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/Abstract

Sterol Regulatory Element-Binding Protein 1 (SREBP1) is one of the important nuclear transcription factors in lipid me-
tabolism. SREBP1 can regulate the biosynthesis of fatty acid, triglyceride and cholesterol. Anomalies of SREBP1 and its target
genes can cause a series of metabolic diseases such as insulin resistance, diabetes and fatty liver disease. Therefore, it is very im-
portant to know the role of various factors in SREBP1 pathway. In this review, we summarize the feature of target genes regulated
by SREBP1, emphatically introduce the role of insulin and other upstream factors in regulating SREBP1, which will contribute
to a better idea for the guidance and treatment of various metabolism diseases.
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Introduction

Sterol Regulatory Element-Binding Proteins (SREBPs)
belongs to the basic helix-loop-helix-leucine zipper (bHLH-Zip)
family of transcription factors, contains three subtypes: SREBP1a,
SREBPIc¢ and SREBP2[1,2]. A series of animal studies utilizing
transgenic and knockout mice for each SREBP gene and isoform
demonstrated that SREBPIc¢ primarily controls lipogenic gene
expression, whereas SREBP2 regulates the transcription of genes
related to cholesterol metabolism. Physiologically, SREBPla
strongly activates global lipid synthesis in rapidly growing cells,
whereas SREBPIc¢ has a role in the nutritional regulation of
fatty acids and triglycerides in lipogenic organs such as the liver.
Conversely, SREBP2 mediates sterol regulation in every tissue.
This functional specificity is more apparent in vivo than in vitro, but
when overexpressed, the isoforms exhibit functional overlap [3].
The study found that the excessive expression of SREBP1 would
lead to the disorder of lipid metabolism, leading to the excessive
accumulation of fat in non-adipose tissue, thus leading to metabolic
diseases such as obesity, insulin resistance and fatty liver [4].
Although the downstream target gene of SREBP1 regulating lipid
metabolism has been identified, the upstream regulatory factors
and pathways regulating the SREBP1 pathway are still relatively

vague and complex. Therefore, this paper reviews and elaborates
its role in lipid metabolism regulation from the upstream and
downstream signaling pathway of SREBP1.

Structure and Function of SREBP1

SREBP1a and SREBPIc are encoded by the SREBP1 gene
(SREBF) located on chromosome 17. Human SREBPI1 protein
is composed of 1,147 amino acids, including the N-terminal
transcriptional activity domain composed of 480 amino acids,
the hydrophobic region composed of 80 amino acids and the
C-terminal regulatory domain composed of 590 amino acids [1].
The resultant SREBP1 protein was bound to the Endoplasmic
Reticulum (ER) and the nuclear membrane of the cell through the
mesenchymal hydrophobic region, while both the N-terminal and
C-terminal were oriented toward the cytoplasm side. SREBPla
and SREBPIc are generated from different transcription start sites,
the first exon is different (exon la and exon lc), and the rest are
the same. SREBP1a preferentially promotes the synthesis of fatty
acids, followed by cholesterol synthesis, and SREBPIc plays a
key role in the formation of triglycerides and phospholipids [5].

Proteolytic Processing of SREBP1

Surprisingly, SREBPs are synthesized as membrane proteins
that are inserted into the ER in a hairpin orientation with their
N-termini and C-termini extending into the cytoplasm. Once
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SREBPs exit the ER and enter the Golgi apparatus, they are
subjected to two-step proteolytic processing by two cleavage
enzymes, Membrane Bound Transcription Factor Peptidase, Site 1
(SIP, also known as MBTPS1) and Membrane Bound Transcription
Factor Peptidase, Site 2 (SIP, also known as MBTPS2). This
processing generates a soluble N-terminal-cleaved transcription
factor of the basic helix-loop-helix leucine zipper family [1,6],
which enables SREBPs to enter the nucleus as homodimers, bind
to SRE sequences and stimulate the transcription of target genes
[3]. In the ER membrane, SREBPs form heterodimeric complexes
with another ER membrane protein, SREBP Cleavage-Activating
Protein (SCAP) [1,6], which has eight transmembrane domains.
The C terminal region of SCAP, which contains a WD40 repeat
domain, projects into the cytoplasm and interacts with the C termini
of SREBP1 and SREBP2. SCAP is essential for the transport of
SREBPs from the ER to the Golgi. To accomplish this function,
SCAP acts as an escort protein that allows SREBPs to enter ER
transport vesicles that contain COPII vesicle coat proteins. In
addition to the eight transmembrane helices, SCAP possesses
two large ER luminal loops, designated Loopl and Loop7. Loopl
binds to Loop7, which enables SCAP to bind COPII proteins such
as SEC23 and SEC24 [7]. When an increasing level of cholesterol
in the ER, however, Loopl binds to cholesterol instead, thereby
disrupting direct binding between the two loops and preventing
the SREBP-SCAP complex from exiting the ER. Simultaneously,
two additional ER-retention membrane proteins, Insulin-Induced
Gene 1 (INSIG1) and INSIG2, interact with SCAP, causing the
SREBP-SCAP complex to be retained on the ER membrane [8,9].
Activation of SREBP2 is assumed to be under the control of this
cholesterol-dependent ER to Golgi transport system, whereas
proteolysis of SREBP1 is not strongly sterol-regulated, but rather
is inhibited by Polyunsaturated Fatty Acids (PUFAs) and induced
by insulin or high-glucose conditions. Long-chain unsaturated
fatty acids, including oleic acid, and some PUFAs are reported
to hinder SREBP1 activation while having little or no effect on
SREBP2 processing [10]. Ubiquitin Regulatory X Domain-
Containing Protein 8 (UBXDS, also known as Fas Associated
Factor Family Member 2, FAF2), an INSIG-binding protein,
is a potential mediator of this inhibitory effect of unsaturated
fatty acids [11]. UBXDS interacts with the polyubiquitin chains
attached to INSIGI through GP78, in turn recruiting the Valosin
Containing Protein (VCP, also known as p97) complex, which
facilitates proteasomal degradation. Long-chain unsaturated fatty
acids form a complex with UBXDS, thereby detaching UBXDS8
from INSIG1, which stabilizes INSIG1 by preventing degradation
[12]. As aresult of increased levels of INSIG1, the SREBP1-SCAP
complex is retained in the ER, and transactivation of SREBP1
target genes is reduced.

