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Abstract
Introduction:  Reiki (rei means universal, and ki, vital energy) is a complementary/ alternative therapy practiced through the 
laying on of hands and was introduced by Mikao Usui based on Sanskrit texts at the end of the nineteenth century. Reiki principles 
state that everything in the universe consists of energy, including the human body, and changes in this energy can lead mankind to 
diseases. Nowadays anxiety and stress are highly prevalent in the world and cause changes in concentration, memory, and cognition. 
Objective: The present study aimed to evaluate the effect of reiki on induced-stress animals by paw shocks, investigating its role 
in behavioral and brain inflammatory actions.  Method: 12-week-old male Swiss mice were divided into five groups: control, reiki 
control, stress, stress + glove control, and stress + reiki. Data analysis was blinded. Results: Mice treated with reiki had behavioral 
improvement, modulating mobility, and decreasing stress compared to untreated mice.  These findings were associated with the 
hippocampal gene expression of the brain inflammasome pathway, in which the Nod-like receptor protein 3 (NRLP3) genes and 
the antioxidant catalase were altered. Conclusion: The present study indicates that stressed mice by paw shocks treated with reiki 
present improved locomotor activity. In addition, reiki modulated inflammation-related gene expression by inhibiting the NLRP3 
inflammasome and reducing the action of catalase.
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Introduction
Chronic psychological stress and depression have become a 
major health problem worldwide [1] being predicted which may 
affect about 300 million people worldwide [2]. Brain and humor 
disorders are exponentially increasing every year becoming more 
frequent [3].

Clinical and animal research has proven that stress is an important 
risk cause or hindering factor for numerous pathologies, including 
diabetes, cardiovascular disease, bone loss, neurodegenerative 
diseases, and cancer [4-8]. Stress might cause psychological and 
physiological changes involving the activation of the hypothalamic-
pituitary-adrenal axis (HPA) and the sympathetic nervous system, 
which may influence the patient mood, behavior, and health [9].

Stressful or traumatic situations cause continuous changes 
in behavior through two different actions of knowledge [10-
12]:   One of them is Pavlovian conditioning, which happens 
when a previously neutral stimulus is related to intimidation and, 
in this way, reaches the experience of remembering fear.  The 
second mechanism is sensitization, which is a generalized and 
unassociated change in sentimental responsiveness [13].

The immune system may be associated with important actions 
of the psychiatric disorders caused by stressful conditions, such 
as major depressive disorder (MDD). In regular situations, the 
HPA axis monitors and modulates immune regulation through 
numerous hormones, such as glucocorticoids [14-18].  However, 
stressful events cause hyperactivity of the HPA axis, and repeated 
stress leads to resistance to corticosteroids, causing an exaggerated 
inflammatory response [14,19,20].  Unraveling the strong, but still 
poorly understood, link between stress and depression is essential 
for the preparation of more effective conventional treatments 
[21,22]. It has long been known that the hippocampus adjusts the 
HPA axis [23,24] and hippocampal neurons are important for the 
normal activation of endocrine and behavioral stress response 

elements and emotional behavior [25-27]. 

In this context, different approaches to dealing with stress, 
promoting well-being, and improving quality of life are a growing 
research area in the Integrative and Complementary Practices 
(ICP) application [28]. Although energy medicine or human 
biofield therapies are only a part of integrative medicine, a current 
survey of cancer patients has found that these individuals report the 
greatest benefit from energy medicine over other complementary 
therapies [29]. Some of these energetic approaches include qigong, 
therapeutic touch, homeopathy, and reiki [30,31].

Reiki (laying on of hands) (rei means universal, and ki, vital energy) 
was introduced by Mikao Usui based on Sanskrit texts at the end of 
the 19th century and was later put into practice by Hawayo Takata 
[32-35]. Reiki considers that everything in the universe consists of 
energy, including the human body, and disturbed changes in this 
energy can lead to pathologies [36,37].

Although the beneficial effects of reiki have been reported in the 
literature, few experimental studies have addressed stress-related 
behavioral and brain factors. Thus, the present study aimed to 
evaluate the effect of reiki on the stressed mice induced by paw 
shocks examining the possible alterations in the gene expression 
of the Nod-like receptor protein 3 (NLRP3) and catalase (CAT) 
inflammasome along with stress tolerance.

