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Abstract

§

Angiogenesis of vascular hematogenous and lymphatic vesicles is the process of formation of new sprouting vessels
from preexisting vessels in these systems in order to adequately supply nutrients, oxygen and other growth promoting peptides
to tumors that have reached a limited size of 1 to 2 cm. Growth factors that are secreted by breast cancer cells induce the
proliferation, migration and sprouting of endothelial cells to the tumor. In this review we will focus on some of the more, novel
and more potent angiogenic peptides or growth factors in cancer that can directly regulate angiogenesis or vascular mimicry by
tumor cells or indirectly by enhancing the expression of more established angiogenic growth factors.
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1. Abbreviations

AKT1 Protein Kinase B1

ER : Estrogen Receptor

ERK Extracellular Signal-Regulated Kinase

MAPK : Mitogen Activated Protein Kinase

NICD Notch Intracellular Domain

PI13-K Phosphoinositide 3-Kinase

PR : Progesterone Receptor

Ras Rat Sarcoma

Src Sarcoma-Related Cytoplasmic Tyrosine Kinase
VEGF : Vascular Endothelial Growth Factor

VEGFR : Vascular Endothelial Cell Growth Factor Receptor.

Introduction

Breast cancer is the most common cancer leading to
mortality in women worldwide. Nearly, 270,000 new cases in
2017 in the United States have been diagnosed with this set of
diseases and the lifelong risk factor for developing breast cancer
is 1 in 8 women over their lifespan [1]. Overall survival rates from
35% in the 1960°s to 89% in 2016 have improved for a subset
of breast cancer patients. Nearly 500,000 women worldwide die

from breast cancer each year. Risk factors for developing breast
cancer include age over 40, early menarche, late stage menopause,
hormone replacement therapy, a family history of invasive Ductal
Carcinoma In Situ (DCIS) arising from premalignant Atypical
Ductal Hyperplasia (ADH), breast density, obesity, diabetes and
a family history of breast cancer development which accounts for
20-25 % of all breast cancer cases of which 10-15 % are due to
genetic predispositions in autosomal dominant mutations in tumor
suppressor genes such as p53, Rb-1, BRCA1 and BRCA2 [1-4].
Breast cancer arises from a small subpopulation of tumor initiating
cells or Cancer Stem Cells (CSCs) that can arise from multipotent
basal Mammary Stem Cells (MaSCs) in the basal layer of the
mammary gland or progenitor cells such as luminal progenitor cells
in the luminal compartment of the mammary gland [4-6]. There are
also bipotent progenitor cells that exhibit properties of both basal
and luminal cells which are the two main types of differentiated
cells in the mammary gland. The luminal progenitor cells can give
rise to either ductal epithelial cells or secretory alveolar epithelial
cells during pregnancy from unipotent luminal progenitor cells.
CSCs exhibit properties of quiescence, self-renewal, recapitulation
of the original tumor phenotype and genotype of the more
differentiated breast cancer cells, tumor initiation at low numbers
following orthotopic implantation of these cells, and chemo- and
radio- resistance [5]. Normal stem cells, progenitor cells and in
certain cases trans-differentiation of differentiated breast epithelial
cells either of the basal or luminal lineages can be converted to
CSCs by oncogenic insult such as activation of components
in multiple intracellular signaling pathways that maintain cell
proliferation, growth factor receptor tyrosine kinase alterations or
intracellular signaling pathway mediators such as Ras mutations
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that can result in ligand independent activation or excessive
growth factor stimulation either in an autocrine or paracrine

fashion [5-9]. In addition, loss of tumor suppressor gene function,

radiation, environmental carcinogens and changes in the CSC
niche or microenvironment which contains different cell types
such as activated stromal/fibroblast cells, mesenchymal stem cells,
dUlpuLylLles, eryuuietidl CersS dilu Hiinnurie Cers sucll ds L4 diiu
CD8 T cells, type 1l macrophages, pro-myeloid cells, neutrophils
and eosinophils all of which can secrete multiple lymphokines
dliu CYLWHKITIES UldL Luligeuvely udil thidiiidlin uie exisuiy wvou
subpopulation and/or can increase the number of CSCs as occurs
during chronic inflammation [9-11].

Pleiotrophin (PTN)

Novel Peptides

Cripto-1
Nodal
Apelin/Salcut-NH2

Adrenomedullin

Gastrin Releasing Peptide

Table 1: Established and Novel Angiogenic Peptides in Breast Cancer.

Breast cancer cells are normally hormone dependent for Furthermore, paracrine-derived growth factors from the
their growth relying upon either systemic or breast tumor-derived adjacent stroma such as TGFB1 and Hepatocyte Growth Factot
estrogens, progesterone and prolactin that function through (HGF) can also drive breast cancer growth and progression by
receptors such as the Estrogen Receptor (ER), Progesterone jpjtiating Epithelial-Mesenchymal Transition (EMT) which is an
Receptor (PR) and Prolactin Receptor (PrIR), respectively [7,12- empryonic process that is reactivated in multiple types of cancer
14] These hormones can in turn tightly regulate the expression \hereby epithelial cells lose their phenotypic properties such a
of various endogenous growth factors such as Epidermal Growth 5 |oss in cell adhesion by down regulation of adherens junctional
Factor (EGF), Transforming Growth Factor Alpha (TGFa), proteins such as E-cadherin and tight junctional proteins such
amphiregulin, Wnt4, RANKL and insulin-like growth-1 in the a5 claudins and occludins [17,18]. These cells become more
normal breast and in breast cancer cells or in the surrounding stroma mesenchymal in their phenotype as they upregulate vimentin
(paracrine) [7,11,12,15]. Eventually, most hormone-dependent smooth muscle actin, fibronectin and N-cadherin. Mesenchymal
breast tumors have a tendency to lose their requirements for these cells are more invasive and migratory and can move through the
local or systemic steroid or polypeptide hormones and become pyeast stroma and can give rise to distant end organ metastases
hormone-independent which increases their aggressive behavior jn the lung, liver, brain and bone after extravasation into the
as they become resistant to anti-estrogens (i.e. Tamoxifen), hematogenous or lymphatic vessels near the outer rim of breast

antiprogestins (i.e. APR19) or aromatase inhibitors [16]. Under
these circumstances multiple growth factors can be produced in
an uncontrolled fashion at excessive levels as autocrine peptides