SREBPs are transported from the ER to the Golgi as a
SREBP-SCAP complex and proteolytically processed for activation

in two steps. The first step is cleavage of the ER luminal loop of
SREBPs by S1P. Inactivation of SIP by serine protease inhibitors
such as 4-(2-Aminoethyl) Benzenesulfonyl Fluoride Hydro-
chloride (AEBSF) decreases both the activity of SREBPs and the
expression of SREBP target genes [13,14]. This first cleavage step
generates a SREBP protein that is half of its original size. Next, the
N-terminal region is cleaved off by S2P. After sheared by S1P and
S2P, SREBP precursor release active amino end part, which enter
into the nucleus and combine with the Sterol Regulatory Element
(SRE) sequence. Finally, the expression of downstream genes was
activated.

The Downstream Target Gene Regulated by SREBP1

Transcription factors need combined with a specific element
when activate or prevent the target genes, namely the Transcription
Factor Binding Sites (TFBS). TFBS are pieces of DNA that bind
to transcription factors, ranging in length from a few to a dozen
base pairs. Transcription factors often regulate several genes at the
same time, and their binding sequences on different genes are not
identical, but have certain similarities. The binding site of each
transcription factor usually has a specific pattern, which is called
the motif [15]. Traditional studies suggest that binding sites of
transcription factor nNSREBP1 should contain two motifs: SREs
(5’-TCACNCCAC-3") and (or) E box (5’-CANNTG-3")[16,17].

Based on the known information of two TFBS motifs of
SREBPI, the clearer SREBP1 target genes in the present study
include: Acetyl-CoA Carboxylase (ACC) [18,19], Fatty Acid
Synthase (FASN) [20], Low Density Lipoprotein Receptor
(LDLR) [16], Thyroid Hormone Response Spot 14 (THRSP or
S14) [21], Glucosekinase (GCK) [22] and Phosphoenolpyruvate
Carboxykinase 1 (PCK1) [23] and other genes associated with
fat synthesis and glucose metabolism. According to literature
statistics, 79 target genes regulated by SREBP1 in liver tissue have
been found till 2008 [24]. With the popularization of expression
chips and the in-depth study of the nSREBP1 binding site, the
target gene profile of nSREBP1 involved in regulation was also
greatly amplified. Based on the latest ChIP-chip and ChIP-seq
studies, hundreds of candidate genes regulated by nSREBP1 have
been found in the whole genome [24-26].

By integrating ChlP-seq and differential expression data,
SREBPI regulated genes can be divided into three types of mod-
els. Target genes directly regulated by SREBP1: that is, there are
different transcription genes adjacent to TFBS, such as FASN,
Glycerol-3-Phosphate Acyltransferase, Mitochondrial (GPAM),
Acetoacetyl-Co A Synthetase (AACS), Cytochrome P450 Family
51 (CYP51), Farnesyl Diphosphate Synthase (FDPS), Squalene
Epoxidase (SQLE) [27-32], Cluster Of Differentiation 36 (CD36)
[33], Insig-1 [29], Fatty Acid Binding Protein 3 (FABP3), ELOVL
Fatty Acid Elongase 6 (ELOVLO6), Stearoyl-CoA Desaturase 1
(SCD1), Acyl-CoA Synthetase Short Chain Family Member 2
(ACSS2), Isocitrate Dehydrogenase 1 (IDH1), Nuclear Receptor
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Subfamily 1 Group H Member 3 (NR1H3), Peroxisome Prolifera-
tor Activated Receptor Gamma (PPARG), Lipin 1 (LPIN1) [34],
Keratin 80 (KRT80) [35], Transforming Growth Factor Beta Re-
ceptor I (TGFBR1), Transforming Growth Factor Beta 1 (TGFBI1)
[36], 25-Hydroxy Vitamin D3 la-Hydroxylase (CYP27B1),
25-Hydroxyvitamin D3 24-Hydroxylase (CYP24A1) [37], Tu-
mor Protein P53 (TP53) [38], Low-Density Lipoprotein Receptor
(LDLR), 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR)
[39]. Genes that are indirectly or remotely regulated by SREBP1:
namely, there are no differential transcription genes adjacent to
TFBS. It was speculated that these genes might be indirectly regu-
lated under SREBP1 or high glucose conditions, such as 3-Hy-
droxy-3-Methylglutaryl CoA Synthase 1 (HMGCS1), Acetyl-CoA
Carboxylase Alpha (ACACA), Farnesyl - Diphosphate Farnesyl-
transferase 1 (FDFT1), Malic Enzyme (Mel), Acyl-CoA Synthase
Long Chain Family Member 1 (ACSL1), Diacylglycerol O-Acyl-
transferase 1 (DGAT1), SCAP [34] and so on. Although their ex-
pressions were very different, no corresponding TFBS were found
in the adjacent regions of genes. This indirect regulation mecha-
nism may be the regulation of target genes by SREBP1 through
the interaction of other transcription factors (or co-activators) [40].
The target genes that SREBP1 may regulate: that is, there are dif-
ferentially transcribed genes of TFBS that are close to suspicious
(sequencing data analysis suggests that it may be false positive
TFBS), such as, PCK1,GCK, ATP Citrate Lyase (ACLY) [41-44],
Cytidylyltransferase-o. (CCTa) [33] (Figure 1).

et
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Figure 1: The upstream and downstream signal pathway of sterol
regulatory element-binding protein 1.

