

Phytochemicals in Cancer Management

Robert Thomas^{1*}, Dorothy Yang¹, Catherine Zollman², Madeleine Williams¹

¹Department of Oncology, The Primrose Oncology Unit, Bedford Hospital, Bedford, UK

²Department of Oncology, Medical Director, Penny Brohn, UK

***Corresponding author:** Robert Thomas, Consultant Oncologist, The Primrose Oncology Unit, Bedford Hospital, Bedford, UK. Tel: +4401234355122; Fax: +4401234792668; Email: robert.thomas@addenbrookes.nhs.uk

Citation: Thomas R, Yang D, Zollman C, Williams M (2017) Phytochemicals in Cancer Management. Curr Res Complement Altern Med: CRCAM-105. DOI: 10.29011/CRCAM-105/100005

Received Date: 28 June, 2017; **Accepted Date:** 03 July, 2017; **Published Date:** 10 July, 2017

Abstract

The phytochemicals compounds found in plants are responsible for their colour, taste, and aroma of many foods. Over and above these attributes, emerging evidence suggests that they protect us from environmental and ingested carcinogens by arming antioxidant enzymes, enhancing DNA repair pathways, reducing chronic inflammation, and directly affecting the biological processes that underlie the fundamental hallmarks of cancer progression and metastasis. It is not a surprise, then, that the World Cancer Research Fund (WCRF) and other academic bodies report that individuals eating phytochemical-rich foods have a lower risk of cancer or relapse after treatments. The debate lies in whether concentrating these into nutritional supplements or topical creams can boost their health attributes without causing significant adverse effects. One notable randomised controlled trial has demonstrated benefits of a polyphenol-rich nutritional supplement for men with prostate cancer, another Randomised Controlled Trial (RCT) used a polyphenolic-rich topical balm to prevent distressing chemotherapy induced nail loss but, considering their potential benefits, there is a shortage of robust RCTs. This international evidence reviews highlights significant RCTs relating to cancer, their probable mechanisms of action and scope for future research.

Key words: Cancer; Diet; Phytochemicals; Polyphenols

Introduction

An increasing number of well-conducted studies are linking higher intake of phytochemical-rich foods with lower risks of chronic disorders ranging from arthritis to Type 2 Diabetes Mellitus (T2DM), as well as a lower risk of cancer and its relapse after initial treatments [1-3]. Of the numerous subcategories of phytochemicals, one of the largest and most well-researched groups is the polyphenols (Table 1). The average total dietary intake of polyphenols is reported to be over 1g per day, which is up to ten times higher than that of all other classes of phytochemicals [4]. Laboratory experiments have elucidated several anticancer mechanisms of action for phytochemicals, which might explain their benefits for patients both before and after cancer. Cohort studies correlating dietary patterns with disease outcomes provide useful insights, but scientific credibility is diluted by multiple causative factors in food and other lifestyle factors. Prospective clinical studies increasing dietary intake of certain polyphenol-rich foods are difficult to design and control, so most studies evaluate the pros and cons of concentrating phytochemicals into nutritional supplements in an attempt to further harness their health benefits. Nutritional supplements appear to be popular with cancer patients despite most of them not undergoing scientific evaluation [5-6]. This review provides up-to-date information to aid communication between patients and healthcare providers on the rationale, benefits and risks of increasing intake of phytochemical-rich foods and supplements.

Polyphenols
1. Flavonoids
• Flavonols: quercetin, kaempferol (onions, kale, leeks, broccoli, buckwheat, red grapes, apples)
• Flavones: apigenin, luteolin (celery, herbs, parsley, chamomile, rooibos tea, capsicum pepper)
• Isoflavones: genistein, daidzein, glycinein (soya, beans, chick peas, alfalfa, peanuts)
• Flavanones: naringenin, hesperitin (citrus fruit)
• Anthocyanidins (red grapes, blueberries, cherries, strawberries, blackberries, tea)
• Flavan-3-ols (tannins): catechins, epicatechin, epigallocatechin gallate (tea, chocolate,)
• Flavanolols: silymarin, silibinin, aromadendrin (milk thistle, red onions)
• Dihydrochalcones: phloridzin, aspalathin (apples, rooibos tea)
2. Phenolic acids
• Hydrobenzoic acids: gallic acid, ellagic acid, vanillic acid (rhubarb, grape seed, raspberries, blackberries, pomegranate, vanilla, tea)
• Hydroxycinnamic acids: ferulic acid, P-coumaric acid, caffeic acid, sinapic acid (wheat bran, cinnamon, coffee, kiwi fruit, plums, blueberries)
1. Other non-flavonoid polyphenols
• Other tannins (cereals, fruits, berries, beans, nuts, wine, cocoa)
• Curcuminoids: curcumin (turmeric)
• Stilbenes: cinnamic acid, resveratrol (grapes, wine, blueberries, peanuts, raspberries)
• Lignans: secoisolariciresinol, enterolactone, sesamin (grains, flaxseed, sesame seeds)
Terpenoids
1. Carotenoid terpenoids
• Alpha, beta and gamma carotene (sweet potato, carrots, pumpkin, kale)
• Lutein (corn, eggs, kale, spinach, red pepper, pumpkin, oranges, rhubarb, plum, mango, papaya)
• Zeaxanthin (corn, eggs, kale, spinach, red pepper, pumpkin, oranges)
• Lycopene (tomatoes, watermelon, pink grapefruit, guava, papaya) Astaxanthin (salmon, shrimp, krill, crab)
2. Non-carotenoid terpenoids
• Saponins (chickpeas, soya beans)
• Limonene (the rind of citrus fruits)
• Perillyl Alcohol (cherries, caraway seeds, mint)
• Phytosterols: natural cholesterol, stigmasterol, campesterol (vegetable oils, cereal grains, nuts, shoots, seeds and their oils, whole grains, legumes)
• Ursolic acid (apples, cranberries, prunes, peppermint, oregano, thyme)
• Ginkgolide and bilobalide (Ginkgo biloba)
3. Thiols
• Glucosinolates: isothiocyanates (sulforaphane) and dithiolthiones (cruciferous vegetables such as broccoli, asparagus, Brussels sprouts, cauliflower, horseradish, radish and mustard)
• Allylic sulfides: allicin and S-allyl cysteine (garlic, leeks, onions)
• Indoles: Indole-3-carbinol (broccoli, Brussels sprouts)
4. Other phytochemicals
• Betaines found in beetroot
• Chlorophylls found in green leafy vegetables
• Capsaicin found in chilli
• Peperine found in black peppers

Table1: Classification of phytochemicals and notable rich food sources [7-10]

Classification

There are three major groups of phytochemicals: the polyphenols, which can be subcategorized as the flavonoids, phenolic acids, and other non-flavonoid polyphenols; the terpenoids, which can be subcategorized as the carotenoids and non-carotenoid terpenoids; and the thiols, which include the glucosinolates, allylic sulfides, and non-sulphur containing indoles [7-11] (Table 1). Other phytochemical groups have been classified within a miscellaneous category (Table 1), some members of which also possess nutritional benefits and properties, including the betaines, chlorophylls, and capsaicin.

Clinical Evidence for a Link between Phytochemical intake and Reduced Cancer Risk

Most of the evidence for the benefits of phytochemicals in cancer prevention stems from well-conducted cohort studies which have linked a higher intake of phytochemical-rich foods, such as vegetables, fruit, legumes, nuts, herbs, and spices, with a lower incidence of cancer [1,3]. Although some earlier studies do not find an association, more recent studies do [12,13,14]. Of note, higher intake of carotenoids, found in leafy green vegetables and carrots, has been observed to have a significant dose-response relationship with reduced breast cancer risk in a meta-analysis pooling data from prospective cohort studies [15]. Studies based on questionnaires assessing intake of phytochemical-rich foods and serum levels of biomarkers have also demonstrated associations between high carotenoid intake and lower risks of ovarian and pancreatic cancers [16-18]. Intake of cruciferous vegetables such as cabbage, cauliflower, Brussel sprouts, radishes, and broccoli have been associated with a lower prostate cancer risk [19], as have foods rich in isoflavones such as pulses and soy products [20-22] and lycopene-rich colourful fruits and tomatoes [23]. Foods with abundant levels of flavonoids such as onions, rich in quercetin, have been associated in particular with a reduced incidence of cancers arising in the lung, especially among smokers [24,25]. The anthoxanthins in dark chocolate have been reported to be associated with a lower risk of colon cancer [26], and evidence indicates that higher green tea intake lowers the risk of breast, prostate, ovarian and oesophageal cancers, particularly among smokers and alcoholics [27,28]. Finally, higher coffee intake has been shown to be associated with reduced risks of both non-melanoma skin cancers and melanoma, even after controlling for confounding factors such as ultraviolet radiation exposure, body mass index, age, sex, physical activity, alcohol intake and smoking history [29,30].

