
J Surg, an open access journal
ISSN: 2575-9760

1 Volume 09; Issue 15

Research Article

Precision Opioid Prescription in ICU Surgery: 
Insights from an Interpretable Deep Learning 

Framework
Xiaoning Zhu1, Isaac Luria2, Patrick Tighe3, Fei Zou1,4, Baiming Zou1,5*

1Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
2Department of Anesthesiology, University of Florida, Gainesville, FL, USA
3Departments of Anesthesiology & Orthopaedic Surgery, University of Florida, Gainesville, FL, USA
4Departments of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
5School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Journal of Surgery
Zhu X, et al. J Surg 9: 11189
www.doi.org/10.29011/2575-9760.11189
www.gavinpublishers.com

*Corresponding author: Baiming Zou, Department of Biostatistics and School of Nursing, University of North Carolina at Chapel Hill, 
Chapel Hill, NC, USA 

Citation: Zhu X, Luria I, Tighe P, Zou F, Zou B (2024) Precision Opioid Prescription in ICU Surgery: Insights from an Interpretable 
Deep Learning Framework. J Surg 9: 11189 DOI: 10.29011/2575-9760.11189

Received Date: 19 November 2024; Accepted Date: 25 November 2024; Published Date: 27 November 2024

Abstract 

Purpose: Appropriate opioid management is crucial to reduce opioid overdose risk for ICU surgical patients, which can lead to 
severe complications. Accurately predicting postoperative opioid needs and understanding the associated factors can effectively 
guide appropriate opioid use, significantly enhancing patient safety and recovery outcomes. Although machine learning models can 
accurately predict postoperative opioid needs, lacking interpretability hinders their adoption in clinical practice.

Methods: We developed an interpretable deep learning framework to evaluate individual feature’s impact on postoperative opioid 
use and identify important factors. A Permutation Feature Importance Test (PermFIT) was employed to assess the impact with a 
rigorous statistical inference for machine learning models including Support Vector Machines, eXtreme Gradient Boosting, Random 
Forest, and Deep Neural Networks (DNN). The Mean Squared Error (MSE) and Pearson Correlation Coefficient (PCC) were used to 
evaluate the performance of these models.

Results: We conducted analysis utilizing the electronic health records of 4,912 surgical patients from the Medical Information 
Mart for Intensive Care database. In a 10-fold cross-validation, the DNN outperformed other machine learning models, achieving 
the lowest MSE (7889.2 mcg) and highest PCC (0.283). Among 25 features, 13—including age, surgery type, and others—were 
identified as significant predictors of postoperative opioid use (p < 0.05).

Conclusion: The DNN proved to be an effective model for predicting postoperative opioid consumption and identifying significant 
features through the PermFIT framework. This approach offers a valuable tool for precise opioid prescription tailored to the individual 
needs of ICU surgical patients, improving patient outcomes and enhancing safety.
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Introduction 

A significant portion of patients admitted to Intensive Care 
Units (ICUs) undergo different type of surgical procedures [1,2]. 

These procedures span a broad spectrum of specialties, from 
routine outpatient treatments to complex interventions requiring 
hospitalization. Effective postoperative pain management is crucial 
to expedite recovery and enhance patient outcomes. Historically, 
opioids have been instrumental in providing potent analgesic 
effects to alleviate postoperative pain and improve patient comfort 
[3,4]. However, the widespread use of opioids for postoperative 
pain relief has contributed to the escalating opioid crisis, posing 
significant public health challenges. Inappropriate or excessive 
opioid use can lead to adverse outcomes such as dependency, 
addiction, overdose, and fatalities [5-11]. Additionally, opioid-
related side effects like respiratory depression, nausea, constipation, 
and sedation can compromise patient safety and impede recovery 
if not adequately managed [12-15].  Therefore, while opioids 
remain a vital component of postoperative pain management, it 
is imperative to balance their benefits and risks, implementing 
comprehensive strategies to mitigate opioid-related harm and 
optimize patient care.  Accurate prediction of postoperative opioid 
use is essential for achieving a delicate balance between optimizing 
pain control and mitigating associated risks. Precise forecasting of 
opioid consumption following surgery allows healthcare providers 
to tailor pain management strategies to individual patient needs, 
reducing the risk of overprescription while ensuring adequate pain 
relief [16-19].  