Black solid arrows and T-bars denote direct stimulatory
and inhibitory actions, respectively. Black dashed arrows indicate
indirect effect.

Regulation of The Transcription Activity of SREBP1 by
Upstream Factors

The expression and proteolytic processing of SREBPI is
very complex in vivo, and the regulation of SREBP1 is not only
affected by the cholesterol level in cells, but also affected by the
whole body’s nutritional conditions and hormone levels[45], which
are interrelated and interact with each other, forming a complex
and delicate regulatory network. They regulate the activity of
SREBPI in both the transcriptional and post-transcriptional levels,
thus playing a role in regulating the balance of lipid metabolism
in the body.

Regulation of SREBP1 by Insulin

In general, Insulin signaling pathways begin with Insulin
Receptor Substrate 1 (IRS-1) and/or tyrosine phosphorylation of
IRS-2 [46]. After the IRS phosphorylation and then activate the
downstream activation of Phosphoinositide 3-Kinase (PI3K),
PI3K Catalytic Membrane Phosphatidylinositol 4, 5-Bisphosphate
(PIP2) into Phosphatidylinositol-3, 4, S5-Triphosphate (PIP3)
[47]. PIP3 can interact with AKT, and recruit AKT into the cell
membrane and activate it [48]. AKT is a serine/threonine kinase
that plays an important role in cell survival, apoptosis, cell size,
angiogenesis, cell metabolism and migration [47,48]. Mammalian
Target of Rapamycin (mTOR), a target molecule of rapamycin,
is a serine/threonine kinase and an effector protein downstream
of PI3K/AKT signaling pathway. mTOR is activated by
phosphorylation and regulates the translation of specific subgroup
mRNA by activating p70S6K [49]. p70S6K is the 40S subunit
S6 protein kinase of ribosome, which regulates the synthesis of
many translation elements by phosphorylating S6 protein [50,51].
Glycogen Synthase Kinase 3 (GSK3) is a serine/threonine protein
kinase that plays an important role in glucose metabolism, protein
synthesis, cell differentiation and proliferation. Insulin, growth
factor and other signaling molecules can inhibit GSK3 through the
PI3K/PKB pathway, and the activated AKT can induce the Ser9/21
phosphorylation of GSK3 and prevent its binding to the substrate
[52] (Figure 1).

It is well known that insulin can effectively induce de novo
synthesis of lipid and regulate the activity of lipogenic enzymes[53].
More and more evidence suggests that insulin regulates the activity
of SREBP1 through multiple pathways, including transcription of
SREBP1 mRNA, proteolytic processing of SREBP1, regulation of
the stability abundance of mature nNSREBP1 and transcription of
SREBPI from ER to Golgi.
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Regulation of Insulin On the mRNA Level of SREBP1

As the target gene of itself, SREBP1 mRNA level can be
induced by nSREBPI. In addition, SREBP1c mRNA levels in the
liver of mice and rats decreased dramatically when insulin was
exposed [54]. When insulin levels were inhibited under fasting
conditions, the transcription of SREBPlc decreased in mouse
liver [55]. In rat primary hepatocytes cultured in vitro, SREBP1c
mRNA increased 40 times induced by insulin within 6 hours
[50,56]. At the same time, SREBP1c mRNA levels were decreased
when streptozotocin inhibited insulin secretion in rats [57]. These
results indicate that insulin can effectively induce the transcription
of SREBPIc.

The transcription regulation of insulin on SREBP1 was
mainly through the PI3K/AKT-mTORCI1 pathway. Studies have
shown that insulin activation of mTOR inhibits the function of
TSC Complex Subunit 1/2 (TSC1/2) through AKT-regulated
phosphorylation [54], and TSC1/2 inhibits the expression level of
Ras Homolog, MTORC1 Binding (RHEB), which phosphorylates
and activates mTOR [58,59] (Figure 1).

When wortmannin, a PI3K inhibitor, is present, the insulin
pathway that induces the increase of SREBP1c¢ mRNA is blocked
[54]. More importantly, the transcription of SREBP1 can also
be blocked by low-concentration rapamycin, indicating that
mTORCI1 is required in the transcription of SREBP1 [54]. These
studies showed that insulin increased the transcription of SREBP1c
mRNA mainly through mTORCI] regulation.

Regulation of Insulin On SREBP1 Proteolytic Processing

In addition to regulating the SREBP1¢c mRNA level, insulin
can also affect the proteolytic processing of SREBPI1 in two
different ways: (i) reduce the expression of INSIG2; (ii) promote
the activation of p70S6K induced by mTORCI1 [54].

The expression level of INSIGs is related to insulin in
vivo. When fasting (low insulin), the transcription and translation
of INSIG2 increased in mice, INSIG2 stuck SREBP on the
endoplasmic reticulum membrane by binding with SCAP, and then
the transport of SREBP1 was blocked, and the mature nSREBP1c¢
could not be produced in the liver [60]. As the target gene of
SREBPI, INSIG1 mRNA and protein levels also decreased after
fasting, and when the mice were refed (with high insulin), INSIG2
transcription was inhibited, and INSIG2 rapid ubiquitination was
mediated by gp78 [61], releasing SCAP/SREBP complex transport
to Golgi. At the same time, the mature nSREBP1c¢ activated the
downstream INSIG1 gene, and the INSIGI mRNA and protein
levels were restored [60]. These results revealed that insulin could
enhance the proteolytic process of SREBP1 by regulating the
expression of INSIG2.

