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Introduction

Globally, it is estimated that around 800 million people
could have Chronic Kidney Disease (CKD), whose global
prevalence ranges between 11 to 13% [1]. CKD is characterized
as an irreversible disease with no cure at present. Quite often, the
severity of this condition worsens over time and is also associated
with clinically significant pathologies and comorbidities. Those
patients with a more severe stage of the disease, stage 5 or End-
Stage (ESRD), have been shown to have lower long-term survival
than those who receive adequate treatment for this stage, such as
renal replacement therapy such as dialysis or Kidney Transplant
(KT) [2]. An alternative treatment for chronic renal failure patients
is Kidney Transplantation (KT), especially for those cases where
dialysis fails. Along with KT, during ischemia and reperfusion
periods over the course of transplantation procedures, comes the
induction of OS, which can lead to complications such as primary
miss-function of transplanted graft during the post-transplantation
period or the development and progression of chronic allograft
nephropathy/shortening of the graft life [3].

When long-term results have been compared between chronic
dialysis versus kidney transplantation, the latter is considered the
most effective in patients with ERSD, because it substantially
improves quality of life, long-term survival of patients and offers
an excellent cost-benefit ratio [4]. Despite the potential benefits
that exist with kidney transplantation, there are obstacles that
make proper treatment difficult. Some well documented in the
literature are the cumulative lesions that the transplanted kidney
may have, as well as both immune and non-immune mechanisms
involved in the recipient [5]. All these mechanisms can eventually
lead to chronic interstitial fibrosis together with tubular atrophy.
Rejection of the kidney graft in the recipient has been associated
as a histopathological consequence, which produces functional

repercussion damage to the kidney, finally causing the patient to
restart on dialysis or with a new kidney transplant [6]. The aim
of this article is to present long-term results of kidney transplant
patients in different important pathophysiological situations, such
as inflammation as part of the immune response; and oxidative
stress and its relationship with negative cardiovascular and
malignant effects.

Role of inflammation and oxidative stress in CKD

Inflammation and oxidative stress interplay in a self-
perpetuating vicious circle and drive CKD progression, CVD, and
other numerous complications such as malnutrition, atherosclerosis,
coronary artery calcification, heart failure, anaemia, and mineral
and bone disorders [7].

e Oxidative stress: Can be defined as an imbalance between the
generation of Reactive Oxygen Species (ROS) and nitrogen
(RNS) and the antioxidant capacity of the endogenous
antioxidant system [8]. ROS and RNS can damage important
biomolecules of cell physiology, such as proteins, lipids, and
DNA [9]. ROS are a family of highly reactive species that
are formed either from enzymatic and non-enzymatic sources.
Enzymatic sources include the xanthine oxidase system,
NADPH oxidase system, mitochondrial electron transport
chain and uncoupled Nitric Oxide Synthase (NOS) system
[10]. In turn, RNS include the free radical nitric oxide (NO")
and the nonradical peroxynitrite anion (ONOO-), which both
are synthesized via the Endothelial Nitric Oxide Synthase
(eNOS) [11]. The vast majority of cells produce physiological
amounts of ROS. ROS have been shown to act as intracellular
mediators in complex signaling mechanisms and defense
systems. Some examples are the production of prostaglandins,
mitochondrial respiration and the defense of the organism by
acting as an immune agent by macrophages [12]. However,
and as previously mentioned, the dysregulation of this system
can cause important cellular and pathophysiological changes.
The importance of knowing about OS is that there exists

1

J Urol Ren Dis, an open access journal
ISSN: 2575-7903

Volume 06; Issue 04



Citation: Toro-Pérez JI, Baloian S, Rodrigo R (2021) Pathophysiological Events Linked to Oxidative Stress and Chronic Kidney Disease: Knowledge for a Kidney

Transplant. J Urol Ren Dis 06: 1231. DOI: 10.29011/2575-7903.001231

evidence of an increase in the levels of ROS and RNS during
the development of CKD, which eventually leads to ESRD.
Furthermore, a relationship between inflammation and OS has
been demonstrated, because ROS are capable of enhancing the
inflammatory response and activating inflammatory mediators
independently of the action of immune cells [13]. All this
leads to the kidney being potentially affected by OS, because
this organ is very sensitive to the hypoxic environment. It is
explained because the tubular cells of the thick ascending
branch of the renal medulla have a great capacity to extract
oxygen, which causes them to be extremely sensitive to
sudden changes in the levels of oxygen in the body [14]. In
the kidneys, the major source of ROS generation is due to
the increased function of the mitochondrial respiratory chain,
which are produced mainly by the mitochondrial respiratory
chain. The different isoforms of the enzyme NADPH oxidase
also play an important role. OS is attributed as responsible for
the chronic progression of kidney disease after transplantation,
which is accentuated by renal ischemia, cell death, glomerular
injury, interstitial fibrosis in more advanced stages, and
apoptosis of renal cells. All this leads to an increase in severe
inflammatory processes in the kidney, worsening the condition
[15].