Clinical Evidence for a Link between Phytochemical Intake and Reduced Cancer Recurrence

A number of studies have demonstrated that the benefits of consuming phytochemical-rich foods do not stop after a diagnosis of cancer. For example, breast cancer survivors who regularly consumed more than the government-recommended five portions

of fruit and vegetables a day and participated in regular physical activity, had a significantly lower risk of breast cancer recurrence than those who did not [31,32]. In another study, women with breast cancer who had the highest serum lignan levels, reflecting good intake of legumes, cereals, cruciferous vegetables and soy, were reported to have better overall survival than those with the lowest levels [33]. A lignan and polyphenol-rich diet has also been associated with a lower colorectal cancer relapse rate [34].

The Shanghai Breast Cancer Survival Study, a large cohort study of 5,042 breast cancer survivors in China, demonstrated that women with the highest intake of the phytoestrogenic polyphenols isoflavone and flavanone, found in soya and other beans, had a significantly decreased risk of breast cancer recurrence and death from any cause compared to those with the lowest intake at a median follow-up of 4 years [35,36]. Similar findings have been observed for high intake of green tea after breast cancer [37] and colorectal cancer [34]. High intake of green tea extract in a phase II trial of 42 chronic lymphocytic leukaemia patients was reported to produce a sustained, clinically significant decrease in the abnormal absolute lymphocyte count in 30% of patients [38]. Providing supplements of the phytochemicals rich in green tea to men with prostate cancer has been associated with a reduction in levels of serum Prostate-Specific Antigen (PSA), a marker of prostate gland disease used to monitor prostate cancer [39]. A slowing of PSA progression has similarly been observed in other interventional studies of phytochemical-rich foods for prostate cancer, most notably a Randomized Controlled Trial (RCT) studying an intensive lifestyle program intervention that included a vegan diet supplemented with phytochemical-rich soy products [40], and a phase II clinical trial of pomegranate juice (8 ounces/day) [41].

Individuals who have been treated for Squamous Cell Carcinoma (SCC) of the skin have a high risk of developing further skin lesions due to ongoing sun damage. A prospective study conducted in an Australian community reported that the highest levels of dietary intake of lutein and zeaxanthin-rich foods after an initial diagnosis of SCC, such as leafy green and yellow vegetables, were associated with a significantly reduced incidence of new cancer formation compared with the lowest levels of intake [42].

A number of other studies evaluating the impact of high intake of dietary phytochemicals after cancer diagnosis are currently underway, including the UK's DietCompLyf prospective cohort study, which is measuring serum polyphenol levels and recording dietary patterns of 3,159 women treated for breast cancer [43].

The likely Anticancer Mechanisms of Phytochemicals

The biochemical mechanisms through which phytochemicals exert their influence on cancer pathways are wide-ranging and still being explored. In terms of cancer prevention, a commonly cited mechanism is the direct antioxidant activity of phytochemicals, elicited through direct free radical absorption. The ability of phytochemicals to protect DNA from ingested or environmental

carcinogens, however, is likely to be mainly indirect, via their enhancement of the natural antioxidant enzymes and pathways in the body. Laboratory studies have shown that phytochemicals activate Nrf2, a transcription factor which switches on the genes that code for detoxification enzymes such as Super Oxide Dismutase (SOD), catalyse, and glutathione [44-46]. Furthermore, phytochemicals, particularly members of the thiol class such as sulforaphane, have been shown to exert protective effects by inhibiting the activity of enzymes which convert procarcinogens to their active, DNA-damaging carcinogen forms [44,47].

Practical evidence of the antioxidant and anticancer properties of phytochemicals has been obtained from a number of laboratory and animal studies involving common carcinogens. One study first demonstrated that chronic exposure to triclocarban *in vitro*, a chemical commonly found in household detergents, resulted in progressive mutation of noncancerous human breast cells to premalignant cells. The researchers then found that co-exposure of the triclocarban-exposed cells to cur cumin significantly reduced the amount and rate of carcinogenesis, as evidenced by decreases in cell proliferation and DNA damage among other end points [48]. In animal studies, rats exposed to cigarette smoke and then given indole-3-carbinol have been found to have a lower lung cancer development rate than those given a standard diet [49], while quercetin supplementation of mouse models of benzo(a)pyrene-induced lung cancer has been associated with attenuation of the decreases in antioxidant enzymes, including SOD and catalase, induced by benzo(a)pyrene [50]. Quercetin anticancer effects exhibited via significant decreases in oxidative stress have also been demonstrated in rat models of *N*-nitrosodiethylamine-induced liver cancer [51]. The antioxidant properties of betalain and other pigments in beetroot have been reported in several animal studies [52, 53]. Most notably, in one study, rats were randomly allocated to either a normal diet or a diet supplemented with dried beetroot extract. The rats were then administered carbon tetrachloride, a well-established carcinogen and reactive oxygen and nitrogen species (RONS) generator. The rats pre-treated with the beetroot were found to express significantly lower levels of lipid per oxidation, a marker of oxidative damage, than those which were not [54].

There is also evidence from clinical studies that phytochemicals have antioxidant effects in humans. For example, in one study, volunteers who ate a diet rich in quercetin and kaempferol were found on serum and urine analysis to have higher urinary concentrations of these polyphenols and improved SOD activity [55]. Eating a meal of onions has been found to increase subjects' serum levels of quercetin, indicating efficient absorption, and decrease urinary levels of 8-hydroxy-2'-deoxyguanosine, a marker of oxidative stress to DNA, four hours after ingestion of the meal [56,57]. Finally, a clinical study carried out in Singapore Chinese reported a significant correlation between increased consumption of cruciferous vegetables, rich in indole-3-carbinol, and decreased urinary levels of metabolites of a tobacco-specific lung carcinogen [58].

Some phytochemicals have anti-inflammatory properties. Although an inflammatory response is an important part of a healthy innate immunity, persistent low-grade increased chronic inflammatory activity is associated with age-related diseases such as Alzheimer's disease and atherosclerosis [59,60]. Higher levels of inflammatory markers have also been found to be associated with cancer incidence, more advanced cancers at presentation and an increased risk of cancer-specific mortality [61-63]. Markers of chronic inflammation are higher among individuals who are overweight, sedentary, those with poor diets, type II diabetes and the elderly [64,65]. One reason for this stems from overcompensation of an ailing immune system trying to maintain immunosenescence [65,66]. In these groups, Poor InterLeukin (IL)-2 production leads to a decreased cytotoxic capacity of NK and T lymphocytes on a 'per cell' basis. To compensate for this, higher levels of inflammatory biomarkers such as C reactive protein, Tumour Necrosis Factor (TNF), IL-6, cytokine antagonists and acute phase proteins are produced which increase concentrations of NK cells and T cells and these transcription factors regulate more than 150 genes involved in mechanisms of cell survival, inflammation, and cancer development [62-65]. Numerous phytochemicals have been shown to inhibit NF- κ B signalling *in vitro*, particularly the green tea polyphenol Epigallocatechin-3-Gallate (EGCG), quercetin, curcumin, caffeic acid, and caffeic acid phenethyl ester [67-69]. Other anti-inflammatory mechanism of phytochemicals involve the prostaglandin and cox-2 pathways. Chronically increased overproduction of prostaglandins, generated via COX-2, has been implicated in cancer progression, apoptosis, invasion, angiogenesis and metastases [70-72]. Anti-inflammatory drugs and salicylates found in painkillers and fresh vegetables have been shown to reduce COX-2 activation of prostaglandins which could explain their reported anticancer properties [73,74].

In vitro laboratory studies have also demonstrated that phytochemicals can modulate cellular and signalling events fundamental to the growth, invasion, and metastasis of cancer cells [44]. For example, pomegranate extract, rich in the polyphenolellagic acid, has been shown to directly inhibit cell growth and induce apoptosis in androgen-sensitive and aggressive human prostate cancer cells [75,76]. Pomegranate juice and its phytochemical components have also been reported to inhibit processes underlying cancer metastasis in a study involving breast cancer cell lines. Pomegranate juice inhibited growth of the breast cancer cells, increased cancer cell adhesion, and decreased cancer cell migration, but did not affect normal cells [77]. Furthermore, pomegranate juice was found to inhibit chemo taxis, the process by which breast cancer cells are attracted to a chemokine factor in the bone [77]. Curcumin has been found to slow cancer cell growth through several mechanisms, including blocking the cell cycle, increasing the rate of apoptosis, and preventing the invasion and migration of cancer cells [78-83]. Curcumin has also been found to halt the growth of stem cells that give rise to breast cancer, without causing toxicity to differentiated cells [84]. Curcumin has been shown to modu-

late miRNA expression in cancer, leading to a reduced expression of the anti-apoptotic Bcl-2 protein in breast cancer cells [85], and stabilisation of a tumour suppressor gene in colorectal cancer cell lines [86]. Green tea, rich in EGCG, has been found to impede processes that promote cancer cell proliferation by inhibiting DNA synthesis, cellular de-differentiation, and angiogenesis [87-92]. EGCG has also been shown to block ornithine decarboxylase, an enzyme which signals cells to proliferate faster and bypass apoptosis [93,94]. Resveratrol has demonstrated epigenetic regulatory properties which influence cell proliferation, survival, and apoptosis in prostate cancer by global modulation of gene expression through deacetylation of FOXO transcription factors [95]. Caffeic acid phenethyl ester, besides inhibiting NF- κ B signaling, has also been shown to inhibit cell motility *in vitro* and inhibit metastasis of tumor models *in vivo* [96,97]. Luteolin has been shown in *in vitro* studies to inhibit tumor growth and metastasis, as well as the Epithelial-Mesenchymal Transition (EMT), a basic biological process underlying cancer initiation and development [98,99].

