

Editorial

Robotic Radical Cystectomy - A New Way of Resecting

Goonewardene SS¹, Gillatt D², Persad R³

¹Department of Urology, the Royal Free and UCL, UK

²McQuarrie University, Sydney, Australia

³North Bristol NHS Trust, Bristol, UK

***Corresponding author:** Sanchia S Goonewardene, Department of Urology, the Royal Free and UCL, Pond St, NW3 2NG, UK Tel: 0771 7713036; E-mail: ssg7727@yahoo.co.uk

Citation: Goonewardene SS, Gillatt D, Persad R (2016) Robotic Radical Cystectomy - A New Way of Resecting. J Urol Ren Dis 2016; J106.

Received Date: 13 October, 2016; **Accepted Date:** 27 October, 2016; **Published Date:** 3 November, 2016

Keywords: Firefly; New techniques; Resection; Robotic radical cystectomy

Robotic radical cystectomy remains the hardest operation within urology. As surgeons, we consistently look to improve our outcomes. The use of indocyanine green (ICG) fluorescence imaging during robotic assisted laparoscopy has been shown to be helpful in identifying critical structures during cholecystectomies [1]. Additionally, injection of intravenous ICG highlights pelvic vasculature. This can aid in identifying blood supply to myomas during robotic assisted laparoscopic myomectomy and decrease surgical blood loss [2]. The question then becomes, how can this be used to improve surgical outcomes for robotic radical cystectomy?

There are several steps within cystectomy that can use Firefly fluorescence to guide it further. This technology can assist in localizing a lesion in the bladder. The localization of the disease with this technology is efficient and precise, minimizing the lack of tactile feedback to localize the pathology during robotic assisted surgery [3]. This allows for a much more precise resection. Additionally, by integrating intraoperative near infrared fluorescence imaging into a robotic system, surgeons can identify the vascular anatomy in real-time with the technical advantages of robotics that is useful for meticulous lymph vascular dissection [4]. This technique can allow for precise lymph node dissection within the pelvis and identification of the SMA. This allows for a safe controlled resection.

Indocyanine green (ICG) fluorescence technology has also been used to delineate bowel perfusion. The optimal point of transection can be marked under white (visible) light followed by intravenous injection of 6-8 mg of ICG [5]. The bowel is then visualized via near infrared laparoscopy and the point of transection of the proximal is revised based on optimal bowel perfusion. This demonstrates the feasibility and advantages of the use of fluorescence imaging during creation of anastomosis; the advantages of endoscopic imaging to delineate integrity of the anastomosis as

well the technique with regards to creating the anastomoses [5]. This can be used as part of cystectomy, when forming the conduit. To take this one step further, it can also be used, to assess the vasculature of the ideal conduit segment.

In conclusion, we have another 'pair of eyes' to enable us to conduct a safe controlled resection, with good vascular control, and which also allows us to conduct as safe anastomosis at the most precise location.

References

1. Ma P, Navaran P, Eghbalieh B (2015) Glowing green: Case report of indocyanine green uptake in gastrointestinal stromal tumors. Society of American Gastrointestinal and Endoscopic Surgeons 29: 543.
2. Gutierrez C, Hernansanz S, Rubiales AS, Del Valle ML, Rodriguez CF, et al. (2016) Clinical manifestations and care in tumors with pelvic involvement: Is there a pelvic syndrome in Palliative Care?. Medicina Paliativa 13: 32-36.
3. Rodriguez Morales-Bermudez AR (2015) Fluorescence imaging technology for robotic assisted partial cystectomy and ureteral reconstruction minimizes lack of tactile feedback. European Urology Supplements 14: 980.
4. Bae SU, Min BS, Kim NK (2015) Robotic low ligation of the inferior mesenteric artery with real-time identification of the vascular system for rectal cancer using the firefly technique. Society of American Gastrointestinal and Endoscopic Surgeons 29: 374.
5. Jafari M, Carmichael J, Pigazzi A (2015) Robotic-assisted low anterior resection with transanal extraction: Single stapling technique and fluorescence evaluation of bowel perfusion. Diseases of the Colon and Rectum 58: 137.
6. Manny T, Hemal A Winston-Salem, NC (2013) Novel use of indocyanine green for identification of sentinel lymph nodes and mesenteric angiography to assess bowel vascularity during robotic radical cystectomy with intracorporeal urinary diversion. Journal of Endourology 27: A95.