its complementary one’s with different lengths (Figure 7). It
is obvious that the UTFs exhibit a significantly fluorescence enhancement for these complementary ssDNA sequences with more
than 10 bases, however, there is no obvious change for the shorter complementary ssDNA sequences less than 10 bases. This
implied that the DNA double helix structure can form within the interlayers of the LDHs UTFs for the ssDNA with more than 10
base pairs, and DAPI can interact with them as a groove binding mode, to result in the enhanced fluorescence of DAPI. This
indicated that the (SSDNA@DAPI/LDH)n UTFs can be used to detected different length of complementary ssDNA sequence with
10 or above bases.

To study the selectivity of fluorescence response for the complementary ssDNA sequence, we further research the fluorescence
response of the (ssDNA@DAPI/LDH) UTFs for different ssDNA sequence. Figure 7C illustrates the fluorescence intensity change of
(ssDNA-A59@DAPI/LDH) and (ssDNA T59@DAPI/LDH)n UTFs toward various ssDNA sequence.
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Figures 7(A-D): Plots of the maximal fluorescence intensity of (A) (ssDNA-A59@DAPI/LDH)8, B) (ssDNA-T59@DAPI/LDH)8 versus the different
concentration of their corresponding complementary ssDNA sequence, and the fluorescence intensity changes (I-IO)/I0 of (C) (ssDNA-A59@DAPI/
LDH)_ and (D) (ssDNA-T59@DAPI/LDH), for different ssDNA sequences( 20 pg/mL). Insert: the plot of the fluorescence intensity of the UTFs vs.
the base number of their corresponding complementary ssDNA sequence at 20ug/mL.
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Remarkably, there is no obvious fluorescence intensity
change for the different ssDNA sequence except the long comple-
mentary ssDNA sequences. The result indicated that the (ssSDNA@
DAPI/LDH) UTFs can be used as a biosensor for selective detec-
tion of the long complementary ssDNA sequences over a range of
other ssDNA sequences.

Selective Fluorescence Response for the Telomere

Sequence

In order to further study the fluorescence response for thete-
lomere sequence with different length, we designed the fragments
the same as the telomere sequence and also assembled with DAPI
into the UTFs. Experimentally, the (ssDNA- tC54@DAPI/LDH)
. and (ssDNA- tG54@DAPI/LDH)n UTFs both exhibit a signifi-

2.4 14
a9l —a— G54 1.2
A —— 1536 C
20F —a—tG18 1
v 1G12 F o
18} —— 1610 .yf i 08

0.4

cantly fluorescence variation for different lengths of complemen-
tary telomere ssDNA sequence (Figure 8). The fluorescence of the
UTFs enhanced significantly by the complementary telomere DNA
sequence with more than 10 bases, otherwise, there is no obvious
fluorescence variation for the telomere sequence less than 10 bases.

In addition, the selectivity of fluorescence response for the
complementary telomere sequence is similar to the conventional
base complementary ssDNA sequence that was described herein-
before. As it is shown in Figure 8, the fluorescences of (ssDNA-
tC54@DAPI/LDH) and (ssDNA-tG54@DAPI/LDH) UTFs both
exhibit enhancement to some extent toward the telomere sequence
with different lengths. Therefore, the UTFs is expected to be a new
biosensor for the selective detection of long complementary te-
lomere sequence.
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Figure 8: Plots of the maximal fluorescence intensity of (A) (ssDNA-tC59@DAPI/LDH),, (B) (ssDNA-tG59@DAPI/LDH)_ versus the different
concentration of their corresponding complementary ssDNA sequence, and the Fluorescence intensity changes (I- )/, of (C) (ssDNA-tC 59@DAPI/
LDH),, (D) (ssDNA- tG 59@DAPI/LDH), for different ssDNA sequences( 20 pg/mL). Insert: the plot of the fluorescence intensity of the UTFs vs. the
base number of their corresponding complementary ssDNA sequence at 20pg/mL.
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Reversible Fluorescence Response for the Complemen-
tary ssDNA Sequence

To study the reversibility of fluorescence response for

the complementary ssDNA sequence, we further investigate
the fluorescence changes of the (ssDNA@DAPI/LDH) UTFs
with or without the complementary ssDNA sequence by heat-

ing the composite system to break the double helix structure.
Taking (ssDNA-A59@DAPILDH), and (ssDNA-tC54@

DAPI/LDH), UTF as examples, the UTFs showed reversible
fluorescence responses with or without the complementary
ssDNA sequence (Figure 9A). In order to investigate the in-
terference of temperature for the reversibility experiment, the

2.5

2 add ssDNA-T59
20}
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4 add ssDNA-T59 again

I,

1.0
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700

650
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i 1 i
500 550 700
Wavelength/nm

i
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fluorescence spectra (Figure S4) of DAPI and ssDNA@DAPI
solution were recorded at different temperature (room tem-
perature and 75°C, respectively), and showed no change with
the variation of temperature, this result further indicated that
the fluorescence enhancement is only due to the adding of the
complementary ssDNA sequence. Moreover, after four cycles
of alternatively treatment by heating or adding complementary
ssDNA sequence, the UTFs still keep well fluorescence proper-
ties (Figure 9B), confirming the stability and reversiblity of the
(ssDNA@DAPI/LDH)n UTFs for the complementary ssDNA
sequence detection, which indicates that this film can be a novel
potential fluorescence reusable sensor for the specific ssDNA
sequence.
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Figures 9(A-D): Fluorescence spectra of (A) (ssDNA-A59@DAPI/LDH)S and (C) (ssDNA- tC54@DAPI/LDH)8 UTF with different conditions,
fluorescence intensity of (B) (ssDNA- A59@DAPI/LDH)8 and (D) (ssDNA-tC54@DAPI/LDH)8 UTF subjected to the alternative treatment by heating

or adding complementary ssDNA, respectively.
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Figure S4: Fluorescence spectra of (A) DAPI and (B) DAPI@ssDNA-AS59 solution at different temperature.

Conclusion

In summary, the small molecule dye DAPI blending with
ssDNA was successfully co-assembled with LDH nanosheets to
form (ssDNA@DAPI/LDH) biocompatible UTFs by the LbL as-
sembly technique, which realized the immobilization of ssDNA
and DAPI. It was found that the obtained (ssDNA@DAPI/LDH)
. UTFs show uniform and long-range-ordered periodic layered
structure. This UTFs can sensor fluorescence enhancement of the
complementary ssDNA sequence and have remarkable selectivity
for the long complementary ssDNA sequence, and telomere se-
quence over a range of other ssDNA sequence. It was speculated
that the detection mechanism is attributed to the formation of dou-
ble helix structure by base pairing of complementary ssDNA se-
quence and the groove binding mode between DAPI and the dou-
ble helix structure within the interlayers of the UTFs. In addition,
the (ssDNA@DAPI/LDH) UTFs displayed a well stability and
reversiblity fluorescence response for the complementary ssDNA
sequence, which indicates that this film can be a novel potential
fluorescence sensor for the specific ssDNA sequence. However, it
still limits the application due to the long preparation period of the
UTFs. In the future, we will further optimize preparation process
of the UTFs, in order to its better application for telomere offline
testing.
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