Methods
Animals

Male Swiss mice at 12 weeks of age (N = 40) were divided into 5 
groups (n = 8 each) (Table 1) and kept in the vivarium of the State 
University of Montes Claros (UNIMONTES), Minas Gerais (MG), 
under standard temperature [22 ± 2ºC], air humidity between 60 ± 
5%, 12h light/dark cycle, low sound levels (below 40 dB) with a 
balanced diet (50.3% carbohydrates,  41.9% protein and 7.8% fat 
(2.18 kcal/g Purina-Labine ®) and filtered tap water ad libitum 
[38]. The mice were packed in polypropylene boxes measuring 
414 x 344 x 168 mm with galvanized steel lids. All procedures 
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performed involving animals complied with the institution’s 
ethical standards. The analyzed data was blinded, being sent 
without identification to a third researcher to plot and evaluate the 
significance. 

Group Description Group ID

ST (Standard) G1

ST + Reiki G2

STR (stress) G3

STR + Glove G4

STR + Reiki G5

Table 1: Experimental Groups.

Induction of stress by shock to the paws

This study’s conditioned fear stress methodology  has been 
previously described [39,40]. Briefly, starting on the day after 
pulp exposure, the rats were subjected to conditioning fear stress 
sessions for 33 consecutive days and after starting treatment for 
another 51 days in a conditioning fear stress chamber (37 cm x 25 
cm x 21 cm, Skinner Box, ELT-02, Eltrones, Joinville, SC, Brazil, 
Brazil.  BR). In each stress section, the animals were presented 
with a neutral conditioned stimulus (sound lasting two seconds) 
before the shock occurred (five seconds of 1.10 mA). During the 
stress section, six shocks were applied, and the interval between 
each shock was 25 s. Considering the procedures, each stress 
section lasted 185 seconds. The animals in the control group 
were also placed alone in the chamber and induced to the same 
experimental conditions, but the sound they heard was only the 
stimulus without shocks [39-41].  The tests were carried out in 
an experimental room with one animal at a time, to prevent other 
animals from hearing the noises emitted by the animal subjected 
to the experiment. The equipment was sanitized with 70% ethanol 
before and after each mouse remained.

Application of Reiki

To apply the technique, the researcher took the Reiki level 1 
course, with a professional master’s in Reiki based on the Usui 
and Tibetan Reiki method of natural healing, certifying aptitude in 
the technique application. Level 1 training consists of knowledge 
about the concepts of reiki, the energy body, knowledge of 
treatment/symbols, practice and meditation.  During this period, it 
is possible to apply it to other people, animals, and plants.

In the Control-Glove group, the following technique was 
performed: for 15 minutes, during 51 consecutive days, a pair of 
gloves connected to a portable battery, heated, filled with cotton, 
attached to a mannequin about one meter away, were placed on 
each of the boxes of the animals in this group. 

The Reiki group received the following treatment: for 15 minutes, 
during 51 consecutive days, the same person laid his hands directly 
on each box of the animals in this group, without direct physical 
contact with them [42] (Figure S1 Supplementary material).

During the Reiki application, the animals remained in their boxes 
freely, while the researcher’s hands were imposed. During this 
period, the qualitative mice behavior was noticeable regarding 
the decrease in agitation, and approximation between the animals, 
representing aspects of tranquility and calmness.

Open field test

Locomotor activity was assessed using open field tests to quantify 
the stress of fear conditioning by animals. The test was carried 
out in the box of an open square field (1m²) that had its floor 
divided into 25 equal areas (20 cm²) [39,40]. The mice were placed 
individually in the central area and allowed to freely explore an 
area for five minutes. The animal’s trajectory was quantified in 
centimeters traveled using the Image J program (Wayne Rasband, 
National Institutes of Health, Bethesda, MD). The field was cleaned 
with 70% ethanol after each run, and the rats were then returned 
to the appropriate cages. The experimenter was unaware of the 
grouping of the mice. Open field tests were carried out before and 
during stress induction and before animal sacrifice.