However, accurate prediction presents several challenges. 
Variations in patient responses to opioids, differences in pain 
perception, age, sex, and the complexity of surgical procedures 
can all influence opioid requirements, complicating individualized 
prediction [11, 20-24]. Additionally, the multifaceted nature of 
postoperative pain, involving both nociceptive and neuropathic 
components, further complicates opioid consumption prediction 
[25-27]. Therefore, the potential for opioid-related adverse effects 
and the risk of misuse and addiction underscores the importance 
of precise individualized prediction to optimize pain management 
outcomes while minimizing harm [16-18]. Overcoming these 
challenges necessitates advanced predictive modeling techniques 
[28-31]. By integrating predictive analytics with clinical expertise, 
healthcare providers can enhance their ability to accurately forecast 
postoperative opioid use, ultimately improving patient safety and 
optimizing postoperative pain control.

Existing predictive models for postoperative opioid consumption 
often adopt parametric techniques, which necessitate restrictive 
assumptions by explicitly specifying the functional association 

between predictors and postoperative opioid consumption 
[22,28,32]. These restrictive assumptions may not hold in clinical 
practice and are unverifiable [33,34]. Misspecification of the 
functional association format can lead to inaccurate predictions. 
Conversely, many machine learning methods developed in recent 
years relax many of these restrictive assumptions [35]. In this 
study, we investigated the effectiveness of four commonly used 
machine learning models in predicting postoperative opioid 
consumption. Specifically, we compared Support Vector Machine 
(SVM), Extreme Gradient Boosting (XGBoost), Random Forest 
(RF), and Deep Neural Network (DNN) based on patients’ 
demographics, clinical, preoperative, and operative features [36-
42]. While these machine learning models are robust in exploring 
complex associations, they lack transparency in evaluating each 
individual feature’s impact on postoperative opioid consumption 
due to the abstract algorithms used [43-45].  Identifying important 
features associated with postoperative opioid consumption helps 
strengthen our understanding of postoperative opioid consumption 
mechanisms and improves postoperative pain management for 
ICU surgery patients. To address transparency limitation of 
machine learning models, we adopted the permutation-based 
feature importance test (PermFIT) procedure [46].  The overall 
goal of this paper is to develop and validate a machine learning 
framework for accurate personalized postoperative opioid need 
prediction and identify the associated important features under 
complex associations based on ICU surgical patients’ Electronic 
Health Records (EHRs) captured in clinical practice.

Materials and Methods

Study Design

This prognostic study followed TRIPOD guidelines with data 
included in this study extracted from the Medical Information Mart 
for Intensive Care (MIMIC-III) database [47].  This large database 
includes the EHRs of patients admitted to critical care units at the 
Beth Israel Deaconess Medical Center between 2001 and 2012.  
We developed and validated a robust predictive model under 
complex association relationship for accurate postoperative opioid 
consumption prediction in ICU surgery patients by investigating 
a set of commonly used machine learning models. Additionally, 
significant factors associated with postoperative opioid 
consumptions for each machine learning model were identified 
under the PermFIT framework [46], providing an in-depth 
understanding of postoperative opioid consumption mechanisms 
for ICU patients.  More importantly, evaluation of each individual 
feature’s impact on postoperative opioid consumption will enable 
each of the black-box machine learning model to be interpretable, 
i.e., our feature importance identification for machine learning 
models was derived from rigorous statistical inference which is 
not available in existing postoperative opioid prediction models. 
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Study Population 