B BFRATARTORCEURY: (AHer 1 WélkeRdRNgngither proliferative

Established Peptides

Epidermal Growth Factor (EGF)
Transforming Growth Factor o (TGFa)
Amphiregulin (AR)

Heparin Binding-Epidermal Growth Factor (HB-EGF)

Betacellulin (BTC)
Insulin-like Growth Factor-1 (IGF-1)

Platelet-derived Growth Factor AA/ BB (PDGF)

Transforming Growth Factor 8 1/2 (TGFR)
Fibroblast Growth Factor 1/2/3(int2)/4 (hst)/5/6/7 (Fgf)

Vascular Endothelial Growth Factor A/B (VEGF)
Angiopoetin 1/2 (Ang)
Placental-Derived Growth Factor (PLGF)

Midkine (MK)

tumors. In addition, EMT can also initiate the formation of new
CSCs which can contribute to the pool of Circulating Tumor Cells
(CTCs) that results in end organ colonization in the lung, brain,
BV ReARddR RS NAIERTS BiERHRSEStep ARQUBiHRR] viotRiats
HIELASLALIL LISSUE SILEDS VWIIEIE UIESE LEIIS Ulluciyu a viesceliuliyiiiai=
Epithelial Transition (MET) to engage in colonization at these

SIhSAE" AR SRl 1401 TEAINRn, ovs, cEIRBLlS
Wnt/B-catenin/Lef, Notch and Hedgehog signaling pathways can

ARSLOrITHLS B0 BYCmamtenance and ERIT Rk acioR oF

formation by Bone Morphogenic Proteins (BMPs), Periostin anc
Tenascin C in the lungs and bone [10,21-23].

Breast cancer is not a unif%rm dise%s$ but is heterogeneous
both within any given tumor and between different types of tumors

that consist of multiple molecular subtypes [4,6,24,25]. There

are several different molecular subtypes of breast cancers and
interconversion between these molecular subtypes can occur due

to the cellular plasticity of CSCs or progenitor cells that is dictated

by local niche cellular and soluble factors [6,10]. These molecular
subtypes include luminal A, luminal B, normal breast-like, HER2
(erbB2)-enriched, basal-like, mesenchymal-like and claudin-low
DdsSEu UpuIl yerie EXPIESSIVIT dildlysSIS dilu Clusteniny. Acludlly,
the discrimination level of subtypes has increased to ten different

classifications with an additional 6 in the TNBC group which
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accounts for approximately 20% of all the breast cancer subtypes.
The basal-like, claudin-low and mesenchymal-like (metaplastic)
groups plus the three additional subgroups are classified as Triple
Negative Breast Cancers (TNBC). TNBC cancers are Er-, PR-
and HER2- but overexpress the EGF receptor (EGFR). TNBC
are extremely resistant to chemo- and radio- therapy and there is
no effective agent to clinically enhance the regression of TNBC
which in patients with this subtype tend to exhibit an extremely
low response rate to the effects of chemo- or radiotherapy as
far as long-term patient survival and metastasis [26-28]. In this
respect TNBC subtypes particularly the basal-like and claudin-
low subtypes are enriched for CSCs and an EMT-like phenotype
[25-28]. Each of these molecular subtypes of breast cancer can
arise from a hierarchical order of multipotent MaSCs (claudin-
low subtype) and bipotent progenitor cells (basal/luminal-like).
In this respect, mesenchymal-like TNBC and claudin low TNBC
resemble the more undifferentiated and primitive Adult Mammary
Stem Cells (aMaSCs) from the adult postnatal mammary gland
while more epithelial-like TNBC stem cells resemble bi-potent
Fetal Mammary Stem Cells (fMaSCs) found in the embryonic
day 18 mammary placodes that first start to exhibit branching
morphogenesis from the developing nipple area, respectively [6].
Multipotent luminal progenitor cells can give rise to basal-like
TNBC due to mutations in BRCA1, p53 or hyper-activation of
Notchl or Notch4 signaling [21]. HER2-enriched breast cancers
probably arise from a more lineage restricted unipotent luminal
progenitor cells while the more differentiated ER-/PR- or ER+/
PR+ luminal B and A subtypes arise from more differentiated and
mature ductal or alveolar luminal cells, respectively.