Recently, Owen et al [54] generated a transgenic rat with

additional tabular SREBPIlc through human APOE promoter
expression module. This transgenic rat excluded the effect of
insulin on SREBPI transcription. Endogenous SREBP1c mRNA
increased 14 times in transgenic rats without inhibitors. When
rapamycin was added, the SREBP1c mRNA level was reduced by
85%. Interestingly, expression of endogenous SREBP1c mRNA
was not affected by LYS6K2, an inhibition of S6K downstream
of mTORCI1 [54]. Similarly, insulin increased the transgenic
nSREBPIlc protein levels by 12 times within 6 hours. When
LYS6K2 was added, nSREBPIc decreased by 74%, but only by
64% in the rapamycin treatment group. Considering that insulin
does not affect mRNA level of SREBPIc, it is indicated that the
proteolytic processing of LYS6K2 inhibiting SREBP1c does not
occur at the transcription level [54]. In conclusion, insulin can
enhance the proteolytic process of SREBP1 by activating S6K
through PI3K/AKT-mTORCI1 pathway, but it is not clear which
pathway S6K increases this process (Figure 1).

Regulation of Insulin On Mature Karyotype nSREBP1

In addition to regulating mRNA level of SREBP1 and
proteolytic processing, insulin also regulates the stability and
abundance of nuclear SREBPI. Studies have confirmed that
insulin signaling pathway has branches at AKT. One of them is
the activation of mTORCI to regulate the activity of SREBPI,
while the other is to inhibit the degradation of nSREBP1 through
the GSK3-FBW7 pathway. AKT can phosphorylate GSK3
on its ninth serine residue, and the phosphorylation of GSK3
inhibits the action of glycogen synthase [51]. When nSREBP1 is
connected with DNA on the target gene, the recruited GSK3 can
phosphorylate the 434" serine on nSREBP1 [62,63], and then the
426" threonine of nSREBP1 is also phosphorylated by GSK3[63].
Finally, ubiquitin ligase SCF-FBW7 was also recruited, leading
to ubiquitination degradation of nSREBP1 [62,63]. Other studies
have confirmed that SCF-FWB7 can degrade nSREBP2, and
inactivation of endogenous FBW7 makes karyotype nSREBP1
and 2 stable [64]. Therefore, insulin can inhibit GSK3 through the
AKT pathway and prevent recruitment of FBW?7 to stabilize the
expression of nSREBP1 in vivo [65]. Interestingly, AKT-dependent
accumulation of exogenous wild-type mSREBP could still be
observed in the presence of rapamycin, indicating that mMTORC1
function is dispensable for stabilization of mSREBP1 in response to
AKT activation. Porstmann et al observed that AKT also regulates
SREBPI activity in a GSK3-independent, mTORC-dependent
manner. These results indicate that AKT-dependent activation
of endogenous SREBP does not solely involve regulation of the
stability of SREBP but suggest an additional, mMTORC1-dependent
pathway that contributes to SREBP activation [66].

Previously, we have mentioned that mTORCI, as a factor
downstream of AKT, can control the expression of SREBPIlc
by regulating transcription and processing. Recently, however,
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Peterson et al [67] demonstrated that mTORCI can improve
the abundance of nSREBP1 through Lipin-1. This aggregation
of Lipin-1 in the nucleus inhibits the transcription of SREBPI.
Although the mechanism by which mTORCI1/Lipin-1 regulates
nSREBPI1 expression level is not clear, studies show that lamin
A may be involved in the regulation of this process, and further
mechanisms need to be further studied (Figure 1). In addition to
S6K, E4 Promoter-Binding Protein 4 (E4BP4), a leucine-zipper
transcription factor involved in clock and immune regulation,
has been proposed as a downstream regulator of mTOR signaling
via its activation of the AKT-mTORCI1-SREBPIlc pathway in
hepatocytes through acetylation and concomitant stabilization of
SREBP1c[68].

Regulation of Insulin On Translocation of SREBP1

A mechanism was discovered in mice that CREB Regulated
Transcription Coactivator 2 (CRTC2) functions as a mediator
of mTOR signaling to modulate COPII-dependent SREBP1
processing. CRTC2 competes with Sec23A, a subunit of the
COPII complex, to interact with Sec31A, another COPII subunit,
thus disrupting SREBP1 transport. During feeding, mTOR
phosphorylates CRTC2 and attenuates its inhibitory effect on
COPII-dependent SREBP1 maturation. As hepatic overexpression
of an mTOR-defective CRTC2 mutant in obese mice improved the
lipogenic program and insulin sensitivity, these results demonstrate
how the transcriptional coactivator CRTC2 regulates mTOR-
mediated lipid homeostasis in the fed state and in obesity [69].

In summary, insulin activates SREBP1 via AKT through two
mechanisms at least: (i) the stability of nSREBPI is enhanced by
inhibiting GSK3; (ii) increase the expression of SREBP1 through
activation of mMTORCI. The effect of mMTORC1 on SREBP1 can be
divided into four stages: (i) mMTORCI can increase the expression
of SREBP1c mRNA at the transcription level; (ii)) mTORCI can
strengthen the proteolytic process of SREBP1 by activating S6K;
(iii) mTORCI1 can inhibit Lipin-1 and then increase the content
of mature nSREBP1; (iv) mTORCI1-mediated phosphorylation of
CRTC2 facilitates translocation of SREBP1 from the ER to the
Golgi by releasing inhibitory Sec31 for formation of the Sec23-
Sec24 complex to maintain COPII vesicle function.