The MIMIC-III database contains EHRs of over 40,000 patients admitted to the ICU, with 17,611 undergoing surgical procedures [47]. 
Among these surgical patients, 7,192 had documented opioid consumptions during their hospital stay.  To ensure the reliability of our 
dataset, rigorous preprocessing procedures were implemented, revealing two distinct modalities for intravenous opioid administration: 
continuous infusion and discreet bolus dose. While some patients exclusively received opioids via continuous infusion (n=619), a large 
proportion patients underwent intravenous push administration (n=7,106). Additionally, a subset received opioids through both methods 
(n=533). Given pharmacokinetic differences, our analysis focused solely on opioids administered via intravenous push. Although oral 
opioids like Oxycodone are common in clinical practice, their absence in our dataset led to the exclusion of oral opioid data, resulting 
in a cohort of 7,106 patients receiving intravenous opioids. Refinement procedures eliminated aberrant observations, including extreme 
opioid intake and missing values. Furthermore, to avoid redundancy, in cases where patients had multiple hospital admissions (HADM_
ID), a random selection process was employed to retain only one HADM_ID per patient. Our analysis ultimately included 4,912 surgery 
patients with complete demographic, clinical, preoperative, operative, and postoperative features.  Detailed data processing procedures 
are presented in Figure 1.

Figure 1: Data Extraction and Modeling Architecture.

Opioid Consumption Derivation and Covariates

The average daily postoperative opioid consumption was derived and calculated as the intake amount of four opioid drugs frequently 
used in early recovery period after surgery: morphine, hydromorphone, fentanyl, and meperidine via intravenous push route, converted 
to morphine equivalent dose [48,49] , using Micrograms (mcg) as the unit of measurement. 25 Variables, Including Demographic 
(e.g., age, sex, ethnicity), preoperative (e.g., prior medical history), operative (e.g., surgery types), and other clinical features, were 
incorporated as input features of each machine learning model for predicting the average daily postoperative opioid consumption. 
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Statistical Analysis

Build Interpretable Machine Learning Models for Opioid Use 
Prediction

A 10-fold cross-validation strategy was adopted to evaluate 
the prediction performance of each machine learning model in 
predicting the postoperative opioid consumption as depicted in 
Figure 1. Specifically, by randomly partitioning the dataset into ten 
distinctive subsets, each fold of the 10 subsets was alternatively 
used as a testing set, while the rest of 9 folds were used to train 
the machine learning model. Four commonly used machine 
learning models including SVM, RF and XGBoost, and DNN 
were developed and validated based on MIMIC-III EHR data. To 
identify the significant features associated with postoperative opioid 
consumption for each machine learning model, we adopted the 
PermFIT framework [37]. To comprehensively evaluate the model 
performance in predicting the postoperative opioid consumption, 
we employed two evaluation metrics: Mean Square Error (MSE) 
- a quantitative measure of the average squared difference between 
predicted daily postoperative opioid consumptions and actual 
daily postoperative opioid consumptions, and Pearson Correlation 
Coefficient (PCC) - measures the strength and direction of the 
linear relationship between predicted and actual daily postoperative 
opioid consumptions.

Tuning Machine Learning Models 

Machine learning models were meticulously tuned. The SVM 
model’s tuning involved optimizing gamma (from 10-4 to 1) and 
cost parameters (1 to 100) through a cross-validation strategy. 
For the RF model, 1000 trees were grown with other tuning 
parameters determined by cross-validation.  Similarly, XGBoost’s 
hyperparameters were tuned through a cross-validation scheme.  
For the DNN model, what we adopted was a revised DNN ensemble 
to deal with the unstable prediction challenge due to the random 
parameter initialization in the conventional DNN algorithm.  In 
the revised DNN model, two procedures were introduced to 
address the unstable prediction issue, i.e., bootstrap aggregating 
and filtering [50].  Our DNN model utilized an ensemble of 100 
models, with 4 hidden layers, 50, 40, 30, 20 hidden nodes from the 
first to the last layer, respectively, employing a mini batch size 30. 