Angiogenesis

Tumor cells require external sources of oxygen, nutrients
such as glucose and metabolites such as proline and glutamine to
survive when they exceed 1 to 2 cmin size. Blood (hematogenous)
and lymphatic vessels need to be located within 100 to 200 um of
the tumor perimeter to initiate and facilitate angiogenesis and to
facilitate reoxygenation and nutrient delivery to tumors [29]. In
addition, these newly formed vascular vessels need to penetrate
the tumor perimeter and to enter into the tumors through sprouting
and vessel enlargement. Recruitment of new vessels to the
growing tumor is initiated by a process known as angiogenesis
[29-31]. Without new vessel innervation, tumors can die and fail
to metastasize. Angiogenesis is the process of forming new vessels
by sprouting from preexisting vascular hematogenous or lymphatic
vessels. These newly formed vessels as they sprout or branch also
migrate toward the tumor through the surrounding stroma due to
the local release by breast cancers of multiple angiogenic peptides
(Tablel) such as VEGFs, FGFs and Angiopoietins (Ang) which
are the most potent of angiogenic factors especially in breast
cancer (Table 1). These peptides increase Micro-Vessel Density
(MVD) and endothelial cells exhibit a higher proliferative rate.
Expression in breast tumors of angiogenic growth factors such as
VEGFA, TGFa, TBFB2 and FGF2 are also associated with poorer
patient prognosis [32-38]. Finally, a small molecule tyrosine

kinase inhibitor AZD457, similar to Avastin which is a humanized
monoclonal antibody that blocks VEGFA activity in breast
cancers, can inhibit FGFR1-3 activity and block CSCs formation
in the HER-2 expressing subtype of breast tumors. This may be
particularly important since FGFR-3 expression is increased in
tamoxifen resistant breast tumors and by Nodal [39,40].

This review will focus on other newly identified, novel
angiogenic peptides such as Cripto-1, Nodal, Apelin, Salcut-
NH2, Adrenomedullin and Gastrin Releasing Peptide in cancer
and particularly breast cancer. Different stress factors that can
induce angiogenesis include oxygen deprivation (hypoxia) which
is common in all tumors especially in the inner tumor regions,
low pH, glucose deprivation, inflammation and metabolic stress
[29,41-46]. New vessels around tumors can also form by de
novo vaculogenesis from bone marrow-derived endothelial cell
precursors [29]. Finally, tumor cells including breast cancer cells
can transdifferentiate into tubular-like luminal vessels by a process
known as vascular mimicry which have similar phenotypic
propertiesofhematogenousvesselstocircumventmoreconventional
angiogenic processes [45,46]. A sparse population of periocytes
also surround the endothelial cells in hematogenous and lymphatic
vessels and function as protective agents from environmental
stressors and as control cells to maintain vascular tone [29].
Unlike normal vascular vessels, the tumor vasculature can become
leaky and highly disorganized due to fenestration and excessive
branching within the lumen of the vessels and pore formation due
to changes in cellular adhesion between the endothelial cells of the
vessel wall, vascular enlargement and excessive branching [29]. In
addition, loss of adhesion between endothelial cells can also can
contribute to high vascular permeability due to a discontinuous
loss of the basement membrane as a functional barrier. This may
be due to excessive VEGF and/or Transforming Growth Factor
B1 (TGFp1) expression either in the tumor cells or surrounding
tumor stroma can down regulate expression of adhesion molecules
such as VE-cadherin in the endothelial cells and enhance pore
formation, Inflammation induced by the transcription factor NFxB
through an activated Jak2/Stat3 pathway that can be engaged
by pro-inflammatory cytokines such as TNFa, IL-6 or IFNy can
also contribute to angiogenesis [41-44]. Likewise, hypoxia (low
oxygen) which can induce expression of the hypoxia transcription
factor family which includes Hypoxia-Inducible Factors (HIFs)
also contributes to angiogenesis [41-44]. In breast cancer, HIFla
is the most prominent in breast cancer [29-38]. HIFlaor NF«B
which is induced by chronic inflammation can induce a number
of common downstream target genes such as the more established
and more potent angiogenic peptides including VEGFs, PDGFs
and Ang2 as well as a majority of the noveler angiogenic peptides
that were previously mentioned and that will be described in more
detail later in this review as well as Nitric Oxide Synthase (NOS)
which is an enzyme that produces Nitric Oxide (NO) which is a
potent vasodilator [42-48].

Precancerous breast ADH lesions and non-invasive DCIS
already exhibit the ability to acquire angiogenic properties at a rate
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of 30% compared to normal breast tissue before becoming invasive
Ductal Carcinoma in Situ (DCIS) tumor cells which suggests that
angiogenesis can occur early in the precancerous state [47-49]. In
addition, breast tissue adjacent to tumors is twice as likely to induce
angiogenesis as compared to breast tissues from non-neoplastic
breasts. Disruption of the tumor vasculature can lead to oxygen
deprivation (hypoxia) [50]. Hypoxia can induce the stabilization
HIF-1a. HIF-1a can also be induced by chronic inflammation and
by the hormones such as estrogen and progesterone [38,41]. HIF-1a
plays a significant role in breast tumor progression and metastasis
as it can positively regulate in tumors a number of different target
genes including the upregulation of VEGFs, Ang2, FGFs, PDGFs,
EGF. metalloproteases, glucose transporter genes, wild type p53,
the EMT regulated transcription factor Twist, Akt-1, Oct4, Cripto-1,
Nodal, adrenomedullin and apelin [27,36,37,51,52]. Of all the
molecular subtypes of breast cancer HIFa expression, VEGFA

Cripto-1

expression and MVD of hematogenous vessels were significantly
higher in basal and other TNBC subtypes as compared to the
other molecular subtypes [26,28,50-53]. HIf-1a can also induce
cripto-1 in developing mouse cardiomyocytes, in ischemic pig and
in human cardiomyocytes following hypoxia-induced infarction
suggesting that the HIF-1a regulatory pathway may be engaged in
other developmental and pathological conditions [54].

Cripto-1 and Nodal as Novel Angiogenic factors

Cripto-1 (CR-1) also known as Teratocarcinoma-Derived
Growth Factor-1 (TDGF-1) is a glycosylated protein ranging in
size from 20kDa to 45kDa depending upon the degree of N- or
O-linked glycosylation, fucosylation within the EGF-like domain
and potential phosphorylation of various serine and threonine
residues within the CR-1 protein (Figure 1) [55,56].