The phytoestrogenic polyphenols have hormonal properties that potentially influence cancers expressing oestrogen or androgen receptors. Most notably, the isoflavones and lignans found in soy products, legumes, and some cruciferous vegetables can weakly bind to the oestrogen receptor without stimulating proliferation of the receptor-bearing cells, thus blocking the binding of more harmful oestrogens, including those produced endogenously, to these receptors [100]. This may be the mechanism that at least partially underlies the results of clinical studies such as the previously mentioned Shanghai Breast Cancer Survival Study, in which women with the highest intake of isoflavone and flavanone-rich foods had the greatest overall survival [35]. In men, phytoestrogenic compounds have been shown to affect 5 α -reductase and lower endogenous testosterone levels [101]. This mechanism partially explains why men who regularly eat soy, particularly non-fermented products such as tofu, have a lower risk of prostate cancer [102].

Polyphenols can also exert indirect influences on cancer development and progression by supporting or affecting other physical and mental functions. For example, a well-conducted RCT of 56 individuals with major depressive disorder reported that regular intake of curcumin (500 mg twice daily) was significantly more effective than placebo in improving depression-related symptoms after 4 weeks of treatment [103]. This result is important as depression after cancer treatments has been linked to reduced overall survival [104,105]. Increased dietary polyphenol intake has also been associated with improvements in fatigue [106], urinary infections [107], and arthralgia [108], all of which are adverse effects that often reduce patients' motivation and ability to be physically active after cancer treatments. Polyphenols thus not only exert beneficial effects in directly reducing these adverse effects, but also improve patients' ability to exercise more and reap the benefits of regular physical activity, such as reduced cancer relapse or recurrence rates and better quality of life [109,110].

An increasing body of evidence is demonstrating important advantages of dietary polyphenols for preventing and mitigating the adverse consequences of T2DM, which include cardiovascular disease and cancer [111,113]. A large prospective study of 1,111 T2DM case-control pairs selected from the Nurses' Health Study (NHS) and the Nurses' Health Study (NHS) II investigated the urinary excretion of eight polyphenol metabolites, and found that high intake of flavanones and flavonols, as well as the phenolic acid caffeic acid, was linked to a lower incidence of T2DM [114]. A study of 12,611 incident cases of T2DM across the NHS, NHS II, and Health Professionals Follow-Up Study found that a higher consumption of anthocyanins and anthocyanin-rich fruit was associated with a lower risk of T2DM [113]. Furthermore, two clinical studies have reported that the consumption of at least one apple a day, a dietary source rich in flavonoids, was associated with a lower risk of developing [111,113]. Finally, one prospective study has reported that the intake of polyphenols, especially the large polymeric type of condensed tannins found in legumes, was negatively correlated with the glycaemic index in both normal and diabetic participants, with the polyphenols appearing to be at least partly responsible for the reduced glycaemic response to simultaneously ingested carbohydrate foods [115].

The anti-diabetic effects of polyphenols may in part be related to the effects of the pulp and fibre often present in polyphenol-rich foods on slowing gastric emptying [112-114], [116-118]. In addition, one laboratory study reported that glucose transport in gut cells was directly inhibited by flavonoid glycosides and non-glycosylated polyphenols such as EGCG [119]. Other *in vitro* and animal studies have reported that polyphenols may exert their anti-diabetic effects through mechanisms including inhibition of the production of α -amylase and α -glucosidase, reduction of hepatic glucose output, stimulation of insulin secretion and enhancement of insulin-dependent glucose uptake, and activation of 5' Adenosine Mono Phosphate-Activated Protein Kinase (AMPK) [120].

Type 2 diabetic patients have higher serum insulin levels than non-diabetics, as the pancreas produces more insulin to try to overcome the cellular insulin resistance that characterises T2DM. Hyper insulin is an independent risk factor for cancer development, related to increased insulin receptor stimulation on cancer cells [121]. In addition, hyper glycaemia-related oxidative stress and low-grade chronic inflammation, both associated with diabetes, promote malignant transformation [122,123]. It is not surprising, therefore, that several studies, including a large cohort study involving over one million people in Australia, have established significant links between T2DM and cancer incidence or mortality, including cancers of the colon, pancreas, liver, uterus, kidney, thyroid, gallbladder, and leukaemia's [124,125]. Likewise, in the UK, a study of 62,809 patients with diabetes found them to have higher risks of colon and pancreatic cancer compared to a similar population without diabetes, especially if the diabetic patients were also obese [126]. Based on these data and findings, the American Dia-

abetes Association and the American Cancer Society have issued a consensus report stating that T2DMconfers a two-fold higher risk for cancers of the liver, pancreas, and endometrium, and a 1.5-fold higher risk for cancers of the colon and rectum, breast, and bladder [116].

Benefits and Risks of Increase Dietary Phytochemicals?

A qualified nutritionist or dietitian can advise on how to add more phytochemicals to every meal within a sustainable diet plan, tailored to the individual's needs and tastes, using herbs, spices, teas, vegetables, and fruits. In addition, numerous cooking tips and recipes are now readily available online from reliable sources, such as the Penny Brohn UK website (www.pennybrohn.org.uk/), a charity supporting those affected by cancer in living well, and the Cancernet blog, which provides regular meal options, including the ingredients involved, the rationale for their health benefits, and videos showing how they are prepared and cooked [127].

There are several methods for increasing dietary phytochemical intake. Juicing and smoothies in moderation are helpful, but consumption of the whole fruit or vegetable is preferable, as methods which remove the bulk will increase the glycaemic index and free sugar content. Concentrating phytochemical-rich whole foods into a capsule or pill is a convenient way to supplement individuals with poor diets, or to further enhance the nutritional benefits in those whose diets are already adequate. It is certainly easier to conduct prospective interventional studies with supplements, as the quantity and quality of specific substances can be controlled more precisely. This allows studies to allocate participants to arms involving increased intake of phytochemicals above the dietary average in order to test the hypothesis that phytochemical-rich foods have anticancer effects, and that increasing their intake may thus enhance their benefits. Many People Living With And Beyond Cancer (PLWBC) are certainly attracted to the potential health benefits of food supplements, as over 60% report regular intake [5,6].

Whole food supplements must be segregated from supplements which contain extracted minerals and vitamins, as the overall evidence for the beneficial effects of the latter for individuals with relatively normal nutritional status is not encouraging. Whole food supplements are made from concentrated whole foods, and thus contain the natural combination of nutrients and other components present in the original whole food, in contrast to mineral, vitamin, or other extracted nutrient supplements which contain only those extracted nutrients. However, some specific extracted mineral and vitamin supplements have shown benefits in various clinical studies. For example, a recent meta-analysis reported that women who took vitamin C supplements or increased their dietary intake of vitamin C by >100 mg/day after their breast cancer diagnoses had significantly reduced risks of both breast cancer-specific and total mortality [128]. An RCT conducted in France studying a daily capsule supplement of a combination of ascorbic acid (120

mg), vitamin E (30 mg), beta-carotene (6 mg), selenium (100 µg), and zinc (20 mg) found no significant reduction in all-cause mortality or total cancer incidence compared to placebo at 7.5 years of follow-up. However, sex-stratified analysis revealed significant reductions in these clinical endpoints in men, but not in women, and further subgroup analyses in men found a reduction in the risk of prostate cancer with supplementation [129,130]. In another interventional trial, four different combinations of daily mineral and vitamin supplements at doses ranging from one to two times the US Recommended Daily Allowances were administered to 29,584 adults in Linxian, China, at a time when its population was known to have widespread micronutrient deficiencies. The study found a reduced risk of gastro esophageal cancer after 5 years of supplementation for the group receiving supplementation with beta-carotene, vitamin E, and selenium, compared to those receiving the other combinations of nutrients [131].

