

Progranulin is Associated with Osteoporosis by Inhibiting Osteoclastogenesis and Promoting Osteoblastogenesis

Jianlu Wei^{1,2}, Shaoyi Wang^{1,2,3}, Qiyu Bo^{3,*}

¹Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, China

²School of Medicine, Shandong University, Jinan, China

³Department of Operation, Qilu Hospital of Shandong University, Jinan, China

***Corresponding author:** Qiyu Bo, Qilu Hospital of Shandong University, Jinan, China. Email: 370829625@qq.com

#These authors contributed equally to this work.

Citation: Wei J, Wang S, Bo Q (2018) Progranulin is Associated with Osteoporosis by Inhibiting Osteoclastogenesis and Promoting Osteoblastogenesis. *J Orthop Ther: JORT-196*. DOI: 10.29011/2575-8241. 000096

Received Date: 11 May, 2018; **Accepted Date:** 16 May, 2018; **Published Date:** 22 May, 2018

Opinion

Osteoporosis is a systemic metabolic bone disease characterized by bone loss and microstructural abnormality of bone tissue, which leads to the increase of risk of bone fractures [1]. For bone metabolism under physiological condition, osteoblasts and osteoclasts are maintained in an appropriate dynamic balance. However, the essential reason for the osteoporosis lies in the disturbance of this bone homeostasis, that is, excessive bone resorption which is mediated by osteoclast or inadequate bone formation mediated by osteoblast or both [2,3]. Recent studies indicated that osteoclast differentiation is mainly regulated by Macrophage Colony-Stimulating Factor (M-CSF) and Receptor Activator of Nuclear Factor KB Ligand (RANKL) [4]. Kobayashi, et al. found tumor necrosis factor α (TNF α) promoted osteoclast differentiation through the ODF/RANKL-RANK signaling. In addition, it's reported that TNF α inhibits osteoblastogenesis by suppressing the recruitment of osteoblast and inhibiting the expression of matrix protein gene via β -catenin pathway [5,6]. It's well-accepted that TNF α and its signaling pathways plays an important role in and might be a potential target for osteoporosis.

Progranulin (PGRN) is a growth factor with unique "beads-on-a-string" structure which plays a critical role in various pathological and physiological processes, including inflammation, cell growth, wound healing and tumorigenesis [7-10]. Interestingly, PGRN was found to restrain its strong anti-inflammatory effect in many diseases [10-13]. Additionally, Tang et al revealed PGRN's effect by revealing its receptors. PGRN effectively binds to Tumor Necrosis Factor Receptors (TNFRs). There are two major receptors for TNFRs, namely TNFR1 and TNFR2. Basically, TNFR1 was well-studied and accepted as mediator of pro-inflammatory processes. On the other hand, TNFR2 was less understood. Based on previous studies, TNFR2 plays a protective role in heart failure, cartilage repair and so on. Importantly, for binding to TNFR1, PGRN shows

comparable binding affinity with TNF α . However, for binding to TNFR2, PGRN demonstrated even much higher binding affinity than TNF α . Given the fact that PGRN and TNF α binds to the same receptor, many studies found PGRN exerts its effect by inhibiting TNF α -mediated signaling, including inflammatory arthritis and intervertebral disc degeneration.

Based on previous studies, recent studies demonstrated that PGRN plays critical roles in bone metabolism [14,15]. Tang et al found that overexpression of TNF α resulted in promotion of calvarial osteoclast differentiation and deletion of PGRN further enhanced this process by taking advantage of the mice models [14]. Besides the cell-based experiment, Noguchi et al used genetically-modified mice model confirmed that loss of PGRN lead to bone loss compared to their control littermates. They illustrated PGRN played a crucial role in bone metabolism by inhibiting TNF α -induced Osteoclastogenesis [16]. Furthermore, Zhao et al also found that Titanium particles can promote the formation of osteoclasts in the mouse calvaria osteolysis model via NF-KB signal pathway. However, PGRN can largely attenuate this effect to prevent osteolysis [17]. Moreover, PGRN inhibited osteoclastogenesis by down-regulating the phosphorylation of ERK1/2 and p38.