Nodal
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Figure 1: Structure of CR-1 and Nodal Foca A, et al.

In the human CR-1 protein, there are 188 amino acids and the protein has multiple domains and is the founding member of the
EGF-CFC family of proteins. CR-1 contains an NH2-terminal signal sequence that is cleaved, an NH2 domain followed by a highly
conserved EGF-like domain and a conserved cysteine rich CFC domain which is linked to a hydrophobic COOH-terminus with a motif
for a Glycophosphatidylinositol (GPI) region which tethers CR-1 to the cell membrane in cholesterol-rich lipid raft regions within the
cell membrane [57,58]. There are 6 cysteine disulfide bridges within CR-1 of which three are in the EGF-like domain and three are in the
CFC domain. Unlike EGF which has three loops of cysteine bridges A, B and C, the EGF-like domain in CR-1 lacks the A loop and has a
truncated B loop but a complete C loop as compared to EGF The EGF and CFC domains are the functional domains that bind to different
proteins such as Nodal, Activins, TGFR1, Alk4, GRP78, Notch, furin-like proteases, canonical Wnts and Frizzeled co-receptors, Lrp5
and Lrp6. Therefore, CR-1 is a multifunctional chaperone protein that can bind to various proteins in a context-dependent manner. CR-1
is the founding member of the EGF-CFC protein family. It is evolutionary conserved along with a related subfamily consisting of cryptic
in deutrostomes including sea urchins and amphioxus (lancelet) especially within the EGF-like and CFC domains (Figure 2).

CFC

1 Human Cro
Dog Cro

2 Human Cre
Opossum EGF-CFC

3 Chicken EGF-CFC

4 Zetafish Oep

5 X laevis Xer1

6 X faevis Xcr2

7 X lagvis Xerd

8 Sea urchin EGF.CFC
Lancelet EGF-CFC

(Amhioxous)

8
75 L
86 AR
u L
86
79 Qf
79 LN
86 L§
73 LD
107
29 HSADCH

Figure 2: Phylogenetic Conservation of EGF-like and CFC domains in CR-1 [59].
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The EGF-CFC family also includes mouse and human
Cryptic and Cripto-3 (CR-3) which differs from CR-1 by only
five amino acids [59]. Physiologically, CR-1 can be cleaved from
the cell membrane by either Phospholipase C (PLC) or by GPI-
phospholipase-D which releases a soluble form of CR-1 that can
act in a cell-non-autonomous, trans-acting, paracrine manner as
a growth factor while the cell tethered formed can function in a
cell autonomous, cis-acting, autocrine manner where it functions
as a co-receptor for Nodal (see below), the canonical Wnt/(3-
catenin Frizzeled co-receptors Lrp5 and Lrp6 that bind to various
canonical Wnt proteins to amplify this signaling pathway and to
proNodal and proNotch receptors to facilitate the processing of
these proteins in early endosomes through a series of furin-like
proteases [60-62]. Interestingly, mouse CR-1 and human CR-1 are
major target genes that are upregulated by the canonical Wnt/j-
catenin/Lef pathway during early embryogenesis, in the fetal and
adult mouse mammary gland, in normal colon crypt development
and in human hepatoma and colon carcinoma cells [55-57,63-
66]. Finally, CR-1 has been detected within secreted exosome-
like vesicles that are derived from multi-vesicular bodies formed
within the lipid raft regions [66]. In fact, secreted CR-1 has been
detected in plasma and serum as well as in human milk and may
be a potential diagnostic and prognostic serum marker in breast,
colon and lung cancers as well as in glioblastomas and germ cell
tumors [67-73].

Cell-tethered CR-1 functions as a co-receptor for the TGF
related proteins such as Nodal and the growth and differentiation
factors 1 and 3 (GDF-1/3). CR-1 binds to this subfamily of TGFf
related proteins through the EGF-like domain and then complexes
with the type-1 receptors Alk4 or AIK7 type-1 serine-threonine
kinase receptors through the CFC domain which then lead to a
trans-phosphorylation of these type-1 receptors by the type-II
ACctRIIB receptor and subsequent activation by phosphorylation
of Samd2 and complex formation with Smad3 and Smad4 in
early endosomes [55].This then leads to nuclear translocation
of this trimeric complex that can then bind to Smad Binding
Elements (SBEs) within the promoter region of various target
genes in conjunction with other transcriptional co-activators such
as FoxH1 to regulate their transcription such as stem cell related
pluripotency transcriptional genes such Oct4 and Nanog and Oct4
through a feed-forward loop that can also upregulate including
CR-1 and Nodal expression [74-76]. CR-1 can also activate non-
canonical, Smad-independent signaling pathways such as the
src/ras/MAPK and PI3-K /AKT1 pathways to regulate cellular
migration, invasion, EMT and cellular survival (Figure 4). In
addition, Glucose Regulated Protein 78 (GRP78) is expressed
on the surface of a number of different types of cancer cells and
not in the Endoplasmic Reticulum (ER) where it would normally
be in tissues and involved in the ER stress response of removing
unfolded and dysfunctional proteins through degradation [77].
GRP78 can function as a chaperone protein and binds to CR-1
through the CFC domain and the NH2-terminal domain of GRP78
to amplify Smad-dependent and Smad-independent signaling
pathways that are engaged by CR-1. Finally, CR-1 can bind to

TGFB1 and Activins to inhibit their binding to different receptors
suggesting that CR-1 is a multifunctional chaperone protein in
different signaling pathways in a context-dependent fashion.