At the end of the experiment, the animals were kept fasting 
overnight (12 h) and euthanized by decapitation.  The samples 
were collected, weighed, and stored immediately in liquid nitrogen 
at -80 °C for investigation. The brain was removed and separated 
from the hippocampus, hypothalamus and cerebellum, the heart, 
and large and small intestines. The material was placed in properly 
labeled containers and fixed in 10% formaldehyde solution.

Histology

Samples from the brain’s hippocampus were kept in formaldehyde 
before being transferred to 70% ethyl alcohol solution for later 
inclusion in paraffin. Sections of 7μm thickness were obtained 
in a specific microtome followed by assembly on glass slides 
previously prepared and treated with HE for analysis of adipocyte 
size. The size was evaluated using a FSX100 fluorescence 
microscope (Olympus, Center Valley, PA, USA) [43].

mRNA levels by Real-Time RT-PCR

Tissue samples from the cerebral hippocampus were treated with 
Trizol (Invitrogen Corp.VR, San Diego, CA, USA) and DNAse 
(Invitrogen Corp.VR). Reverse transcription was performed with 
Moloney Murine Leukemia Virus (MMLV) (Invitrogen Corp.
VR). mRNA levels of genes of interest (Table 2) were determined 
by Real-Time RT-qPCR (SYBR GREEN reagent) in Applied 
Biosystems® QuantStudio™ 6 Flex Real-Time PCR System. Gene 
expression was quantified using the comparative relative method 

https://www.sciencedirect.com/topics/medicine-and-dentistry/decapitation
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2-∆∆CT (cycle thresholds) using GAPDH as endogenous control 
[44]. The primer selection tool used was the Primer-BLAST a tool 
for finding specific primers.

Gene Primer sequence

NLRP3

Forward: 5. 
TCCAGTGAGGTGGTGTGAAAGG-3 	      

Reverse:  5.  
TCAGTGGCTAAGAGGCACCTTG-3

CAT
Forward: 5. 

TCCCGAGTCTCTCCATCAGGTTTC-3 	      

Reverse:  5. TAGCCATTCATGTGCCGGTGAC-3

GAPDH

Forward: 5. 
AAGAAGGTGGTGAAGCAGGCATC-3 	       

Reverse:  5. 
CGAAGGTGGAAGAGTGGGAGTTG-3

NLRP3: Nod-like receptor protein 3; CAT:  catalase e GAPDH; 
Glyceraldehyde 3 phosphate dehydrogenase.

Table 2: Primer gene sequences used for real-time PCR analysis.

Statistical analyses

Data were analyzed using GraphPad Prism version 8.0 and 
analyzed with means ± standard error of the mean (SEM). Multiple 
comparisons were performed using unidirectional ANOVA or 

bidirectional ANOVA followed by the Bonferroni post-test. 
Complementary analyses were performed using student’s t-test. A 
95% confidence interval was considered for statistical significance 
and the p-value was set at p <0.05.

The delta variation graph between the end and the beginning of 
the reiki treatment was calculated and the statistical analyses were 
performed.

Ethical Guidelines

The research followed national and international guidelines 
regarding animal research, submitted and approved by Comitê de 
Ética em Experimentação e Bem-Estar Animal (CEEBEA) under 
number 176/2018 from (CEEBEA - State University of Montes 
Claros – Annex A). All applicable institutional and/or national 
guidelines for the care and use of animals were followed.

Results
Behavioral changes with chronic stress due to paw shock

Overall locomotor activity quantified the stress of conditioned 
fear. It has been shown that the stress of conditioned fear decreases 
the overall locomotor activity of the animal (39, 40) In the present 
study, it was observed that stress reduced the distance covered (p < 
0.001), while in the group treated with reiki, there was a recovery 
(Figure 1).  
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Figure 1: Representation of the open field test after stress by shocks to the paws of mice a) stressed animals after 33 days, b) beginning 
of reiki treatment, c) end of reiki treatment after 51 days, d) delta variation chart between the end and beginning of treatment. Data were 
expressed in mean ± SEM. ANOVA test followed by Bonferroni multiple comparations *p < 0.05; **p < 0.01; **p < 0.001.