Most other clinical studies of supplements of vitamins, minerals, and extracted nutrients, however, have not shown beneficial effects before or after cancer diagnosis, and some report associations with increased risks of cancer. For example, the Beta-Carotene and Retinol Efficacy Trial (CARET) found that daily supplementation of a combination of beta-carotene (30 mg) and vitamin A (25,000 IU retinyl palmitate) was associated with an increased risk of lung cancer compared to placebo [132]. The Health Professionals Follow-Up Study (HPFS), which followed the lifestyle habits of 51,529 male professionals for more than 15 years, found that men who took very high doses of supplemental zinc (>100mg/day), or took it for long durations (≥ 10 years), were more than twice as likely to develop advanced prostate cancer than men who did not take zinc supplements [133]. A subsequent prospective study followed up the 4,459 men initially diagnosed with prostate cancer in the HPFS, and found that selenium supplementation of ≥ 140 µg/day after diagnosis was associated with a 2.6-fold greater risk of prostate cancer mortality compared with non-users of supplements [134]. The Selenium and Vitamin E Cancer Prevention Trial (SELECT) randomised 43,887 men to one of four groups, selenium supplementation alone (200µg/day), vitamin E supplementation alone (400IU/day of either rac-alpha-tocopheryl acetate, a supplementation containing both, or placebo and demonstrated a significantly increased risk of prostate cancer with vitamin E supplementation compared with the other three groups after at least 7 years of follow-up [135]. The negative effect of beta-carotene supplements seen in the CARET study was also found in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study, where 20 mg/day of beta-carotene for 5-8 years was associated with an increased risk of lung cancer [136]. Interestingly, a subsequent analysis of the results of the ATBC Study showed that men with low pre-supplementation serum levels of beta-carotene had a lower prostate cancer risk following supplementation, while those with high pre-supplementation serum levels of beta-carotene had a higher risk of prostate cancer following supplementation, particularly in smokers [137]. This U-shaped distribution of risk associ-

ated with low and high levels of a specific nutrient this also been observed in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study, where those with folate-deficient diets and those with the highest intake of folate both had a higher risk of pancreatic cancer [138]. These findings from numerous RCTs have prompted organisations such as the National Cancer Institute to issue statements stating that long-term vitamin and mineral supplements should ideally only be taken to correct a known deficiency [139].

Studies which have evaluated the cancer risk-reducing effects of supplementation of extracted individual polyphenols have also not produced encouraging results. For example, findings of the benefits of lycopene or genistein taken alone for reducing prostate cancer risk in earlier reports have not been confirmed or replicated in subsequent studies [23,140-143]. Neither has regular intake of such individual polyphenols been associated with reduction in the risk of breast cancer [15,144]. Of more concern are the results of an RCT from the Memorial Sloan-Kettering Cancer Center, which explored the effects of high-dose genistein supplementation (25.8g soy protein powder twice daily) for 30 days, or until surgery, in women with early-stage breast cancer. The high-dose genistein supplementation was found to induce changes in the expression of 21 genes, leading to a possibly adverse genetic expression profile in breast cancer. Furthermore, the addition of blood serum obtained from women in the supplementation group to laboratory tumor cells caused the tumor cells to proliferate faster and overexpress the tumourigenic growth factor receptor FGFR2 [145]. Based on this evidence, concentrating phytoestrogens into strong supplements is not currently recommended.

More recently, academic attention has turned towards the evaluation of dried and concentrated whole foods which contain an array of polyphenols and other phytochemicals. Reassuringly, no notable study of non-phytoestrogenic whole food supplements thus far has shown any detrimental effects on cancer outcomes, and some studies have demonstrated considerable benefits. For example, a randomised phase II dose-exploring study carried out at Johns Hopkins found that men taking either of two doses of a pomegranate extract supplement (1 g or 3 g) for 18 months experienced significant reduction in progression of PSA levels compared to the baseline PSA progression rate pre-treatment [146]. A phase II trial of a green tea concentrate supplement containing a standardized dose of EGCG (2000 mg per dose), administered twice daily to chronic lymphocytic leukemia patients for up to 6 months, found that the treatment was associated with a sustained and clinically significant decrease in the absolute lymphocyte count in 30% of patients [38]. A small study of men with prostate cancer scheduled for radical prostatectomy reported that daily administration of a green tea concentrate supplement containing 800 mg of EGCG (and a total of 1300mg of tea polyphenols) for several weeks, from initiation of the study until the scheduled prostatectomy, caused a significant reduction in the serum levels of PSA and

several cancer-promoting growth factors compared to pre-study baseline levels [39]. In the large Vitamins and Lifestyle (VITAL) cohort study, intake of grape seed extract supplements was shown to be associated with a significantly reduced total risk of prostate cancer after 6 years of follow-up [143]. Another small crossover RCT found that a dietary supplement containing isoflavone-rich foods, including 62.5 mg of soy and 15 mg of lycopene among other phytochemicals and antioxidants, administered 4 times a day for treatment periods lasting 10 weeks, significantly delayed PSA progression compared to placebo in men with a history of prostate cancer who had received potentially curative therapies [147]. Interestingly, one of the most popular supplements, saw palmetto fruit extract, despite demonstrating beneficial effects in early small studies, has shown no benefits for improving the symptoms of benign prostatic hyperplasia, delaying PSA progression, or reducing prostate cancer risks larger observational or randomised interventional evaluations of its effects [148-151].

To date, the largest RCT analyzing the effects of phytochemical-rich whole food extracts on cancer risk has been the UK National Cancer Research Network Pomi-T Study [152]. This study combined four different dried foods (pomegranate, green tea, broccoli and turmeric) into a single tablet, taken 3 times a day, in order to provide a wide spectrum of synergistically-acting nutrients whilst avoiding over-consumption of any particular phytochemical. The trial involved 200 men with localised prostate cancer, managed with either active surveillance or watchful waiting. The results showed a statistically significant 63% reduction in median PSA progression rate at 6 months of intervention for the group randomised to the supplement compared to placebo. A further analysis of the men's MRI scans demonstrated that presence of disease, cancer size, and growth patterns on the scans correlated with PSA changes, providing support for the conclusion that the supplement was exerting beneficial effects not just on PSA levels, but on the disease, itself [7,152]. Furthermore, the supplement was well-tolerated, and there was no effect on testosterone levels. At the end of the study, significantly more men opted to remain on surveillance and continue with lifestyle and nutritional interventions, such as taking the food supplement, rather than proceed to expensive radiotherapy, surgery, or medical castration options, which can cause unpleasant adverse effects such as depression, hot flushes, weight gain, osteoporosis, and erectile dysfunction [7].

Polyphenols and Chemotherapy

There have been some concerns that polyphenols may interfere with oncology treatments, especially considering their antioxidant properties. The section above has highlighted that antioxidant properties are only one of the many mechanisms of action exerted by polyphenols. Moreover, polyphenols mainly enhance the production and action of antioxidant enzymes, rather than having a direct effect on free radical absorption, unlike other nutrients such as vitamins A and E [4, 46,153]. Most importantly, laboratory studies have reported that polyphenols exert direct anticancer

properties by helping to reduce excessive cell proliferation, de-differentiation, loss of cell adhesion, and metastasis, and supporting apoptosis [20,44,75-81,86,97,154]. It is not surprising, then, that several studies have actually found that polyphenols enhance the cytotoxic effects of chemotherapy, rather than impede it. For example, a two-fold greater anti-cancer efficacy of intravenous curcumin and docetaxol, a chemotherapy drug, compared with docetaxolalone, was reported in a transplanted xenograft mouse model of lung cancer, without an increase in damage to normal tissue [155]. Curcumin has also been found to enhance the effectiveness of cisplatin, another chemotherapy drug, by helping to reduce cell proliferation in a study of laryngeal carcinoma cancer stem cell model [81]. Another *in vitro* study reported that beetroot juice both promoted apoptosis of breast cancer cells after exposure of the cells to the cytotoxic chemotherapy agent doxorubicin, and protected normal cardiomyocytes, or heart muscle cells, from the toxic effects of doxorubicin [156].

These findings from laboratory studies are encouraging, but the true clinical potential of polyphenols and other phytochemicals in cancer can only be tested within large RCTs. Fortunately, there are currently over ten on-going studies registered with the National Institute of Health, US, and a number of studies are also ongoing in the UK. Notably, the Arthro-TRCT (Eudra CT number 2017-000201-20) is investigating whether a supplement made from a blend of polyphenol-rich foods could help to reduce joint pains and fatigue related to cancer treatments, and thus allow patients to achieve greater levels of physical activity.

Emerging evidence suggests some plant extracts may also have a role in preventing cutaneous toxicities of cancer treatments. Distressing nail damage (onycholysis) is common amongst patients receiving chemotherapy, especially taxanes, causing pain, disfigurement secondary infection and interference with activities of daily living [157]. One recent RCT (the UK poly balm study) explored the bioactive properties of a number African herbs including leleshwa, *Gaultheria procumbens*, *Lavandula officinalis*, *Eucalyptus globulus* and *Tarchonanthus camphoratus*. The phenolics and other phytochemical in these herbs have been reported to have moisturizing, anti-inflammatory, anti-microbial and anti-oxidant properties [158,159]. The participants on chemotherapy randomized to the investigational balm had little of no nail damage or discomfort compared to over 50% in the placebo group recorded with four different measures of toxicity and this difference was highly statistically significant [160]. It was correctly hypothesized, by the researchers, that the oils in the poly balm were sufficiently absorbed into the nail bed to prevent cracking and splitting, act as a local antidote to the chemotherapy, protecting the proliferating stem cells. In addition, their anti-microbial properties helped prevent secondary infection so overall keep the nail healthy and intact. The success of this trial opens up possibilities for topical preventative interventions for other skin conditions such as hand foot syndrome, hair loss and even within mouth washes.