o Inflammation: In the presence of harmful tissue or cellular
damage, a complex biological response is formed to act at the
site of the damage. Inflammation is mainly responsible for
specific immune cells such as macrophages and neutrophils,
which secrete inflammatory mediators called cytokines (IL-6,
TNF-a, IL-1B). On the other hand, non-immune cells, such
as endothelial cells, can secrete prostaglandins that favor the
dilation and subsequent arrival of immune cells at the noxa
site [16]. There are laboratory markers used clinically in
CKD, such as C-reactive protein (CRP), cytokines such as
interleukin-6 (IL-6) and Tumor Necrosis Factor-a (TNF-a),
adipokines, the CD40 ligand, among other. The latter has been
associated as a sensitive biomarker to the progression of CKD
[17]. long-term graft success for kidney transplant recipients
can be determined by a variety of factors such as weight gain
and obesity, which are significant issues and might compromise
and contribute to the development of cardiovascular disease
[18]. In conclusion, our study demonstrated that reduced
nephron mass because of kidney donation is associated with
progressive deterioration of endothelial function along with
decreased GFR, increased serum uric acid levels, and markers
of inflammation. Our findings suggest that kidney donation
might increase the risk of cardiovascular diseases in kidney
donors [19].

Long-term outcomes in KTR

Kidney Transplant Recipients (KTRs), on the other hand,
have a particularly high risk of premature mortality, showing an
overall mortality rate significantly higher than the age-related

control group in the general population [20]. Moreover, a long-
standing pattern that has remained uniform over the last years
shows approximately half of all kidney allograft losses are due
to premature death with a functioning graft [21]. About 10%
of Kidney Transplant Recipients (KTRs) have life-threatening
illnesses that require hospitalization in an Intensive Care Unit
(ICU) [22,23]. Most admissions occur more than 6 months after
the renal transplantation [5,24].

In addition, non-immune complications following kidney
transplantation, such as recurrence of primary renal disease, and
other complications such as cardiovascular disease, infections,
and malignancies also play a critical role in transplantation in
both poor long-term allograft and patient’s survival [25,26].
Cardiovascular disease in kidney transplant recipients is associated
with many traditional risk factors such as age, gender, smoking,
hyperlipidemia, hypertension, obesity, and diabetes [27]. Among
KTR, patients with diabetes-related ESRD had a higher mortality
rate than patients with ESRD due to other causes [28]. The
burden of cardiovascular disease in ESKD improves after kidney
transplantation. However, it continues to be a major cause of
reduced morbimortality and early kidney-transplants dysfunction,
as it is associated with significant morbidity and healthcare costs
[29]. Furthermore, as kidney transplantation aims to restore kidney
function, it does not completely mitigate collateral mechanisms of
disease such as mild chronic inflammation with persistent redox
and mineral imbalances, further studies examining specific clinical
and laboratory findings that have been suggested to be involved
in such pathological pathways may indicate non-traditional risk
factors and reveal new targets for clinical intervention [30,31].
Reperfusion and oxidative injury also occur during kidney
preservation and may correlate with the immediate and long-term
kidney function [32].

OS in CV and malignancy

A variety of cardiovascular diseases have been shown to be
associated, at least partially, with an excess production of Reactive
Oxygen Species (ROS) [33]. The NOX (NADPH Oxidase) family
of NADPH oxidases are transmembrane proteins that transfer a
single electron from NADPH to molecular oxygen, resulting in the
formation of superoxide. Physiological production of ROS usually
occurs as a by-product. However, this is not the case with NOX
enzymes. This is because the production of ROS represents their
main biological function. In fact, NOX-induced ROS release, also
known as oxidative burst, promotes the destruction of bacteria-
infiltrating macrophages and neutrophils [34]. The endothelium
secretes a diversity of molecules: NO and prostacyclin (PGI2)
exhibit vasodilator, antithrombotic and antiproliferative effects;
ET-1 and Angll, vasoconstrictor effects; plasminogen activator
inhibitor-1 (PAI-1)and von Willebrand factor (vWF), prothrombotic
functions; and anticoagulants, such as tissue plasminogen
activator (tPA). Of all the molecules mentioned, NO is considered
to be one of the most crucial in endothelial dysfunction, since low
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concentrations may induce this imbalance [35]. High levels of
ROS directly attack endothelial cells and interfere with the action
of the oxidative systems, reducing the ability of iNOS to produce
NO, leading to a pro-inflammatory environment. Similarly, another
molecule involved in this NO deregulation is the overexpression
of NOX4 in the endothelium. This is because it has been shown to
improve vasodilation and lower blood pressure by producing more
H,0, and reducing NO inactivation [36].