Regulation of SREBP1 by Liver X Receptor

Liver X Receptor (LXR) is another important steroidal
regulatory transcription factor. It has two subtypes, LXRa and
LXRp. LXR and Retinoid X Receptor (RXR) form heterodimer,
which regulate the transcription level of SREBP and the protease
digestion process.

There are two Liver X Receptor Response Elements
(LXRESs) in the promoter region of SREBP1c gene, and LXR can
improve the transcription level of SREBP1 [70]. However, other
LXR target gene promoter regions, such as ATP-Binding Cassette

Subfamily A1 (ABC1), Cholesteryl Ester Transfer Protein (CETP)
and Cytochrome P450, Family 7, Subfamily A (CYP7A), only one
LXRE was found [71-73], indicating that LXR and RXR had a
strong excitatory effect on SREBPIc. In fact, even in the case of
cholesterol overload in the body, LXR or RXR can significantly
enhance the transcription of SREBP1¢ and induce the corresponding
increase in fatty acid synthesis [60]. In contrast, polyunsaturated
fatty acids decrease the level of SREBP1c mRNA and fat generation
by inhibiting connection between the heterodimer LXRo/RXRa
and LXREs in the SREBP1c promoter region [74] (Figure 1). Bo
Wang et al showed that LXRs modulate membrane phospholipid
composition through activation of Lysophosphatidylcholine
Acyltransferase 3 (LPCAT3, also known as lysophospholipid
acyltransferase 5), a phospholipid remodeling enzyme that catalyse
the incorporation of polyunsaturated fatty acids at the sn-2 site of
lysophospholipids. LXR activation increases LPCAT3 expression
and the abundance of polyunsaturated phospholipids in cell
membranes, thereby ameliorating ER stress induced by saturated
free fatty acids in vitro or by hepatic lipid accumulation in vivo.
Subsequent studies revealed that LPCAT?3 activity is also involved
in the effects of LXRs on SREBPIlc-dependent lipogenesis
in the liver. Incorporation of polyunsaturated fatty acids into
phospholipids by LPCAT3 promotes SREBPlc processing and
lipogenesis. Inhibition of LPCAT3 activity in obese mice reduces
SREBPI1c pathway activity, blunts lipogenesis and ameliorates the
development of fatty liver [75].

Oxysterol is a natural activator of LXR, including
24, 25-epoxy cholesterol and 25-hydroxyl cholesterol [76].
24-hydroxyl cholesterol, 25-hydroxyl cholesterol and 27-hydroxyl
cholesterol are well-known inhibitors of the SREBP1 enzymatic
process, but they are not used to treat hyperlipidemia clinically
because they also activate LXR [76]. Recently, Zhang Y et al [77]
shows that lack of LXRa expression in the liver, a kind of synthetic
LXR agonists can induce resistance to atherosclerosis. The main
reason may be the target genes LXR of SREBP1 mainly expressed
in the liver, and knockout LXRa can significantly reduce SREBP1
expression in the liver, thereby reducing the synthesis of fatty
acids (Figure 1).

Interestingly, although LXR can effectively activate the
expression of SREBP 1 ¢ and improve the expression of the precursor
SREBPIc. LXR cannot increase the content of nSREBP1 and its
target gene in vivo [78,79]. This suggests that the effect of LXR
increasing SREBP1c mRNA levels is limited during proteolytic
processing. Corresponding studies also confirmed that LXR can
regulate the expression of INSIG2 mRNA and protein levels, and
leave SREBP1c stuck on the ER (Figure 1).

On the other hand, studies have shown that insulin can
significantly upregulate the expression of LXR [80]. The knockout
of LXR gene significantly inhibited the expression of insulin-
regulated enzymes related to fatty acids and cholesterol metabolism
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in mice [81]. This suggests that the interaction between LXR and
insulin plays an important role in regulating cholesterol and fatty
acid metabolism (Figure 1). Further, the LXR pathway is subject
to negative regulation by Toll-Like Receptors 4 (TLR4). This
suggests that macrophage fatty acid synthesis is influenced by
TLR signaling via temporal modulation of LXR activities [82].

Regulation of SREBP1 by cAMP/PKA

Glucagon, epinephrine and other substances can upregulate
the expression of Cyclic Adenosine Monophosphate (cAMP),
which can activate a series of extracellular signaling pathways and
regulate the functions of various cells. cAMP dependent kinase,
Protein Kinase A (PKA) associated with lipid metabolism in the
body, under physiological conditions, enzymes involved in lipid
metabolism in the liver such as FASN, SCD and Glycerol-3-
Phosphate Transferase (GPAT) are regulated by the intracellular
cAMP levels of negative feedback [83].

A recent study showed that PKA inhibited the expression of
SREBPIc by regulating the vitality of LXR [84]. PKA can make
LXR phosphorylation, which blocks the formation of LXR/RXR
heterodimers, thus slightly weakening the connection between
LXR and LXREs on the target gene SREBP1 and reducing the
transcription of SREBP1. Lu et al [85] found that SREBP1a amino
terminal 338 serine is also a site of PKA phosphorylation. The
serine in the 314" position of SREBPIc is the same as that in the
338" position of SREBP1a, which is also phosphorylated by PKA.
These findings suggest that the cAMP/PKA signaling pathway can
phosphorylate SREBP1 to reduce its transactivation [85], leading
to decreased expression of relevant target genes of SREBPI.
As a highly conserved serine/threonine kinase, AMP Activated
Protein Kinase (AMPK) regulates energy balance in vivo at both
cellular and physiological levels [86-88]. PKA is a regulation of
AMPK upstream factor. Studies have shown that the use of a PKA
inhibitors H89 can reverse to raise the level of the expression of
intracellular cAMP, thus increase the phosphorylation of AMPK
by PKA activation [89], and AMPK can phosphorylate SREBP1c
directly, and therefore can directly inhibit SREBPlc enzyme
processing, prevent the karyotype nSREBPIc in their transfer to
the nucleus, which affects lipid metabolism [90]. These results
indicated that the nutrient level in vivo regulated the activity of
LXR and AMPK through cAMP/PKA pathway to control the
expression and fat generation of SREBP1 (Figure 1).