Gene expression after Reiki treatment in the cerebral hippocampus after stress.

Catalase (CAT) showed increased expression in STR GLOVE (13.86 ± 4.303) p<0.0001, while STR REIKI showed decreased expression 
and NLRP3 (Nod-like receptor protein 3) was significantly reduced in STR REIKI (0.4783 ± 4.617) p 0.009, in STR GLOVE it showed 
increased expression (5.109 ± 1.102) p 0.001 compared to the stress group (Figure 2).
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Figure 2: mRNA levels in cerebral hippocampus in mice A) CAT: catalase, B) NLRP3:  Nod-like receptor protein 3. Data were expressed 
in mean ± SEM. ANOVA test followed by Bonferroni multiple comparations *p < 0.05; **p < 0.01; **p < 0.001. # Teste T *p < 0.05.

Histology

The hippocampal cell area in the CA1 region was reduced in the STR groups compared to the CT groups. In addition, there was a 
statistical difference between the CT and STR groups (0.5599 ± 99.76) p< 0.012, CT and STR GLOVE (8.000 ± 107.2) p<0.01 and CT 
and STR REIKI (1.510 ± 100.7) p< 0.004 (Figure 3).

Figure 3: Histological analysis in mice that were stressed by foot shock. Tissue sections stained with hematoxylin-eosin (HE) from the 
cerebral hippocampus, area of cells in the CA1 region (μm2). Data were expressed in mean ± SEM. ANOVA test followed by Bonferroni 
multiple comparations *p < 0.05;
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The area of hippocampal cells in the dentate gyrus (GD) region was increased in the STR groups compared to the CT groups. There was 
no statistical difference between the CT and STR groups (Figure 4).

Figure 4: Histological analysis in mice that were stressed by foot shock. Tissue sections stained with hematoxylin-eosin (HE) from the 
cerebral hippocampus, area of cells in the GD region (μm2). Data were expressed in mean ± SEM.

Discussion
The main results of the present study identified that reiki may be 
an alternative therapy to treat stress and anxiety in a mice model. 
Animals under stress induced by paw shocks treated with reiki 
showed increased locomotor activity and behavioral improvement. 
Reiki also modulated gene expression related to inflammation and 
oxidative stress in the brain’s hippocampus.

The condition of stress is increasingly present in modern daily 
life. Since stress can change the body’s immune, neurochemical, 
and endocrine functions, it is understood that stress can cause 
damage to many pathologies [45]. In the present study, the 
number of freezing behaviors was more evident in the animals 
submitted to shocks, suggesting that fear and conditioned stress 
were successfully induced. An open-field test reveals changes in 
stress behavior that are characterized by a reduction in the distance 
traveled by the mice in the assessment performed through the 
assay, which is then used to quantify the stress of conditioned fear 
by the animal [46-48]. 

Stress has a mechanism that activates the HPA axis inducing 
the production of glucocorticoids (GCs) by the adrenal cortex 
[49].  GCs are a series of steroid hormones that establish the 
physiological (metabolic, cardiovascular, and immune) and 

behavioral (emotional, cognitive, and motor) responses to stress 
[50]. The primary GC in rodents is corticosterone (CORT), which 
acts by binding to mineralocorticoid (MR) receptors and GC 
receptors [51,52]. However, MR is mainly recruited under baseline 
and GR conditions under stress, since MR has a 10-fold higher 
affinity for CORT [53]. CORT has an anti-inflammatory effect that 
depends on its concentration and duration of exposure [54].

Thus, the neuroinflammatory response and the upregulation of pro-
inflammatory cytokines are some of the effects linked to chronic 
stress [55,56]. The hippocampus is a target structure of stress-
induced depression [57-60], and interleukin may be an indispensable 
factor that modulates the stress response and maintains the balance 
between neural inflammation and glucocorticoid signaling [61]. 
These results confirm the anti-inflammatory effects reported in 
animal models of depression [57,62].