CR-1 was first identified as a unique gene and isolated
from undifferentiated human and mouse embryonal carcinoma
cells lines. Subsequently, it was identified in mouse and human
embryonic stems cells with Nodal as genes that are essential in
maintaining pluripotency and self- renewal by regulating Oct4
and Nanog expression through a Smad-dependent pathway
[55,56,64,74]. During early embryonic development, CR-1 and
Nodal are important in inducing through a Smad-dependent
signaling pathway that regulates anterior-posterior axis formation,
formation of the primitive streak during gastrulation by initiating
EMT, mesoendoderm formation and later in in left-right organ
laterality formation (Cryptic) with Nodal and in early heart
development by stimulating cardiomyocyte differentiation. In
this regard, cripto-1 can be induced by hypoxia through HIF-1a
in developing cardiomyocytes and is elevated in ischemic pig and
human hearts following infarction. Germ line deletion of CR-1 is
embryonic lethal at day 6.5 in mice [55,56]. More importantly,
CR-1 expression is significantly upregulated in numerous types
of human cancer including breast, prostate, colon, gastric, liver,
pancreatic, ovarian, cervical, endometrial, non-small cell lung adeno
and squamous cell, esophageal, head and neck, nasal pharyngeal,
bladder and basal cell skin carcinomas as well as in glioblastomas,
melanomas and in germ line embryonal carcinoma and non-
seminoma testicular carcinomas [56]. In fact, CR-1 expression can
be detected in early pre-malignant lesions in gastric metaplasia,
colon adenomas and breast hyperplastic alveolar nodules. In breast
cancer, overexpression of cripto-1 is highest the both mouse and
human TNBC subtypes and can etiologically contribute to TNBC
development [53,78]. In breast cancer, CR-1 expression was found
to correlate with tumor grade and, an overall decrease in patient
survival. This same correlation of an association with high CR-1
tumor expression, poor overall survival and disease-free relapse
has been observed in other types of carcinomas such as nasal
pharyngeal, head and neck, lung and colon, gastric and cervical
tumors. Finally, overexpression of a human CR-1 transgene in the
mouse mammary gland at differential post-natal developmental
stages can contribute to the formation of premalignant hyperplastic
alveolar nodules and to mammary gland tumorigenesis [79,80].

In Non-Small Cell Lung Cancer (NSCLC), there was a
significant inverse correlation between expression of the miR
205 family, which promotes an epithelial phenotype by blocking
EMT-related transcription factors and CR-1 expression that were
expressed in 94% of the NSCLC samples [81]. Those patients with
high levels of CR-1 expression had a worse overall prognosis. In
NSCLC there was also a significant correlation of CR-1 expression
to neovascularization. In fact, resistance of NSCLC patients to EGF
Receptor (EGFR) tyrosine kinase inhibitors can lead to an increase
in MVD and to the acquisition of an EMT-like phenotype of more
mesenchymal-like cells that are more angiogenic where CR-1 was
overexpressed [82]. Blockade of CR-1 expression using a c-src
tyrosine kinase inhibitor reestablished sensitivity of the NSCLC
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cells to EGFR inhibitors and a down regulation in CR-1 expression.
In MCF-7 luminal breast cancer cells that ectopically overexpress
CR-1 are more angiogenic as evidenced by an increase in CD31
positive endothelial cells and have a higher MVD orthotopically
in the cleared mammary fat pad in nude mice than non-CR-1
transduced cells [83]. Soluble CR-1 was able to stimulate both
Smad2 phosphorylation and the phosphorylation of c-src, MAPK
and AKT1 in Human Umbilical Vein Endothelial Cells (HUVEC)
[83]. INnHUVEC, VEGFA and FGF2 were able to stimulate in vitro
proliferation as was CR-1 in a dose-dependent manner. To form
new blood vessels in a tumor, endothelial cells must first invade
the tumor stroma and extracellular matrix and migrate and invade
the basement membrane into the perivascular space. CR-1 and
VEGFA were able to significantly stimulate HUVEC migration
and invasion in vitro. A VEGF receptor 1 tyrosine kinase receptor
was able to block the migratory and invasive effects of VEGFA
on HUVEC but not these responses that were also stimulated by
CR-1. However, a CR-1 neutralizing mouse monoclonal antibody
or a c-src inhibitor or PI3-K inhibitor but not MAPK or ALK4
inhibitors were able to significantly inhibit CR-1 induced migration
and invasion in vitro [83]. HUVEC cells when placed in vitro on
a Matrigel matrix will form honey-comb-like, tubes in response to
different angiogenic factors. VEGF or CR-1 using HUVEC were
able to induce tube-like cords in this assay. As with the migration
and invasion assays, a CR-1 neutralizing mouse monoclonal
antibody or a c-src inhibitor or PI3-K inhibitor but not MAPK or
ALKA4 inhibitors were able to significantly inhibit CR-1 induced
tube formation. In vivo, soluble CR-1 treated wild type MCF-7
cells or MCF-7 CR-1 transduced cells induced angiogenesis
which could be blocked with the CR-1 neutralizing antibody in
both scenarios [83]. In prostate cancer a similar stimulatory effect
of CR-1 on migration, invasion, angiogenesis and metastasis was
observed [66,84]. Human PC3 or DU145 prostate cancer cells
express CR-1 and were then transduced with a CR-1 siRNA.
Knockdown of CR-1 mRNA or CR-1 protein expression ranged
from 50 to 80 % compared to control siRNA transfected cells
[66,84,85]. Knockdown of endogenous CR-1 blocked proliferation
of both prostate cancer cell lines by ~50% and were arrested in the