Regulation of SREBP1 by PUFAs

PUFAs can reduce the expression of SREBPIlc through
various mechanisms, including reducing the transcription of
SREBPIc, reducing the proteolytic processing of SREBPlc and
reducing the stability of mRNA [91,92]. PUFAs inhibited the
mRNA levels of SREBP1a and 1c in the liver, but did not reduce
the expression level of SREBP2[91]. There is evidence that PUFAs

downregulate the transcription activity of SREBP1 through LXR-
dependent methods or an independent mechanism [91]. In liver,
PUFAs inhibit the protein processing of SREBP1 mainly through
their influence on the metabolism of sphincter lipids [10]. PUFAs
in CHO cells inhibited SREBP1 proteolytic processing and
increased sphingomyelinase activity [92,93], while nSREBP2
was also inhibited in cells after sphingomyelinase incubation [94].
Therefore, PUFAs inhibiting SREBP processing may cause the
redistribution of cholesterol in the plasma membrane (Figure 1).

Regulation of SREBP1 by LMP1

Latent Membrane Protein 1 (LMP1) is an integral membrane
protein containing two signaling domains: CTARI and CTAR?2,
and among the EBV-encoded gene products expressed in
Nasopharyngeal Carcinoma (NPC), LMP1 is of particular interest,
as it shows oncogenic properties in vitro and in vivo. Using siRNA
targeting raptor or rictor, study shows that both the mTORCI1
and Mammalian Target of Rapamycin Complex 2 (mTORC?2)
signaling pathways are involved in LMP1-mediated lipogenesis.
Furthermore, inhibition of the mTOR pathway, through use of
either mTOR inhibitor or siRNAs, significantly reduced LMP1-
mediated SREBP1 activity and lipogenesis, indicating that
LMP1 activation of the mTOR pathway is required for SREBP1-
mediated lipogenesis. Luciferase promoter reporter assays and RT-
gPCR analysis demonstrate that LMP1 upregulates SREBP1 at the
transcriptional level, and western blotting analysis demonstrates
that LMP1 promotes SREBP1 maturation and the expression of its
downstream target FASN [95]. Dirk et al showed that mTORC2,
via its downstream effector AKT, promotes SREBP1 expression
and prevents SREBP1 degradation in cancer cells [33].

Regulation of SREBP1 by Amino Acids

The level of amino acids can also activate and regulate
SREBP expression. Amino acids activate mTORCI1 in the
lysosome and regulate both protein synthesis and autophagy.
The serine/threonine-protein kinase known as General Control
Nonderepressive-2 (GCN2, also known as elF-2a kinase GCN2),
which functions as a sensor of amino acids deficiency and
suppresses protein translation, decreases levels of SREBP1 and
lipogenic enzymes in response to nutrient deprivation. As a result
of this relationship, GCN2-deficient mice develop liver steatosis.
Under conditions of fasting or amino acids deprivation, SREBP1c
is suppressed either via GCN2 or the mTOR pathway. Amino
acids sensors such as Sestrin-2 (which senses leucine), CASTOR1
and/or CASTOR2 (which sense arginine), and their regulators
GATOR1 and GATOR2 have been linked with mTORC1, and are
thus probably also linked with SREBPs and lipid metabolism[3].

Regulation of SREBP1 by Oncogenic Signals

As mentioned earlier, insulin signaling through PI3K-
AKT-mTORCI1-SREBP is the key anabolic pathway regulating
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lipogenesis in response to changing nutritional status. This PI3K-
AKT-mTORCI signaling is also an established survival pathway
that is constitutively activated in many types of cancer and has
prominent roles in growth, malignant transformation, prevention
of apoptosis, drug resistance and metastasis. Many oncogenic
signaling molecules such as p53, PTEN, PI3K and KRAS converge
on the PI3K-AKT-mTOR pathway, activating both protein and
lipid biosynthesis to meet lipid demands for cell growth even in
conditions of poor oxygenation and high acidity [3].

Mei Yi et al show that activation of SREBP1 is required for
oncogenic PI3K (H1047R) and K-Ras (G12 V) stimulated de novo
lipid synthesis and breast epithelial cell growth. SREBP1 protein
is stabilized upon sequential phosphorylation by mitotic kinase
CDKI1 and PLK1 during mitosis, blocking binding between the
ubiquitin ligase FBW7 and SREBP1 and attenuating SREBP1
degradation. Activation of EGFR signaling induces nuclear
translocation of Pyruvate Kinase M2 (PKM2) [96,97], a key
enzyme in Warburg effect. A latest study unveiled that nuclear
PKM2 physically interacts with SREBP1 and stimulates lipid
biosynthesis through stabilizing SREBP1 protein [98]. Fibroblast
Growth Factor Receptor 3 (FGFR3) also stimulates SCDI1
expression to accelerate tumor growth via activating SREBP1 in
bladder cancers [99].