Multiple studies have confirmed a strong relationship
between oxidative stress and the formation or progression of
several human pathologies including cancer [37]. There is
substantial experimental evidence to support the role of ROS
in tumor initiation, promotion and progression [38,39]. During
normal cellular metabolism, ROSs are produced. As its formation
plays a crucial role in normal cell signaling pathways, excessive
ROS levels may lead to genomic and mitochondrial DNA damage,
resulting in DNA alteration, mutation of molecules, and modified
signaling pathways. DNA molecules are sensitive to hydroxyl
radicals’ attacks resulting in damage and modification of purine
and pyrimidine bases [40]. Oxidative stress has been shown to
induce genetic mutations through the formation of oxidative
adducts and/or the inhibition of particular oxidative enzymes which
play a physiological role in DNA restoration. Concerning cancer,
ROS have been shown to influence the expression of important
genes in cancer through modification of second messengers and
transcription factors [41]. Cancer is one of the three leading
causes of death after a kidney transplant. The appearance of
malignant tumors after transplantation is widely recognized. The
effects of viral infection, induction maintenance therapy and
immunosuppression have been suggested as important risk factors
for post-transplant malignancies. The increased risk of cancer
may be due to immunosuppressive-induced viral reactivation
or reduced immune surveillance leading to faster tumor growth
[42,43]. Wang et al. [44] found that renal transplant recipients had
a higher risk of all cancers, including colon cancer, hepatocellular
carcinoma, gastric cancer, pancreatic cancer, lung cancer, urinary
bladder cancer, thyroid cancer, renal cell cancer, melanoma and
non-melanoma skin cancer, Hodgkin’s lymphoma and non-
Hodgkin lymphoma, lip cancer, breast cancer and ovarian cancer.

Inflammation and OS in long-term outcomes of KTR

Summarizing what has been stated so far, successful KT
leads to improved graft function and decrease in OS. Even if KTR
have a stable graft, they still suffer from OS, which OS levels, in
comparison to hemodialysis patients, are usually lower, yet still
higher than those present in the general population [45].

Antioxidant Therapy

e Vitamin C: Also known as ascorbic acid, vitamin C is
an essential antioxidant capable of donating electrons to
both enzymatic and non-enzymatic processes. Working as
a cofactor, it gets involved in processes such as collagen

synthesis, the prevention of fatal genetic mutations,
leukocytes’ protection, and supports the production of
carnitine, which is associated with metabolic energy [46].
At the lipidaqueous interphase, ascorbic acid can react with
oxidized tocopherol radicals bound to the membrane and
reduce it to regenerate active tocopherols and perform their
antioxidant function [47]. Ascorbic acid reduces oxidative
damage, inflammation and nephrotoxicity in several animal
models, as well as acute kidney injury due to nephrotoxicity,
ischemia and rhabdomyolysis-induced renal damage [48].
This particular assortment of biochemical properties renders
vitamin C as a compelling research candidate to broaden the
understanding of the interaction between inflammation and
oxidative stress in the mechanisms leading to a higher risk
of premature death post-kidney transplantation. It should
be taken in consideration that pre-transplant ESKD patients
often have an imbalance of several critical trace elements
and vitamins [49]. Through an inverse mediating effect on
inflammatory signaling biomarkers, It has been hypothesized
that sub-physiological levels of vitamin C (depletion) might
suggest being involved in mechanisms that are associated
with an increased risk of adverse long-term outcomes [50,51].

Vitamin E: Vitamin E is a fat-soluble vitamin whose main
active compound is a-tocopherol. The alpha-tocopherol
is capable of counteracting the lipid peroxidation of cell
membranes and stopping the radical chain by forming a
low-reactivity derivative unable to attack lipid substrates
[52]. Thus, vitamin E accomplishes its role in membrane
preservation against free radical damage promoted by low-
density lipoproteins. It can actively modify oxidative stress
biomarkers, improve erythropoiesis, or reduce the required
dose of erythropoietin [53]. In ESRD, vitamin E levels have
been found to be low, normal or increased [54]. In addition to
oral administration, vitamin E-coated membranes have been
used to reduce oxidative stress during hemodialysis and have
been reported to have a variety of beneficial effects [55].

Vitamin D: Vitamin D is important not only for calcium/
phosphorus homeostasis and bone health, but also for many
extraskeletal functions. In particular, vitamin D deficiency
is commonly observed in CKD and ESRD [56]. Serum
concentrations appear to be inversely related to renal function
and a particular prevalence in hemodialysis patients [57].
Growing evidence indicates that vitamin D deficiency may
contribute to deteriorating renal function, as well as increased
morbidity and mortality in patients with CKD [58,59]. In
other preclinical studies, vitamin D has shown, through the
inhibition of multiple key pathways in kidney injury, such as
the Renin-Angiotensin-Aldosterone System (RAAS), NF-
kB, TGF-p/Smad and Wnt/B-catenin signaling pathways,
to be useful at mitigating kidney injury by suppressing
inflammation, apoptosis and fibrosis [60].
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Conclusions

In conclusion, CKD is a disease characterized by an
irreversible progression to end stages, with no cure nowadays.
Impacting a large number of patients worldwide, it has been
associated with a lower life span, which could be expanded,
improving quality of life, by receiving adequate treatment, such
as dialysis or KT. Although the transplantation therapy presents
obstacles and complications inherent to the treatment, evidence
has shown that successful KT manage to improve the graft function
on par with a drop on OS biomarkers levels, which, even though
are not equivalent to a non-transplanted normal functioning kidney
controls, are lower than those present in hemodialysis patients,
decreasing the risk of developing a series of diseases that have
been associated to high OS levels, for example cardiovascular
pathologies and cancer.
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