G1 phase of the cell cycle which was accompanied by a 50-70
% reduction in Cyclin D1 and Cyclin E1 [84,85]. In addition, in

vitro migration and invasion of both prostate cancer cells lines was
inhibited by two-fold after CR-1 knockdown which correlated with
a reduced expression of metalloproteases 2 and 9 in these cells.
EMT was also severely impaired in the CR-1 knockdown cells
as E-Cadherin was overexpressed while N-cadherin, vimentin and
fibronectin expression was severely reduced. The CR-1 knockdown
prostate cancer cells were more epithelial-like in their phenotype
as compared to the siRNA transfected control cells which were
more mesenchymal in appearance. Tube formation of HUVEC
was used to assess the ability of secreted CR-1 in the Conditioned
Medium (CM) to modify this phenotype. Tube formation of
HUVEC using CM from CR-1 knockdown cells reduced by
80% tube formation in HUVEC as compared to CM from siRNA
control cells. Examination of the phosphorylation of c-src PI3-K,
AKT1 and Glycogen Synthetase Kinase-3p (GSK-3p) which the

latter is a regulator of AKT1 activation and the Wnt/B-catenin/
Lef pathways were all significantly compromised in the CR-1
knockdown prostate cancer cell [84,85]. Finally, soluble CR-1 that
is secreted from either CR-1 transduced kidney HEK293T cells
or from NTERA2/D1 human Embryonal Carcinoma (EC) cells
that have high levels of endogenous CR-1 expression can function
in trans/paracrine manner to influence HUVEC cells [57]. In this
context, soluble CR-1 can promote endothelial cell migration as
a chemoattractant to facilitate migration and secretion of soluble
CR-1 by GPI-PLD that can be enhanced by other growth factors
such as HGF, EGF, HB-EGF, TNFa and IL-6 [57]. Nevertheless,
tethered CR-1 on tumor cells can induce HUVEC cell sprouting
through direct cell-cell interaction [57]. Shedding of CR-1 occurs
at the GPI-anchorage site as by the ability of phospholipase C or
endogenous GPI- phospholipase D to facilitate CR-1 cleavage
[57,58]. Multiple hormones, growth factors and transcription
factors such as LRH-1 and GCNF can either positively or
negatively regulate cripto-1 expression (Table 2). Reciprocally,
CR-1 can upregulate the expression of EMT regulated genes and
EMT induced transcription factors as well as other growth factors
receptors and novel angiogenic peptides and their cognate receptors
such as apelin and adrenomedullin (see subsequent sections) as
well as the NFkB-induced cytokines TNFa, IL-6 and IFNy [86].
In colon cancer, CR-1 is found in the normal colonic crypt stem
cells and is increased in colon cancer CSCs [87]. CR-1 knockdown
inhibited colon cancer growth and metastasis in vivo [87].

Nodal is a member of the TGF superfamily and is expressed
in all deuterostomes including hydra (Figure 3).
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Figure 3: Phylogenetic conservation of Nodal [90].

Nodal is expressed as extended 347 amino acid prepro-
protein (55kDa) that is cleaved to pro-Nodal which has 238 amino
acids (37kDa) and eventually to mature Nodal which is a 110
amino acids (22kDa) monomeric form (Figure 1) which is heavily
glycosylated [88-90]. Mature Nodal can homodimerize with itself
or heterodimerize with GDF1 or GF3 [91]. Cleavage of these
larger precursors is accomplished by proteins in the pro-protein
convertase family such as Furin and Pace4. CR-1 can facilitate
this intracellular processing by binding to these convertases and
Nodal and can also enhance secretion of mature Nodal in early
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endosomes where it becomes glycosylated and helps to stabilize the protein from degradation [92,93]. Nodal like CR-1 can function as a
cell-associated autocrine growth factor or as a secreted paracrine factor. Nodal similar to CR-1 is important in regulating the expression
through a Smad-dependent pathway expression of the pluripotency genes Nanog and Oct4 [74-76,92,93]. There are four distinct Nodal-
related genes in Xenopus which has three related CR-1 genes (figure 3) and two Nodal genes are expressed in zebrafish namely squint,
cyclops and southpaw that interact with the zebrafish version of CR-1 One-Eyed Pinhead (OEP) [94,95]. Nodal is not normally expressed
in adult tissue which is similar to CR-1 except possibly adult tissue stem cell compartments such as the intestinal crypts, the embryonic
day18 mammary mesenchyme and in the luminal progenitor cells in the adult early pregnancy mammary gland like CR-1 and in human
trophoblast cells and endometrium. Nodal can upregulate its own expression, CR-1 and Lefty 1/2 through a Smad-dependent pathway.
Lefty is an inhibitor that can bind to and block both Nodal and CR-1 activity [94,95]. Cerberus is another inhibitor of Nodal as wells as
various Wnts and BMP. The Mir 15/16 family can block protein expression of CR-1 and the type-Il Activin receptor by destabilizing

their respective mRNASs resulting in their degradation [96-103].
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Figure 4: Molecular interactions between CR-1, Nodal, Adrenomedullin and Apelin/ SCNH2.