Nuclear Receptor Subfamily 4 Group A Member 1 (NR4AI,
also known as NURR77, TR3 or NGFI-B), is an orphan nuclear
receptor with diverse functions. It has been reported that NR4A1,
as a transcriptional activator, is implicated in glucose and lipid
metabolism. Qin et al show that overexpression of NR4Al in
3T3-L1 cells resulted in reduced expression of SREBP1c and its
downstream FAS. While knockout NR4A1 resulted in reduced
p53 expression, therefore, NR4A1 might indirectly modulate
the expression of SREBPlc via p53, then hinder excess fat
accumulation in adipocytes [100]. On the other hand, Fatostatin
is a non-sterol synthetic diarylthiazole derivative which inhibits
SREBPI maturation and its nuclear translocation. PF429242 is a
reversible, competitive aminopyrrolidineamide inhibitor of S1P,
which inhibits endogenous SREBP processing. Both fatostatin
and PF429242 significantly reduced the expression of p53. And
two sterol regulatory element sequences (50-ATCACCCCAC-30)
with 100% homogeneity in p53 gene sequence at 1904-1911 and
2350-2358 base pairs in BLAST analysis suggesting a potential
regulatory role of SREBP1 over p53 gene expression. Thus, they
speculate that since the majority of p53 is mutated in tumor cells,
the reduction in the level with SREBP1 inhibitors most likely
reflects a reduction in the mutant form of p53.

Forkhead Box (FOX) proteins are a family of evolutionarily
conserved transcriptional regulators defined by a common DNA-
Binding Domain (DBD) termed the forkhead box or winged helix
domain. There are 17 Fox gene subfamilies (FOXA-R), with at
least41 genes currently identified in humans. FOXO1 and SREBP1

are important in the lipogenesis and tumorigenesis of Endometrial
Cancer (EC), and are all targets of insulin. Western blot analysis
was performed and the results demonstrated that the protein level
of SREBPI in Ishikawa and AN3 CA transduced with lentiviruses
containing FOXO1 overexpression vectors was lower than the
control group. A previous study reported that FOXOI1 is able to
directly repress SREBP1 expression in hepatic lipogenesis. In
addition, the present study supported the hypothesis that increased
FOXO1 expression decreases the level of SREBP1[101].

Talebi et al find that alterations in the expression of these
enzymes by mutant BRAF inhibition was confirmed by RT-qPCR
on an extended panel of therapy-sensitive BRAFY¢™E parental and
isogenic cell lines that have acquired resistance to vemurafenib
through diverse mechanisms. Their findings indicate that inhibition
of oncogenic BRAF inhibits de novo lipogenesis and thereby
enhances membrane poly-unsaturation. The selected lipogenic
enzymes, the expression of which are downregulated upon
oncogenic BRAF inhibition, are well established transcriptional
targets of SREBP1. Taken together, oncogenic BRAF targeting
inhibits the processing and activation of SREBPI in therapy-
sensitive, but not therapy-resistant, melanoma cells and this effect
is, by and large, mediated by a posttranslational mechanism[102].

Regulation of SREBP1 by Other Pathways

A recent study found that glutamine also regulated SREBP1
gene expression and proteolytic processing, a finding that links
amino acid metabolism to lipid metabolism. Glutamine appeared
to be able to increase the mRNA levels of multiple SREBP1 target
genes. Glutamine enhances the expression of the SREBP1 gene by
strengthening the connection between the transcription factor Sp1
and the SREBP1a promoter. Glutamine is also able to increase the
enzymatic processing of SREBP1 protein, which may be realized
by stimulating the transport of SREBP-SCAP complex from the
endoplasmic reticulum to Golgi[103] (Figure 1).

Ponugoti et al show that NAD*- dependent SIRT1 (Sirtulin
1) can directly affect SREBPIc, to take off the acetylation to
reduce its protein expression and the expression of target genes
corresponding [104]. In addition, SIRT1 can also downregulate
the expression of SREBPI1c¢ in the state of fasting in vivo [105].
However, these studies have focused on liver tissue, and recent
studies have shown that SIRT1 also regulates the expression of
SREBPIc in skeletal muscle cells. Interestingly, when the LXR
response element in the SREBP1 promoter region was deleted,
SIRT1 expression regulation of SREBPIc was completely
eliminated, indicating that SIRT1 regulation of SREBPlc was
through the deacetylation of LXR in muscle cells[106] (Figure 1).

SIRT1 does not only influence nuclear factors, there are also
considerable interactions with upstream enzymes that regulate
the activity of key cellular pathways. AMPK, for instance is an
energy sensor in the cell and is activated upon increases in the
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AMP/ATP ratio. Deacetylation of Liver Kinase -1 (LKB1) by
SIRT1 potentiates the activity of LKBI targets such as AMPK.
Subsequently, AMPK activity inhibited ACC and FAS and
thus limits the generation of fatty acids. SIRT1 by virtue of its
interaction with the LKB1 blocks the synthesis of lipids via the de
novo synthesis pathway [107].

Bisphenol A (BPA), a representative endocrine disrupting
compound, exists ubiquitously in the aquatic environment.
Several studies on fish have validated the role of BPA in the lipid
metabolism. Therefore, the present results implied that BPA could
disturb the transcriptional regulation of target genes of ACACA,
FASN and CPTla via altering the SREBP1 binding to their SREs,
subsequently affecting triglyceride synthesis [108].

X-Box Binding Protein-1 (XBP-1) is a major transcription
regulator of the Unfolded Protein Response (UPR), mediating
adaptation to ERS. Xian Yu et al showed that in the presence of
high fructose (20 mmol/L), there was significant upregulation of
XBP-1s (active form) and downregulation of XBP-1lu (inactive
form). To elucidate the underlying mechanisms, they investigated
hepatic regulation of TG synthesis by activating XBP-1. XBP-
Is overexpression increased cellular TG accumulation, which
was accompanied by increased mRNA expression of SREBPIc
and protein content of three key target enzymes associated with
lipogenesis, ACC, FAS, and SCDI. Therefore, they explored
the causal relationship between XBP-1s and lipid accumulation
and found that high fructose-induced cellular lipid deposition in
NAFLD was partially regulated by XBP-1s[109].