Conclusion

There is increasingly convincing evidence to show that plant phytochemicals, particularly polyphenols, have significant health benefits for humans. Regular phytochemical intake is linked to a reduce risk of developing cancer and benefit patients living with and beyond cancer diagnosis and treatment. "Living Well" programmes are being introduced in the UK, largely driven by the National Cancer Survivorship Initiative and guidelines from influential organisations, and are beginning to highlight the importance of a regular intake of colourful variety of vegetables, fruits, legumes, nuts, herbs and spices to harness the beneficial effects of the numerous phytochemicals available through our food alongside other lifestyle factors. Going step further and concentrating phytochemical-rich foods into nutritional supplements or balms provides an opportunity to boost their beneficial effects. Although some studies of concentrated minerals, vitamins, and phytoestrogenic supplements have reported detrimental effects, there have been no RCTs reporting significant detrimental effects for whole, non-phytoestrogenic food supplements. Some RCT's have reported significant advantages for these types of supplements in slowing cancer progression and preventing side effects of chemotherapy. Despite these potential benefits and reports that over 60% of cancer survivors take nutritional supplements, many oncologists are reluctant to discuss the pros and cons of taking such supplements with their patients. This reluctance is due in part to the lack of large, well-conducted RCTs exploring phytochemical-rich interventions, with a significant proportion of the evidence for the benefits of phytochemical supplementation arising from observational studies, which makes it difficult to assess causality [96,161]. Hopefully this trend will change, particularly following the success of the Pomi-T⁷, and polybalm studies [160] together with forthcoming evidence from interventional studies being performed around the world.

Conflict of interest

Professor Thomas has received speaker's fees from Helsinn Integrative Healthcare, Astra Zeneca and Novartis pharmaceuticals as well as travel grants from Bayer Pharmaceuticals. The other authors declare that they have no relevant conflicts of interest.

References

1. Block G, Patterson B, Subar A (1992) Fruit vegetables and cancer prevention a review of the epidemiological evidence. *Int J Cancer* 18: 1-29.
2. WCRF/AICR (World Cancer Research Fund/American Institute for Cancer Research) (2007) *Food, Nutrition, Physical Activity, and the Prevention of Cancer a Global Perspective*. AICR Washington DC.
3. Key TJ (2011) Fruit and vegetables and cancer risk. *Br J Cancer* 104: 6-11.
4. Scalbert A, Johnson IT, Saltmarsh M (2005) Polyphenols antioxidants and beyond. *Am J Clin Nutr* 81: 215S-217S.

5. Uzzo RG, Brown JG, Horwitz EM, Hanlon A, Mazzoni S, et al. (2004) Prevalence and patterns of self-initiated nutritional supplementation in men at high risk of prostate cancer. *BJU International* 93: 955-960.
6. Bauer CM, Johnson EK, Beebe-Dimmer JL, Beebe-Dimmer JL, Cooney KA (2012) Prevalence and correlates of vitamin and supplement usage among men with a family history of prostate cancer. *Integr Cancer Ther* 11: 83-89.
7. Thomas R, Williams M, Sharma H, Chaudry A, Bellamy P (2014) A double-blind placebo-controlled randomised trial evaluating the effect of a polyphenol-rich whole food supplement on PSA progression in men with prostate cancer the UK National Cancer Research Network (NCRN) Pomi-T study. *Prostate Cancer Prostatic Dis* 17: 180-186.
8. Higdon J and Drake VJ (2012) An Evidence-Based Approach to Phytochemicals and Other Dietary Factors, 2ndedn. Thieme Medical Publishers Stuttgart.
9. Martin C, Zhang Y, Tonelli C, Petroni K (2013) Plants, diet and health. *Annu Rev Plant Biol* 64: 19-46.
10. Lee SJ, Wong M (2014) Nano- and microencapsulation of phytochemicals. In Nano- and Microencapsulation for Foods (ed Kwak HS), 1stedn. John Wiley and Sons Ltd Chichester.
11. AICR (American Institute for Cancer Research) (2017) Phytochemicals the cancer fighters in the foods we eat.
12. Gonzalez CA (2006) The European Prospective Investigation into Cancer and Nutrition (EPIC). *Public Health Nutr* 9: 124-126.
13. Gonzalez CA and Riboli E (2006) Diet and cancer prevention: where we are, where we are going. *Nutr Cancer* 56: 225-231.
14. Bradbury KE, Appleby PN, Key TJ (2014) Fruit, vegetable and fiber intake in relation to cancer risk findings from the European Prospective investigation into Cancer and Nutrition (EPIC). *Am J ClinNutr* 100: 394-398.
15. Hu F, Wang YB, Liang J, Lin C, Li D, et al. (2012) Carotenoids and breast cancer risk a meta-analysis and meta-regression. *Br Breast Cancer Res Treat* 131: 239-253.
16. Tung KH, Wilkens LR, Wu AH, Duffie KM, Hankin JH, et al. (2005) Association of dietary vitamin A carotenoids and other antioxidants with the risk of ovarian cancer. *Cancer Epidemiol Biomarkers Prevent* 14: 669-676.
17. Li C, Ford ES, Zhao G, Balluz LS, Giles WH, et al. (2011) Serum alpha-carotene concentrations and risk of death among US adults The Third National Health and Nutrition Examination Survey Follow-up Study. *Arch Intern Med* 171: 507-515.
18. Banim PJ, Luben R, McTaggart A, Wareham N, Khaw KT, et al. (2012) Dietary antioxidants and the aetiology of pancreatic cancer a cohort study using data from food diaries and biomarkers. *Gut* 62: 1489-1496.
19. Joseph MA, Moysich KB, Freudenheim JL, Shields PG, Bowman ED, et al. (2004) Cruciferous vegetables, genetic polymorphisms and prostate cancer risk. *Nutr Cancer* 50: 206-213.
20. Park EJ, John M, Pezzuto JM (2015) The pharmacology of resveratrol in animals and humans. *Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease* 1852: 1071-1113.
21. Yan L, Spitznagel EL (2009) Soy consumption and prostate cancer risk in men a revisit of a meta-analysis. *Am J ClinNutr* 89: 1155-1163.
22. van Die MD, Bone KM, Williams SG, Pirotta MV (2014) Soy and soy isoflavones in prostate cancer: a systematic review and meta-analysis of randomized controlled trials. *BJU International* 113: 119-130.
23. Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC (2002) A prospective study of tomato products lycopene and prostate cancer risk. *J Natl Cancer Inst* 94: 391-398.
24. Knekt P, Jarvinen R, Seppanen R, Hellövaara M, Teppo L, et al. (1997) Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. *Am J Epidemiol* 146: 223-230.
25. Le Marchand L, Murphy SP, Hankin JH, Wilkens LR, Kolonel LN (2000) Intake of flavonoids and lung cancer. *J Natl Cancer Inst* 92: 154-160.
26. Rodríguez-Ramiro D, Ramos S, López-Oliva E, Agis-Torres A, Gómez-Juáristi M, et al. (2011) Cocoa-rich diet prevents azoxymethane-induced colonic preneoplastic lesions in rats by restraining oxidative stress, cell proliferation and inducing apoptosis. *Mol Nutr Food Res* 55: 1895-1899.
27. Wu LL, Chiou CC, Chang PY, Wu JT (2004) Urinary 8-OHdG a marker of oxidative stress to DNA and a risk factor for cancer atherosclerosis and diabetics. *Clinica Chimica Acta* 339: 1-9.
28. Sun CL, Yuan JM, Koh WP, Lee HP, Yu MC (2007) Green tea and black tea consumption in relation to colorectal cancer risk the Singapore Chinese Health Study. *Carcinogenesis* 28: 2143-2148.
29. Song F, Qureshi A, Han J (2012) Increased caffeine intake is associated with reduced risk of basal cell carcinoma of the skin. *Cancer Res* 72: 3282-3289.
30. Loftfield E, Freedman ND, Graubard BI, Hollenbeck AR, Shebl FM, et al. (2015) Coffee drinking and cutaneous melanoma risk in the NIH-AARP Diet and Health Study. *J Natl Cancer Inst* 107: 1-9.
31. Pierce JP, Natarajan L, Caan BJ, Parker BA, Greenberg ER, et al. (2007) Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer the Women's Healthy Eating and Living (WHEL) randomized trial. *JAMA* 298: 289-298.
32. Pierce JP, Stefanick ML, Flatt SW, Natarajan L, Sternfeld B, et al. (2007) Greater survival after breast cancer in physically active women with high vegetable-fruit intake regardless of obesity. *J Clin Oncol* 25: 2345-2351.
33. Buck K, Vrieling A, Zaineddin AK, Becker S, Hüsing A, et al. (2011) Serum enterolactone and prognosis of post-menopausal breast cancer. *J Clin Oncol* 29: 3730-3738.
34. Zhu Y, Wu H, Wang PP, Savas S, Woodrow S, et al. (2013) Dietary patterns and colorectal cancer recurrence and survival a cohort study. *BMJ Open* 3: e002270.
35. Boyapati SM, Shu XO, Ruan ZX (2005) Soy food intake and breast cancer survival a follow up of the Shanghai Breast Cancer Study. *Breast Cancer Res Treat* 92: 11-17.
36. Shu XO, Zheng Y, Cai H, Gu K, Chen Z, et al. (2009) Soy food intake and breast cancer survival. *JAMA* 302: 2437-2443.
37. Ogunleye AA, Xue F, Michels KB (2010) Green tea and breast cancer risk or recurrence a meta-analysis. *Breast Cancer Res Treat* 119: 477-484.
38. Shanafelt TD, Call TG, Zent CS, Leis JF, LaPlant B, et al. (2013) Phase 2 trial of daily oral polyphenon E in patients with asymptomatic Rai stage 0-II chronic lymphocytic leukemia (CLL). *Cancer* 119: 363-370.