Similar to CR-1, Nodal can also be induced by hypoxia
through HIF-1a in human MCF-7 and T47D breast cancer cells
and in metastatic C81-61 human melanoma cells through HIF-1a
which not only stabilizes the Nodal mRNA but upregulates both
pro-Nodal and Nodal protein expression (Figure 4) [102,103].
HIF-1a can bind to the Nodal promoter through Nodal Dependent
Enhancer (NDE) in the promoter region of the gene [99,100].
Hypoxia via HIF-1a can also enhance the expression of Oct4 and
Notch receptors to promote a more dedifferentiated and aggressive
phenotype in a variety of cancer cells probably by expanding the
CSC population. Notchl during early embryonic development
and Notch4 in C81-61 cells can induce Nodal expression through
the NDE. A similar effect was observed in T47 cells through the
Intracellular Domain of Notch (NCID) and its binding to the
NDE region following hypoxia treatment. Finally, hypoxia driven
by HIF-1a can induce the invasion and migration of T47D cells
and Conditioned Medium (CM) obtained from T47D cells could

significantly enhance tube formation in HUVEC which was Nodal
dependent as illustrated by shNodal knockdown in the T47 cells
[100,101]. A similar observation relating to hypoxia and Nodal
was observed in human A375 human melanoma cells [102]. In
these cells, hypoxia can induce resistance to the cytotoxic drug
dacarbazine. Hypoxia was able to induce Nodal expression through
a HIF-lo—dependent pathway. Nodal expression was enriched
in the CSC subpopulation of these cells as assessed by sphere
formation and by the expression of stem cell related genes such
as Oct4, Nanog Sox2, CD133 (prominin) and CD44 (hyaluronan
receptor). Hypoxia induced both pro-Nodal and mature Nodal. In
turn, Nodal was able to enhance the expression of the glucose-1
transporter gene and glucose uptake (Warburg effect), PDK-1
an upstream positive regulator of AKT1 action and cell survival.
Nodal knockdown using a lentivirus transduced shRNA Nodal
abrogated these effects. HIF-1a induced expression of Nodal
also resulted in resistance to the cytotoxic effects of dacarbazine
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which could be restored in ShRNA Nodal transduced A375 cells
[102]. Impairment of Nodal expression by either sShRNA Nodal
transduction or by blocking Nodal signaling through Alk4 using the
inhibitor SB431542 also reduced sphere formation and invasion in
vitro. Primary breast carcinomas also express Nodal but not benign
breast tissue biopsies. Nodal expression was directly correlated
with the diagnosis and disease [103]. Out of 431 breast carcinomas,
66% were moderately or highly expressing Nodal. In addition,
more poorly differentiated breast cancer were associated with
higher levels of Nodal expression than more differentiated tumors.
Likewise, higher tumor stage and lymph node positive patients
presented with higher levels of Nodal expression. Breast cancer
TNBC cell lines, MDA-MB-231 and MDA-MB-468 cells, Nodal
was detected in ~39% and 22% of the cells in these two cell lines,
respectively. Both cell-associated proNodal and the secreted mature
Nodal protein were found in both cell lines. Treatment of either cell
line with a Nodal neutralizing/blocking rabbit polyclonal antibody
but not a control polyclonal IgG produced in a dose-dependent
manner a 65-90 % decrease in the levels of the proNodal precursor
with a concomitant decrease in the level of phosphorylated Smad2
levels. Cell proliferation in both cell lines was decreased in a dose-
dependent manner following treatment with the Nodal blocking
antibody but not with the control 1gG [103]. Reciprocally, there was
a dose-dependent increase in apoptosis following treatment with
the Nodal blocking antibody but not with the control 1gG. Finally,
there was a dose-dependent inhibition of anchorage-independent
growth in soft agar of both of these cell lines following treatment
with the Nodal blocking antibody but not the control IgG. Similar
inhibitory effects on cell proliferation, invasion and clonogenicity
in soft agar were observed in MDA-MB-231 or MDA-MB-468
following transfection with an shNodal expression vector but not a
control scrambled shRNA vector [100,101]. In those studies, tumor
growth in nude mice of the Nodal knockdown cell lines was totally
eliminated but not with a control sShRNA vector. At the molecular
level, Nodal knockdown repressed cyclin B1, cyclin D1 and c-myc
expression but enhanced the expression of the negative cell cycle
regulators p21 and p27 which explains the mechanism by which
Nodal can modify cell proliferation.

Upstream CR-1 Regulators Downstream CR-1 Targets

Wnt/B-catenin VEGF
TGFp1 VEGFR2
Activin A/B Apelin
HIFa APJ
BMP2/4 (-) Adrenomedullin

Retinoic Acid (-) Adrenomedullin RAMP-3 co-

receptor
Germ Cell Nuclear Factor
(GCNF)() FGF2/4/8
Liver Receptor Hormone 1
(LRH-1) FGFR1

Snail(-) Snail
CR-1 ZEB-1
Nodal E-Cadherin(-)
FGF4 Occulidins(-)

Progesterone Claudins(-)
Nkx-2.5 N-cadherin
Msx1 Vimentin
a6 integrin
Fibronectin
Netrin-1
c-myc
Cyclin D1
RANKL
NFkb
Sox9
Gata3

Table 2: Upstream CR-1 regulations, Downstream CR-1 targets.