Results

ICU Surgical Patients’ Basic Characteristics 

In the cohort of 4,912 surgical patients, all were aged 18 or older, 
with a mean age of 65.2 years. Of these, 3,127 (63.7%) were 
male, and 1,785 (36.3%) were female. Among the patients, 2,551 
(51.9%) underwent cardiac surgeries, 1,089 (22.2%) had general 
surgeries, while 527 (10.7%), 284 (5.8%), 248 (5.0%), 186 
(3.8%), and 27 (0.5%) underwent neurologic, circulatory, thoracic, 

musculoskeletal, and plastic surgeries, respectively. A summary 
of the demographic characteristics for 4,912 surgical patients 
included in this study is presented in Table 1.

Categorical Features  No. (%)

Sex Female 1785 (36.3)

  Male 3127 (63.7)

Insurance Medicare/Government 2796 (56.9)

  Self-Pay/Private 1761 (35.9)

  Medicaid 355 (7.2)

Ethnicity Black/African 254 (5.2)

  Hispanic/Latino 165 (3.4)

  White 3715 (75.6)

 Other 245 (5.0)

 Unknown 533 (10.9)

Marital Status Married 2748 (55.9)

 Single 990 (20.2) 

 Widowed 565 (11.5)

 Divorced/Separated 411 (8.4)

  Other 198 (4.0)

Surgery Types Cardiac Surgery 2551 (51.9)

  General Surgery 1089 (22.2)

  Neurologic Surgery 527 (10.7)

  Circulatory Surgery 284 (5.8)

  Thoracic Surgery 248 (5.0)

  Musculoskeletal Surgery 186 (3.8)

  Plastic Surgery 27 (0.5)

Table 1: Summary of Key Demographic Features.

Model Performance Comparison on Postoperative Opioid 
Usage Prediction

Under the permutation feature importance test framework, we 
identified the important features associated with average daily 
postoperative opioid consumption for each of machine learning 
models (DNN, RF, SVM, XGBoost).  The identified important 
features for each model were then included in the corresponding 
machine learning model for predicting average daily postoperative 
opioid consumption based on the testing data. The models are 
referred to as DNN, RF, SVM, and XGBoost, respectively, and 
they are interpretable since each of the input feature’s impact on 
the outcome can be expressively evaluated.  It is worth noting 
that when training the machine learning predictive models and 
identifying the important features for each machine learning model 
all the testing samples were withheld without leaking to influence 
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model training and feature importance evaluation during model 
training and feature importance identification processes to avoid 
overfitting.  The results of the analysis are presented in Table 2. 

Model MSE (95% CI) PCC (95% CI)

DNN 7889.230 (5751.744, 10026.716) 0.283 (0.165, 0.401)

SVM 8810.669 (6034.788,11586.550) 0.236 (0.152, 0.320)

RF 8214.330 (6180.240, 10248.420) 0.225 (0.115, 0.335)

XGBoost 8681.910 (6054.787, 11309.033) 0.217 (0.144, 0.290)

Table 2: Performance Comparison for Daily Postoperative Opioid 
Consumption.

Table 2 reveals that in the reduced models where only the identified 
significant features (p-value < 0.05) were included for predicting 
average daily postoperative opioid consumption, the MSE and 
PCC along with their corresponding 95% confidence intervals 
(CI), were as follows: DNN (7889.23 [5751.744, 10026.716], 
0.283 [0.165, 0.401]), SVM (8810.669 [6034.788,11586.550], 
0.236 [0.152, 0.320]), RF (8214.330 [6180.240, 10248.420], 0.225 

[0.115, 0.335]), and XGBoost (8681.910 [6054.787, 11309.033], 
0.217 [0.144, 0.290]). DNN outperformed all other models in 
terms of all evaluation metrics considered.