39. McLarty J, Bigelow RL, Smith M, Elmajian D, Ankem M, et al. (2009) Tea polyphenols decrease serum levels of prostate-specific antigen, hepatocyte growth factor and vascular endothelial growth factor in prostate cancer patients and inhibit production of hepatocyte growth factor and vascular endothelial growth factor *in vitro*. *Cancer Prev Res* 2: 673-682.

40. Ornish D, Weidner G, Fair WR, Marlin R, Pettengill EB, et al. (2005) Intensive lifestyle changes may affect the progression of prostate cancer. *J Urol* 174: 1065-1069.

41. Pantuck AJ, Leppert JT, Zomorodian N, Aronson W, Hong J, et al. (2006) Phase II study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer. *Clin. Cancer Res* 12: 4018-4026.

42. Heinen MM, Hughes MC, Ibiebele TI, Marks GC, Green AC, et al. (2007) Intake of antioxidant nutrients and the risk of skin cancer. *Eur J Cancer* 43: 2707-2716.

43. Swann R, Perkins KA, Velentzis LS, Ciria C, Dutton SJ, et al. (2013) The DietCompLf study A prospective cohort study of breast cancer survival and phytoestrogen consumption. *Maturitas* 75: 232-240.

44. Johnson IT (2007) Phytochemicals and cancer. *Proc Nutr Soc* 66: 207-215.

45. Eggler AL, Savinov SN (2013) Chemical and biological mechanisms of phytochemical activation of Nrf2 and importance in disease prevention. *Recent Adv Phytochem* 43: 121-155.

46. Reuland DJ, Khademi S, Castle CJ, Irwin D, McCord JM, et al. (2013) Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stress. *Free Radic Biol Med* 56: 102-111.

47. Gasper AV, Al-Janobi A, Smith JA, Bacon JR, Fortun P, et al. (2005) Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. *Am J Clin Nutr* 82: 1283-1291.

48. Sood S, Choudhary S, Wang HC (2013) Induction of human breast cell carcinogenesis by triclocarban and intervention by curcumin. *Biochem Biophys Res Commun* 438: 600-606.

49. Morse MA, LaGreca SD, Amin SG, Chung FL (1990) Effects of indole-3-carbinol on lung tumorigenesis and DNA methylation induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butane (NNK) and on the metabolism and disposition of NNK in A/J mice. *Cancer Res* 50: 2613-2617.

50. Kamaraj S, Vinodhkumar R, Anandakumar P, Jagan S, Ramakrishnan G, et al. (2007) The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo(a)pyrene. *Biol Pharm Bull* 30: 2268-2273.

51. Seifi AM, Ibrahim SS, Elmaghraby TK, Hafez EE (2009) Preventive effect of the flavonoid, quercetin, on hepatic cancer in rats via oxidant/antioxidant activity molecular and histological evidences. *J Exp Clin Cancer Res* 28: 80.

52. Reddy MK, Alexander-Lindo RL, Nair MG (2005) Relative inhibition of lipid peroxidation cyclooxygenase enzymes and human tumor cell proliferation by natural food colors. *J Agric Food Chem* 53: 9268-9273.

53. Clifford T, Howatson G, West DJ, Stevenson EJ (2015) The potential benefits of red beetroot supplementation in health and disease. *Nutrients* 7: 2801-2822.

54. Vulić JJ, Ćebović TN, Čanadanović-Brunet, et al. (2014) In vivo and *in vitro* antioxidant effects of beetroot pomace extracts. *J Funct Foods* 6: 168-175.

55. Kim HY, Kim OH, Sung MK (2003) Effects of phenol depleted and phenol-rich diets on blood markers of oxidative stress, and urinary excretion of quercetin and kaempferol in healthy volunteers. *J Am Coll Nutr* 22: 217-223.

56. Boyle SP, Dobson VL, Duthie SJ, Kyle JA, Collins AR (2000) Absorption and DNA protective effects of flavonoid glycosides from an onion meal. *Eur J Clin Nutr* 39: 213-223.

57. Wu LL, Chiou CC, Chang PY, Wu JT (2004) Urinary 8-OHdG a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. *Clinica Chimica Acta* 339: 1-9.

58. Hecht SS, Carmella SG, Kenney PM, Low SH, Arakawa K, et al. (2004) Effects of cruciferous vegetable consumption on urinary metabolites of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butane in Singapore Chinese. *Cancer Epidemiol Biomarkers Prev* 13: 997-1004.

59. Lautenbach A, Breitmeier D, Kuhlmann S, Nave H (2011) Human obesity reduces the number of hepatic leptin receptor (Ob-R) expressing NK-cells. *Endocr Res* 36: 158-166.

60. Khansari N, Shakiba Y, Mahmoudi M (2009) Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. *Recent Pat Inflamm Allergy Drug Discov* 3: 73-80.

61. Wolpin BM, Bao Y, Qian ZR (2013) Hyperglycemia, insulin resistance, impaired pancreatic β -Cell function, and risk of pancreatic cancer. *Natl Cancer Inst* 105: 1027-1035.

62. Stark JR, Li H, Kraft P, Kurth T, Giovannucci EL, et al. (2009) Circulating pre-diagnostic interleukin 6 and C-reactive protein and prostate cancer incidence and mortality. *Int J Cancer* 124: 2683-2689.

63. Ismail HA, Lessard L, Mes-Masson AM, Saad F (2004) Expression of NF- κ B in prostate cancer lymph node metastases. *Prostate* 58: 308-313.

64. Hotamisligil GS (2006) Inflammation and metabolic disorders. *Nature* 444: 860-867.

65. Franceschi C, Monti D, Sansoni P, Cossarizza A (1995) The immunobiology of exceptional individuals the lesson of centenarians. *Immunol Today* 16: 12-16.

66. Rukavina D, Laskarin G, Rubesa G, Strbo N, Bedenick I, et al. (1998) Age-related decline of perforin expression in human cytotoxic T lymphocytes and natural killer cells. *Blood* 92: 2410-2420.

67. Salminen A, Kauppinen A, Kaarniranta K (2012) Phytochemicals suppress nuclear factor- κ B signaling impact on health span and the aging process. *Curr Opin Clin Nutr Metab Care* 15: 23-28.

68. Carlsen MH, Halvorsen BL, Holte K, Bøhn SK, Dragland S, et al. (2010) The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. *J Nutr* 9: 3.

69. Reuland DJ, Khademi S, Castle CJ, Irwin DC, McCord JM, et al. (2013) Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stress. *Free Radic Biol Med* 56: 102-111.

70. Madaan S, Abel PD, Chaudhary KS, Hewitt R, Stott MA, et al. (2000) Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer implications for prevention and treatment. *BJU Int* 86: 736-741.

71. Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, et al. (2000) The cyclooxygenases-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. *J Biol Chem* 275: 11397-11403.
72. Liu XH, Yao S, Kirschenbaum A, Kirschenbaum A, Levine AC (1998) NS398 a selective cyclooxygenase-2 inhibitor induces apoptosis and down-regulates bcl-2 expression in LNCaP cells. *Cancer Res* 58: 4245-4249.
73. Burr A (2011) Effect of phytochemicals on growth and prostaglandin E2 (PGE2) synthesis in PC-3 cells, a prostate cancer cell line.
74. Beg S, Swain S, Hasan H, Barkat MA, Hussain MS (2011) Systematic review of herbals as potential anti-inflammatory agents Recent advances current clinical status and future perspectives. *Pharmacogn Rev* 5: 120-137.
75. Malik A, Afzaq F, Sarfaraz S, Adhami VM, Syed DN, et al. (2005) Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer. *Proc Natl Acad Sci* 102: 14813-14818.
76. Rettig MB, Heber D, An J, Seeram NP, Rao JY, et al. (2008) Pomegranate extract inhibits androgen-independent prostate cancer growth through a nuclear factor-kappa B-dependent mechanism. *Mol Cancer Biol* 7: 2662-2671.
77. Rocha A, Wang L, Penichet M, Martins-Green M (2012) Pomegranate juice and specific components inhibit cell and molecular processes critical for metastasis of breast cancer. *Breast Cancer Res Treat* 136: 647-658.
78. Dorai T, Gehani N, Katz A (2000) Therapeutic potential of curcumin in human prostate cancer II Curcumin inhibits tyrosine kinase activity of epidermal growth factor receptor and depletes the protein. *Mol Urol* 4: 1-6.
79. Somasundaram S, Edmund NA, Moore DT, Small GW, Shi YY, et al. (2002) Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. *Cancer Res.* 62: 3868-3875.
80. Iqbal M, Sharma SD, Okazaki Y, Fujisawa M, Okada S. (2003) Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice possible role in protection against chemical carcinogenesis and toxicity. *Pharmacol Toxicol* 92: 33-38.
81. Zhang HN, Yu CX, Zhang PJ, Chen WW, Jiang AL, et al. (2007) Curcumin downregulates homeobox gene NKX3.1 in prostate cancer cell LNCaP. *Acta Pharmacologica Sinica* 28: 423-430.
82. Chiu TL, Su CC (2009) Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and decreasing NF-kappaBp65 expression in breast cancer MDA-MB-231 cells. *Int J Mol Med* 23: 469-75.
83. Park W, Ruhul Amin ARM, Chen ZG, Shin DM. (2013) New perspectives of curcumin in cancer prevention. *Cancer Prev Res* 6: 387-400.
84. Kakarala M, Brenner DE, Korkaya H, Cheng C, Tazi K, et al. (2010) Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. *Breast Cancer Res Treat* 122: 777-785.
85. Yang J, Cao Y, Sun J, Zhang Y (2010) Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. *Medical Oncology* 27: 1114-1118.
86. Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumar-swamy R, et al. (2011) Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. *Biosci Rep* 31: 185-197.
87. Yang CS, Maliakal P, Meng X (2002) Inhibition of carcinogenesis by tea. *Annu Rev Pharmacol Toxicol* 42: 25-54.
88. Albrecht DS, Clubbs EA, Ferruzzi M, Bomser JA (2008) Epigallocatechin-3-gallate (EGCG) inhibits PC-3 prostate cancer cell proliferation via MEK-independent ERK1/2 activation. *Chem Biol Interact* 171: 89-95.
89. Shanafelt TD, Call TG, Zent CS, Plant BL, Bowen DA, et al. (2009) Phase I trial of daily oral polyphenon E in patients with asymptomatic Rai stage 0 to II chronic lymphatic leukemia. *J Clin Oncol* 27: 3808-3814.
90. Braicu C, Gherman CD, Irimie A, Berindan-Neagoe I (2013) Epigallocatechin-3-gallate (EGCG) inhibits cell proliferation and migratory behaviour of triple negative breast cancer cells. *J Nanosci Nanotechnol* 13: 632-637.
91. Min KJ, Kwon TK (2014) Anti-cancer effects and molecular mechanisms of epigallocatechin-3-gallate. *Natl J Integr Res Med* 3: 16-24.
92. Yang C, Du W, Yang D (2016) Inhibition of green tea polyphenol EGCG((-)-epigallocatechin-3-gallate) on the proliferation of gastric cancer cells by suppressing canonical wnt/beta-catenin signalling pathway. *Int J Food Sci Nutr* 67: 818-827.
93. Bachrach U, Wang YC (2002) Cancer therapy and prevention by green tea role of ornithine decarboxylase. *Amino Acids* 22: 1-13.
94. Wang YC, Bachrach U (2002) The specific anti-cancer activity of green tea epigallocatechin-3-gallate (EGCG). *Amino Acids* 22: 131-143.
95. Park EJ, John M, Pezzuto JM (2015) The pharmacology of resveratrol in animals and humans. *Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease* 1852: 1071-1113.
96. Liao HF, Chen YY, Liu JJ, Hsu ML, Shieh HJ, et al. (2003) Inhibitory effect of caffeic acid phenethyl ester on angiogenesis tumor invasion and metastasis. *J Agric Food Chem* 51: 7907-7912.
97. Butterfield DA, Keller J (2012) Antioxidants and antioxidant treatment in disease. *Biochimica et Biophysica Acta* 1822: 615.
98. Lin YS, Tsai PH, Kandaswami CC, Cheng CH, Ke FC, et al. (2011) Effects of dietary flavonoids luteolin and quercetin on the reversal of epithelial-mesenchymal transition in A431 epidermal cancer cells. *Cancer Sci* 102: 1829-1839.
99. Ruan JS, Liu YP, Zhang L, Yan LG, Fan FT, et al. (2012) Luteolin reduces the invasive potential of malignant melanoma cells by targeting beta3 integrin and the epithelial-mesenchymal transition. *Acta Pharmacologica Sinica* 33: 1325-1331.
100. Oseni T, Patel R, Pyle J, Jordan VC (2008) Selective estrogen receptor modulators and phytoestrogens. *Planta Medica* 74: 1656-1665.
101. Evans BAJ, Griffiths K, Morton MS (1995) Inhibition of 5alpha-reductase in genital skin fibroblasts and prostate tissue by dietary lignans and isoflavonoids. *J Endocrinol* 147: 295-302.
102. Hwang YW, Kim SY, Jee SH, Kim YN, Nam CM (2009) Soy food consumption and risk of prostate cancer a meta-analysis of observational studies. *J Nutr Cancer* 61: 598-606.
103. Lopresti AL, Maes M, Maker GL, Hood SD, Drummond PD (2014) Curcumin for the treatment of major depression a randomised, double-blind placebo controlled study. *J Affect Disord* 167: 368-375.
104. Kadan-Lottick NS, Vanderwerker LC, Block SD, Zhang B, Prigerson HG, et al. (2005) Psychiatric disorders and mental health service use in patients with advanced cancer a report from the coping with cancer study. *Cancer* 104: 2872-2881.

105. Prasad SM, Eggener SE, Lipsitz SR, Irwin MR, Ganz PA, et al. (2014) Effect of depression on diagnosis treatment and mortality of men with clinically localized prostate cancer. *J Clin Oncol* 32: 2471-2478.

106. Barton DL, Liu H, Dakhil SR, Linquist B, Sloan JA, et al. (2013) Wisconsin Ginseng (*Panax quinquefolius*) to improve cancer-related fatigue a randomized double-blind trial. *J Natl Cancer Inst* 105: 1230-1238.

107. Bonetta A, Di Pierro F (2012) Enteric-coated highly standardized cranberry extract reduces risk of UTIs and urinary symptoms during radiotherapy for prostate carcinoma. *Cancer Manag Res* 4: 281-286.

108. Wang Y, Hodge AM, Wluka AE, English DR, Giles GG, et al. (2007) Effect of antioxidants on knee cartilage and bone in healthy, middle-aged subjects a cross-sectional study. *Arthritis Res Ther* 9: 66.

109. Davies NJ, Batehup L and Thomas R (2011) The role of diet and physical activity in breast, colorectal, and prostate cancer survivorship a review of the literature. *Br J Cancer* 52-73.

110. Thomas RJ, Kenfield SA, Jimenez A (2016) Exercise-induced biochemical changes and their potential influence on cancer a scientific review. *Br J Sports Med* 51: 1-8.

111. Knekter P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, et al. (2002) Flavonoid intake and risk of chronic diseases. *Am J Clin Nutr* 76: 560-568.

112. Song Y, Manson J, Buring J, Sesso HD, Liu S (2005) Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women a prospective study and cross-sectional analysis. *J Am Coll Nutr* 24: 376-384.

113. Wedick NM, Pan A, Cassidy A, Rimm EB, Sampson L, et al. (2012) Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. *Am J Clin Nutr* 95: 925-933.

114. Sun Q, Wedick NM, Tworoger SS, Pan A, Townsend MK, et al. (2015) Urinary excretion of select dietary polyphenol metabolites is associated with a lower risk of type 2 diabetes in proximate but not remote follow-up in a prospective investigation in 2 cohorts of US women. *J Nutr* 145: 1280-1288.

115. Thompson LU, Yoon JH, Jenkins DJ, Wolever TM, Jenkins AL (1984) Relationship between polyphenol intake and blood glucose response of normal and diabetic individuals. *Am J Clin Nutr* 39: 745-751.

116. Giovannucci E, Harlan DM, Archer MC, Bergenfelz RM, Gapstur SM, et al. (2010) Diabetes and cancer a consensus report. *Diabetes Care* 33: 1674-1685.

117. Turco I, Bacchetti T, Bender C, Oboh G, Zimmermann B, et al. (2016) Polyphenol content and glycemic load of pasta enriched with Faba bean flour. *FFHD* 6: 291-305.

118. Bi X, Lim J, Christiani JH (2017) Spices in the management of diabetes mellitus. *Food Chem*. 217: 281-293.

119. Johnston K, Sharp P, Clifford M, Morgan L (2005) Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. *FEBS Letters* 579: 1653-1657.

120. Kim Y, Keogh JB, Clifton PM (2016) Polyphenols and glycemic control. *Nutrients*. doi:10.3390/nu8010017.

121. Nicolucci A (2010) Epidemiological aspects of neoplasms in diabetes. *Acta Diabetologica* 47: 87-95.

122. Lorenzi M, Montisano DF, Toledo S, Barrieux A, (1986) High glucose induces DNA damage in cultured human endothelial cells. *J Clin Invest* 77: 322-325.