The NLRP3 inflammasome appears to be a central mediator of 
neuroinflammation in the immune system during depression 
pathogenesis [63]. Microglia are dynamically influenced by 
stress-induced central nervous system (CNS) environmental 
signals, during which NLRP3 plays an important role [60]. As 
described in the two-step model of NLRP3 preparation and 
activation, the initiation step manifests in NLRP3 overexpression 
and the activation step is required for NLRP3 oligomerization 
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and inflammasome assembly to allow processing of pro-IL-1β 
and pro-IL-18 into their mature, secreted forms [64].  In animal 
models of depression, the action of NLRP3 on the hippocampus 
correlates positively with stress- and depressive-type behaviors 
[65,66].   In the present research, we showed that reiki exerts 
its beneficial effects on stress by inhibiting the assembly of the 
NLRP3 inflammasome.  We further found that Reiki treatment 
significantly reduced catalase cleavage.

The main mechanism against oxidative stress in the brain is the 
glutathione system [67]. Research has shown that mental stress 
can affect the functioning of this system [68,69].  In addition, stress 
can decrease catalase (CAT) activities in both the cerebral cortex 
and hippocampus, suggesting that an alteration in the endogenous 
antioxidant defense system is responsible for inducing depression-
like behavior in mice [70-73]. Even more, antioxidant expression 
has been associated with lower expression of superoxide dismutase 
(SOD) and CAT in the brain. It was evident that decreased levels 
of oxidative stress in the brain were associated with treatment [74]. 
In the present study, a similar result was found considering the 
catalase reduction which may be linked to the improvement of the 
antioxidant system in the brain, suggesting that reiki may work as 
an anti-stress and possible neuroprotective agent.

Chronic stress in mice has also been linked to a reduction in adult 
neurogenesis in the dentate gyrus (GD), the main region where new 
neurons are generated throughout life [75-77] that may be missing 
in the CA1 area of the hippocampus [78,79]. Some possibilities 
could elucidate this occurrence, such as the number of injured 
cells must be quantitatively higher when compared to the newly 
generated cells and also because the generated neurons probably do 
not become mature enough and thus are not neurophysiologically 
functional [80]. Stressed animals can induce microglial priming 
in GD, which is related to a hyperimmune response to stress and 
altered hippocampal neurogenesis [81].  In this study, there was an 
increase in the GD region after reiki treatment, which may support 
the hypothesis of an association between greater neurogenesis and 
lower signs of depression and stress.

Due to its capacity for neurogenesis, GD is more strongly regulated 
by various actions such as exercise, learning, and brain-derived 
neurotrophic factors, including the CA1 area [82,83]. Chronic 
stress negatively affects brain function and even mild chronic 
unpredictable stress causes atrophy of the CA1 area of mice, but 
not of DG which appears to be generally more resistant to stress 
[84-88]. Considerably, the stress induced by exposure to predators 
harms the CA1 area [89], but improvement of the DG [90].

Chronic unpredictable mild stress (CUMS) studies have indicated 
a significant reduction in the long-term potentiation of the CA1 
region and the paired-pulse ratio in the hippocampus [91,92]. 
Differences in adult hippocampal neurogenesis were observed 

between genotypes during normal homeostatic conditions, 
with microglial deficiency [93]. The present study follows the 
described literature data showing a decrease in the CA1 area in the 
hippocampus, which may be due to these differences in the new 
neuron formation.

Finally, the present data show for the first time that reiki can 
lead to recovery in locomotor activity improve behavior in 
stressed animals, and even modulate gene expression related to 
inflammation and oxidative stress in the brain’s hippocampus. In 
addition, the healing effects of reiki are based on the body’s energy 
[37,94].

Conclusion 
The present study indicates that reiki may be an alternative therapy 
to treat anxiety and stress. Mice stressed by paw shocks treated 
with reiki showed increased locomotor activity and behavioral 
improvement. In addition, reiki modulated inflammation-related 
gene expression by inhibiting the construction of the NLRP3 
inflammasome and reducing the action of catalase, which may 
be linked to an improved antioxidant system in the hippocampus. 
Future studies on the mechanisms may open new perspectives for 
developing integrative therapies from the perspective of greater 
dissemination of these results and an interventional approach in 
the clinic.
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Supplementary Materials

Figure S1: Photos of the Glove Control and Reiki application technique. Source: Researcher’s personal collection.
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