Identified Important Features Associated with ICU Patient’s 
Postoperative Opioid Use 

Using the permutation feature importance test framework, we 
identified the important features associated with postoperative 
opioid consumption for each machine learning model across each 
fold of 10-fold cross-validation. Figure 2 displays the heatmap of 
the frequency of identified important features for each machine 
learning method at a significance level of 0.05. It’s evident from 
this figure that patient age and surgery type are consistently 
identified as significant factors for average daily postoperative 
opioid consumption across all 10 folds by all four machine learning 
methods.  Moreover, sex, serum calcium, serum potassium, 
diabetes, admission type, alcohol abuse, and cerebrovascular 
disease/stroke were identified as significant factors associated with 
average daily postoperative opioid consumption across all 10 folds 
by the DNN model. 
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Figure 2: Frequency Heatmap of Features.

Discussion

The management of opioids in ICU surgical patients during the early recovery period post-surgery poses significant clinical challenges, 
requiring accurate prediction and understanding of factors influencing opioid consumption for optimal pain management strategies. In 
this prognostic study, we comprehensively evaluated a range of commonly used machine learning models, including SVM, XGBoost, 
RF, and DNN, to construct and validate a robust predictive model for accurate postoperative opioid consumption in ICU surgical patients 
using EHR data from clinical practice. Among these models, the DNN model outperformed others by achieving the lowest mean squared 
error and the highest Pearson correlation coefficient. This underscores the effectiveness of the DNN model in capturing the intricate 
associations between clinical features and postoperative opioid consumption. Using a permutation feature importance test framework, 
the DNN model identified a total of 13 significant features associated with postoperative opioid consumption in every fold of the 10-
fold cross-validation analysis, including age, surgery type, sex, serum CO2 levels, serum calcium, serum potassium, alcohol/drug abuse 
history, cerebrovascular disease, admit location, diabetes, and admit type among a total of 25 features. While many of these findings align 
with prior research, some are novel. For instance, studies have consistently shown a decrease in postoperative opioid prescription with 
increasing age [23,51,52]. Additionally, research has highlighted the physiological connection between opioid usage and vital signs such 
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as serum potassium, CO2 level, and platelet count [53]. Notably, 
the Permutation Feature Importance Test (PermFIT) utilized in 
this study differs significantly from other existing feature selection 
methods like the Shapley Value-Based Method (SHAP)  [54]. 
While PermFIT not only assesses the importance score for each 
individual feature but also provides statistical inference, enabling 
the identification of statistically significant features, SHAP solely 
evaluates each feature’s importance score for relative importance 
ranking. This suggests that features identified via SHAP could be 
statistically insignificant, potentially misleading clinical decision-
making. This study highlights the potential of using interpretable 
deep learning frameworks to enhance precision opioid prescription 
in ICU surgery. By identifying crucial influencing features, our 
approach offers a valuable tool for tailoring opioid prescriptions 
to the individual needs of surgical patients in ICUs, potentially 
improving patient outcomes and enhancing safety.

Limitation

This study was limited by the absence of certain crucial features, 
such as preoperative pain scores and surgery duration. These factors 
are important as they may significantly impact postoperative 
opioid consumption. Future research should aim to include these 
variables to provide a more comprehensive understanding of the 
determinants of opioid use in ICU surgical patients. 

Conclusion

The study results underscore the effectiveness of the PermFIT-
DNN model in flexibly identifying significant features for robust 
and accurate postoperative opioid consumption prediction, 
accompanied by solid statistical interpretations. This model 
not only enhances prediction accuracy using these identified 
important features but also provides valuable insights into 
the factors influencing opioid use in ICU surgical patients. 
These findings hold potential for informing the development of 
predictive tools to facilitate evidence-based clinical decision-
making, particularly regarding personalized postoperative opioid 
prescription recommendations. However, the study’s limitations 
suggest that some important features related to postoperative 
opioid consumption, such as preoperative pain scores and surgery 
duration, may not have been captured. This highlights the need 
for more comprehensive investigations. Future research should 
aim to integrate a broader collection of postoperative opioid 
consumption data to train the DNN model within the PermFIT 
framework. By doing so, a more complete set of important features 
could be identified, further enhancing the prediction accuracy and 
ultimately improving patient outcomes in ICU settings.
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