123. Richardson LC, Pollack LA (2005) Therapy insight: influence of type 2 diabetes on the development and outcomes of cancer. *Nat Rev Clin Oncol* 2: 48-53.

124. Vigneri P, Frasca F, Sciacca L, ciacca L, Pandini G, Vigneri R (2009) Diabetes and cancer. *Endocr Relat Cancer* 16: 1103-1123.

125. Harding JL, Shaw JE, Peeters A, Davidson S, Magliano DJ, et al. (2016) Age-specific trends from 2000-2011 in all-cause and cause-specific mortality in type 1 and type 2 diabetes a cohort study of more than one million people. *Diabetes Care* 39: 1018-1126.

126. Currie CJ, Poole CD and Gale EA (2009) The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. *Diabetologia* 52: 1766-1777.

127. Cancernet UK (2017) Healthy recipes.

128. Harris HR, Orsini N, Wolk A (2014) Vitamin C and survival among women with breast cancer a meta-analysis. *Eur J Cancer* 50: 1223-1231.

129. Hercberg S, Galan P, Preziosi P, Bertrais S, Mennen L, et al. (2004) The SU.VI.MAX Study a randomized placebo-controlled trial of the health effects of antioxidant vitamins and minerals. *Arch Intern Med* 164: 2335-2342.

130. Meyer F, Galan P, Douville P, Bairati I, Kegle P, et al. (2005) Antioxidant vitamin and mineral supplementation and prostate cancer prevention in the SU.VI.MAX trial. *Int J Cancer* 116: 182-186.

131. Blot WJ, Li JY, Taylor PR, Guo W, Dawsey S, et al. (1993) Nutritional intervention trials in Linxian China supplementation with specific vitamin/mineral combinations cancer incidence and disease specific mortality in the general population. *J Natl Cancer Inst* 85: 1483-1492.

132. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, et al. (1996) Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. *J Natl Cancer Inst* 88: 1550-1559.

133. Leitzmann MF, Stampfer MJ, Wu K, Colditz GA, Willett WC, et al. (2003) Zinc supplement use and risk of prostate cancer. *J Natl Cancer Inst* 95: 1004-1007.

134. Kenfield SA, Van Blarigan EL, DuPre N, Stampfer MJ, L Giovannucci E, et al. (2015) Selenium supplementation and prostate cancer mortality. *J Natl Cancer Inst* 107: 360.

135. Klein EA, Thompson IM, Tangen CM, Crowley JJ, Lucia MS, et al. (2011) Vitamin E and the risk of prostate cancer the Selenium and Vitamin E Cancer Prevention Trial (SELECT). *JAMA* 306: 1549-1556.

136. Albanes D, Heinonen OP, Taylor PR, Virtamo J, Edwards BK, et al. (1996) Alpha-tocopherol and beta-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study effects of base-line characteristics and study compliance. *J Natl Cancer Inst* 88: 1560-1570.

137. Heinonen OP, Albanes D, Virtamo J, Taylor PR, Huttunen JK, et al. (1998) Prostate cancer and supplementation with alpha-tocopherol and beta-carotene incidence and mortality in a controlled trial. *J Natl Cancer Inst* 90: 440-446.

138. Chuang SC, Stolzenberg-Solomon R, Ueland PM, Vollset SE, Midttun Ø, et al. (2011) A U-shaped relationship between plasma folate and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. *Eur J Cancer* 47: 1808-1816.

139. Greenwald P, Milner JA, Anderson DE, McDonald SS (2002) Micronutrients in cancer chemoprevention. *Cancer Metastasis Rev* 21: 217-230.

140. Spentzos D, Mantzoros C, Regan MM, Morrissey ME, Duggan S, et al. (2003) Minimal effect of a low-fat/high soy diet for asymptomatic, hormonally naïve prostate cancer patients. *Clin Cancer Res* 9: 3282-3287.

141. Barber NJ, Zhang X, Zhu G, Pramanik R, Barber JA, et al. (2006) Lycopene inhibits DNA synthesis in primary prostate epithelial cells *in vitro* and its administration is associated with a reduced prostate-specific antigen velocity in a phase II clinical study. *Prostate Cancer Prostatic Dis* 9: 407-413.

142. Clark PE, Hall MC, Borden LS, Miller AA, Hu JJ, et al. (2006) Phase I-II prospective dose-escalating trial of lycopene in patients with biochemical relapse of prostate cancer after definitive local therapy. *Urology* 67: 1257-1261.

143. Brasky TM, Kristal AR, Navarro SL, Lampe JW, Peters U, et al. (2011) Specialty supplements and prostate cancer risk in the VITamins and Lifestyle (VITAL) cohort. *J Nutr Cancer* 63: 573-582.

144. Arts IC and Hollman PC (2005) Polyphenols and disease risk in epidemiologic studies. *Am J Clin Nutr* 81: 317-325.

145. Shike M, Doane AS, Russo L, Cabal R, Reis-Filho JS, et al. (2014) The effects of soy supplementation on gene expression in breast cancer a randomized placebo-controlled study. *J Natl Cancer Inst* 106: 189.

146. Paller CJ, Ye X, Wozniak PJ, Sieber PR, Greengold RH, et al. (2013) A randomized phase II study of pomegranate extract for men with rising PSA following initial therapy for localized prostate cancer. *Prostate Cancer Prostatic Dis* 16: 50-55.

147. Schröder FH, Roobol MJ, Boevé ER de Mutsert R, Zuidgeest-van Leeuwen SD, et al. (2005) Randomized, double-blind, placebo-controlled crossover study in men with prostate cancer and rising PSA effectiveness of a dietary supplement. *Eur Urol* 48: 922-930.

148. Bent S, Kane C, Shinohara K, Neuhaus J, Esther S, et al. (2006) Saw Palmetto for benign prostatic hyperplasia. *N Engl J Med* 354: 557-566.

149. Bonnar-Pizzorno RM, Littman AJ, Kestin M, White E (2006) Saw palmetto supplement use and prostate cancer risk. *Nutr Cancer* 55: 21-27.

150. Barry MJ, Meleth S, Lee JY, Kreder KJ, Avins AL, et al. (2011) Effect of increasing doses of saw palmetto extract on lower urinary tract symptoms a randomized trial. *JAMA* 306: 1344-1351.

151. Andriole GL, McCullum-Hill C, Sandhu GS, Crawford ED, Barry MJ, et al. (2013) The effect of increasing doses of saw palmetto fruit extract on serum prostate specific antigen analysis of the CAMUS randomized trial. *J Urol* 189: 486-492.

152. Thomas R, Shaikh M, Cauchi M, Yang D (2015) Prostate cancer progression defined by MRI correlates with serum PSA in men undergoing lifestyle and nutritional interventions for low risk disease. *Journal of Lifestyle Diseases and Management* 1: 1-8.

153. Lü JM, Lin PH, Yao Q, Chen C (2010) Chemical and molecular mechanisms of antioxidants experimental approaches and model systems. *J Cell Mol Med* 14: 840-860.

154. Handler N, Jaeger W, Puschacher H, Leisser K, Erker T, et al. (2007) Synthesis of novel curcumin analogues and their evaluation as selective cyclooxygenase-1 (COX-1) inhibitors. *J Chem Pharm Bull* 55: 64-71.

155. Yin H, Guo R, Zheng Y, Hou Z, Dai X, et al. (2012) Synergistic anti-tumor efficiency of docetaxel and curcumin against lung cancer. *Acta Biochimica et Biophysica Sinica* 44: 147-153.

156. Das S, Williams DS, Das A, Kukreja RC (2013) Beetroot juice promotes apoptosis in oncogenic MDA-MB-231 cells while protecting cardiomyocytes under doxorubicin treatment. *JESS* 2: 1-6.

157. Minisini AM, Tosti A, Sobrero AF, Mansutti M, Piraccini BM, et al. (2003) Taxane-induced nail changes. *Ann Oncol* 14: 333-337.

158. Delaquis P, Karen Stanich, Benoit Girard, G Mazza (2002) Antimicrobial activity of essential oils. *Int J Food Microbiol* 74: 101-109.

159. Smith-Palmer A, Stuart J, Fyfe L (1998) Antimicrobial plant essential oils. *Applied Microbiol* 26: 118-122.

160. Thomas R, Berkovitz S, Smith S, fawzi attia, michael cauchi, et al. (2017) A double blind, randomised controlled trial of a polyphenol rich nail balm to prevent chemotherapy-induced onycholysis - The UK PolyBalm Study. *American Society of Clinical Oncology Conference abstracts J Clin Oncol* 35: 10103.

161. Voorrips LE, Goldbohm RA, van Poppel G, Sturmans F, Hermus RJ, et al. (2000) Vegetable and fruit consumption and risks of colon and rectal cancer in a prospective cohort study the Netherlands Cohort Study on Diet and Cancer. *Am J Epidemiol* 152: 1081-1092.