Importantly, besides PGRN's role in osteoclast differentiation, it's reported that PGRN also plays a role in promoting bone formation [15]. Zhao, et al. established several animal models, including surgically-induced bone defect, bone nonunion and ectopic bone formation mice models. By using these *in vivo* experiments, they found PGRN deficiency prolonged the bone healing and recombined PGRN accelerated bone healing process. Moreover, BMP-2, which is known to be a critical role in bone regeneration [18,19], was required for PGRN to induce bone formation. In addition, PGRN's promotion effect in bone healing primarily depends on TNFR2 pathway. Interestingly, another study

demonstrated Erk1/2 pathway was a negative regulator in matrix mineralization of osteogenic cells [20]. Collectively, PGRN acts as a critical molecule in bone metabolism by inhibiting TNF- α mediated destructive activities and promoting BMP-2 induced protective activities [15].

In conclusion, PGRN plays a role in osteoclastogenesis and osteoblastogenesis. Based on previous studies, we speculate there may be a potential association between PGRN and osteoporosis. However, whether serum levels of PGRN alters in the osteoporosis population and the role of PGRN in osteoporosis is still not clear. Additionally, whether PGRN exerts its effect in osteoporosis through TNFRs and the mechanism involved needs to be further discussed.

References

1. Diab DL and Watts NB (2013) Diagnosis and treatment of osteoporosis in older adults. *Endocrinol Metab Clin North Am* 42: 305-317.
2. Kawai M, Mödder UI, Khosla S, Rosen CJ. (2011) Emerging therapeutic opportunities for skeletal restoration. *Nat Rev Drug Discov* 10: 141-156.
3. Komori T (2011) Signaling networks in RUNX2-dependent bone development. *J Cell Biochem* 112: 750-755.
4. Horowitz MC and JA Lorenzo (2004) The origins of osteoclasts. *Curr Opin Rheumatol* 16: 464-468.
5. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, et al. (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. *J Exp Med* 191: 275-286.
6. Nanes MS (2003) Tumor necrosis factor-alpha: molecular and cellular mechanisms in skeletal pathology. *Gene* 321: 1-15.
7. Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, et al. (2002) Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. *Cell* 111: 867-878.
8. He Z, Ong CH, Halper J, Bateman A (2003) Progranulin is a mediator of the wound response. *Nat Med* 9: 225-229.
9. Bertram H, Nerlich A, Omlor G, Geiger F, Zimmermann G, et al. (2009) Expression of TRAIL and the death receptors DR4 and DR5 correlates with progression of degeneration in human intervertebral disks. *Mod Pathol* 22: 895-905.
10. Wei JA, Hettinghouse A, Liu C (2016) The role of progranulin in arthritis. *Ann N Y Acad Sci* 1383: 5-20.
11. Ding H, Wei J, Zhao Y, Liu Y, Liu L, et al. (2017) Progranulin derived engineered protein Atsttrin suppresses TNF-alpha-mediated inflammation in intervertebral disc degenerative disease. *Oncotarget* 8: 109692-109702.
12. Wei JL, Fu W, Ding YJ, Hettinghouse A, Lendhey M, et al. (2017) Progranulin derivative Atsttrin protects against early osteoarthritis in mouse and rat models. *Arthritis Res Ther* 19: 280.
13. Wei JL, Buza J 3rd, Liu CJ (2016) Does progranulin account for the opposite effects of etanercept and infliximab/adalimumab in osteoarthritis? Comment on Olson et al.: "Therapeutic Opportunities to Prevent Post-Traumatic Arthritis: Lessons From the Natural History of Arthritis After Articular Fracture". *J Orthop Res* 34: 12-14.
14. Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, et al. (2011) The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. *Science* 332: 478-484.
15. Zhao YP, Tian QY, Frenkel S, Liu CJ (2013) The promotion of bone healing by progranulin, a downstream molecule of BMP-2, through interacting with TNF/TNFR signaling. *Biomaterials* 34: 6412-6421.
16. Noguchi T, Ebina K, Hirao M, Kawase R, Ohama T, et al. (2015) Progranulin plays crucial roles in preserving bone mass by inhibiting TNF-alpha-induced osteoclastogenesis and promoting osteoblastic differentiation in mice. *Biochem Biophys Res Commun* 465: 638-643.
17. Zhao YP, Wei JL, Tian QY, Liu AT, Yi YS, et al. (2016) Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFalpha signaling. *Sci Rep* 6: 20909.
18. Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, et al. (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. *Nat Genet* 38: 1424-1429.
19. Lin GL and KD Hankenson (2011) Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. *J Cell Biochem* 112: 3491-3501.
20. Kono SJ, Oshima Y, Hoshi K, Bonewald LF, Oda H, et al. (2007) Erk pathways negatively regulate matrix mineralization. *Bone* 40: 68-74.