AMS580, a retinoid derivative and RAR-o agonist,
demonstrates potent and broad-spectrum antiviral activities in
vitro and in vivo. Shuofeng Yuan et al find that AM580 blocks the
interaction of SREBP1/2 proteins with the non-palindromic SREs
in the promoter/enhancer regions of multiple lipogenic genes,
which inhibits their transcription and thus reverses the virus-
induced lipid hyper-biosynthesis[110].

Lipopolysaccharides (LPS) from the cell wall of gram-
negative bacteria are also referred to as a bacterial endotoxin.
Bacteria will release LPS during clinical disease such as ruminal
acidosis, mammary and uterine infection as well as during heat
stress. Wang et al find that LPS decreased the concentration of
TG and the formation of lipid droplets in (dairy cow mammary
epithelial cells) DCMECs, and decreased the transcriptional and
nuclear translocation of lipogenic transcription factor SREBPI in
DCMECs. Moreover, their findings suggest that LPS affects the
synthesis of dairy cow milk fat by down-regulating expression of
SREBPI and milk fat de novo synthesis of related enzyme genes
[111].

Fibroblast Growth Factor 10 (FGF10), a member of FGF
family, was primarily identified in mouse embryos in 1996, and it

was found to regulate the development and maturity of multiple
tissues and organs. Xu et al show that using two specific siRNAs,
SREBPI expression was significantly decreased 53% compared
with control [112].

SRY-Box Transcription Factor 4 (SOX4), a transcription
factor that regulates cell proliferation and differentiation, play an
important role in hepatic triglyceride metabolism. SOX4 expression
levels are markedly upregulated in livers of obese rodents and
humans. Jiao et al find that cellular TG content and expression
levels of SREBP1c were increased after SOX4 overexpression in a
dose dependent manner. Knockdown of SREBP1c in Hep1-6 cells
largely prevented the role of SOX4 overexpression on lipogenic
enzyme expression and cellular TG contents [113].

Copper (Cu) is a vital trace element for all animals. It is
co-factor of many enzymes and plays important roles in many
physiological processes of animals. Studies have shown that
dietary Cu deficiency reduced appetite and growth performance.
In contrast, excessive Cu in diet can be toxic and cause growth
retardation, oxidative stress and intestine damage. Chen et al
show that compared to fish fed low-Cu diet, dietary Cu addition
down-regulated mRNA levels of SREBP1. In the mid-intestine,
compared to fish fed low-Cu diet, dietary Cu addition down-
regulated mRNA expression of SREBP1. Thus, these observations
indicated that Cu-evoked alterations in lipid metabolism, at least in
part, was via the SREBP1 pathways[114].

Ursodeoxycholic Acid (UDCA) is a hydrophilic Bile Acid
(BA) and has been administered occasionally as a hepatoprotective
drug for cholestasis and chronic hepatitis. Early reports indicate
that UDCA improves glucose metabolism; that is, administration
of high-dose UDCA improves glycemic parameters, insulin
sensitivity, and insulin resistance surrogate markers in patients with
NASH. Recent reports indicate that UDCA modulates multiple
molecular targets and has potent anti-inflammatory activities and
improves glucose and lipid metabolism. Chen et al observed that
the administration of UDCA decreased SREBP1¢c, CD36. These
results suggested that UDCA attenuated HFFA-induced lipid
accumulation, ROS production, mitochondrial dysfunction, and
inflammation in AML12 cells[115].

Most caspases are activated during apoptosis, but hepatocytes
with persistently elevated DNL and cholesterol synthesis are
not apoptotic. Unlike other caspases, Casp2 was reported to
enter the ER lumen and the Golgi apparatus. Casp2 does not
trigger apoptosis and cannot activate SREBP1/2 directly. Prior
to its secretion, Casp2-activated S1P cleaves SREBP1/2 at site 1,
followed by the S2P-mediated cleavage step that results in final
SREBP activation. Notably, SREBP1/2 activation by the Casp2-
S1P pathway is SCAP-independent, and Casp2, S1P, and SREBP2
cohabitate the same juxta-nuclear compartment. This unique
pathway of SREBP1/2 activation results in persistent upregulation
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of DNL, which is needed for NAFLD initiation and accumulation
of hepatocyte free cholesterol, which drives the transition from
simple steatosis to NASH[116].

Conclusion

As an important nuclear transcription factor in vivo, SREBP1
not only plays an important regulatory role in cholesterol and fatty
acid metabolism, but also is a key link point in related diseases
such as metabolic syndrome, and its regulatory role in the body has
been receiving more and more attention. Through the application
of gene chip and sequencing technology, our understanding of
the downstream target genes regulated by SREBPI is relatively
clear, and it is understood that the target genes regulated by
SREBPI can be divided into three types: direct regulation, indirect
regulation and possible regulation[15]. On the other hand, we are
not very familiar with the specific mechanism and role of each
factor in regulating SREBP1. Currently, insulin is known to play
an important role in the regulation of SREBPI1, including the
transcription of SREBP1 mRNA, the proteolytic processing of
SREBPI, and the regulation of the stability abundance of mature
nSREBPI. Therefore, in order to further understand the regulation
mechanism of SREBP1 comprehensively, it is necessary to collect
and sort out the latest research progress of SREBP1, and delineate
more detailed and comprehensive signal pathways through the use
of bioinformatics analysis method, so as to provide new targets
for the prevention and treatment of SREBP1 related metabolic
diseases, in the hope of opening up a new approach in treatment.
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