(-) above designates negative regulation or down regulation of
expression

MVD is well recognized in breast cancer as a reliable
index of angiogenesis. In gliomas, Nodal can upregulate VEGF
expression and MVD. Nodal expression in breast cancer is directly
correlated to MVD in 83 primary breast carcinomas and can induce
vascular recruitment in vivo as assessed by MVD and CD31
expression [64,66,104-109]. Similar to melanoma cells, Nodal
can be secreted by breast cancer cells in vitro wherein the CM
from these cells can stimulate HUVEC tube formation in vitro.
Nodal also in breast cancer cells in vitro can upregulate VEGF
and PDGF protein expression. In MDA-MB-468 cells transfected
with a shNodal vector caused a decreased expression of VEGF and
PDGF protein expression and secretion into the CM from these
cells [104]. Knockdown of Nodal using an shNodal expression
vector can decrease MVD and can induce necrosis within breast
tumor cells. In MDA-MB-231 cells transfected an shNodal
expression vector, CM from these cells significantly reduced
HUVEC branching, migration and tube formation compared to
CM obtained from control scrambled shRNA MDA-MB-231 cells
which stimulated these responses in HUVEC [100,101,103,104].
Gain of function studies in T47D cells which express lower levels
of endogenous Nodal like MCF-7 luminal breast cancer cells as
compared to MDA-MD-231, MDA-MB-468 and Hs578t TNBC
cells when transfected with a Nodal expression vector confirmed
these results using CM from these Nodal transduced T47D cells on
target HUVEC in which branching, migration and tube formation
were enhanced. When cultured in vivo shNodalMDA-MB-231
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cells reduced vascular recruitment as compared to sShMDA-MB-
231 cells. Reciprocally, T47D cells expressing ectopic Nodal
enhanced angiogenesis as compared to control T47D cells. These
results were also confirmed in a Chick Chorioallantoic Assay
(CAM) with MDA-MB-231 Nodal knockdown cells where these
cells were unable to form vascularized tumors as compared the
shRNA MDA-MB-231cells tumors that developed. In nude mice.
shNodalMDA-MB-231 tumor cells had a significant decrease in
CD31 staining for innervating endothelial cells as compared to
the sShMDA-MB-231 tumor cells. In addition, tumor necrosis was
elevated in the Nodal knockdown tumors [104].

Vasculogenic Mimicry (VM) that does not involve vascular
endothelialcellscancompensateforalossofvascular(hemotogenous
or lymphatic) angiogenesis in melanoma, prostate, ovarian, liver,
lung carcinomas and gliomas [44,46,105]. Recently Nodal has
been demonstrated to induce VM in metastatic melanoma cells.
In primary breast cancers, high bot not low Nodal expression was
correlated with lymph node metastasis, tumor stage, poor overall
patient survival that was accompanied by a loss of differentiation
and overexpression of a VM marker VE-cadherin [100,104,106].
VM frequency was found in 32% of the Nodal expressing tumors
expressed VE-cadherin in the Nodal high tumors and in only 8%
of the Nodal low tumors. Likewise, 73% of the Nodal high tumors
while only 37% of the Nodal low tumors exhibited VM [103,104].
shNodal MDA-MB-MB-231 cells exhibited a reduction in VE-
cadherin expression while T47D Nodal transduced cells exhibited
an upregulation in VE-cadherin. In addition, shNodalMDA-MB-
231 cells were impaired in their ability to form VM channel-like
structures on or in Matrigel while the shMBA-MB-231 cells were
able to form such structures that could be blocked by the Alk4
receptor inhibitor SB431542. Likewise, Nodal overexpression in
MCEF-7 cells promoted VM channel formation where VE-cadherin
was found to be co-expressed with Nodal. Smad2/3 phosphorylation
was inhibited in the shNodalMDA-MB-231 cells and reciprocally
upregulated in the Nodal transduced MCF-7 cells. Using either
the shNodal MDA-MB-231 cells or the T47D Nodal transduced
cells, it was found that Nodal could enhance the expression of
EMT as assessed by an increase in migration and invasion assays,
expression of MMP2 and MMP9 and EMT -related genes such as
N-cadherin, vimentin, Snail, Slug and c-myc, while E-cadherin
expression was reduced [103,104]. In this respect, EMT has an
important role in facilitating VM formation Finally, tumor growth
in nude mice was found to be enhanced by Nodal overexpression
and suppressed by Nodal inhibition with parallel changes in
CD31 expression in both situations. Human glioma/glioblastoma
cells express both CR-1 and Nodal [105]. Glioblastomas exhibit
pronounced angiogenesis. Nodal expression correlates with
invasive behavior and angiogenesis in these tumors and is more
pronounced in glioblastomas than in anaplastic astrocytomas or
normal brain tissue [105-107]. Likewise, there was a significant
correlation between Nodal expression and VEGF expression
in glioblastomas [107]. Knockdown of endogenous Nodal with
an siRNA Nodal vector in vitro in U87MG human glioma cells
decreased colony formation in soft agar and decreased VEGF

secretion. Orthotopic intracranial injection of SIRNA U87MG cells
inhibited tumor growth of these cells and prolonged survival in
SCID mice in vivo. Inhibition of Nodal expression also suppressed
tumor vessel growth as assessed by CD31 analysis in vivo and
inhibition of endogenous Nodal signaling in wild type U87MG cells
using the Alk4 inhibitor SB431542 also produced a similar effect
in vivo. Therefore, knockdown of Nodal suppresses angiogenesis
in vivo in glioblastoma cells. Reciprocally, overexpression of
Nodal in U87MG cells promoted in vivo the intracranial growth of
these cells as tumors in SCID mice and enhanced angiogenesis as
assessed by an increase in the number of CD31 positive endothelial
cells within the tumors. Nodal overexpression increased HIF-
la expression which in turn upregulated VEGF secretion while
knockdown of Nodal expression or by inhibiting Alk4 signaling
suppressed HIF-1o. expression and subsequent angiogenesis.
Nodal could also enhance phosphorylation of ERK1/2 as this
effect could be blocked by SB431542 through a CR-1/Alk4/
Smad?2/3-dependent signaling pathway. Interestingly, inhibition
of ERK1/2 phosphorylation suppressed HIF-1a induction which
subsequently impaired VEGF expression and angiogenesis.
In U87MG, high levels of endogenous CR-1 are expressed in
a small subpopulation of potential CSC [108]. Treatment of
UB7MG cells with exogenous CR-1 induces its own expression
in a dose-dependent manner by activating a Nodal/Alk4/Smad2/3-
dependent signaling pathway thereby engaging a feed-forward
auto-regulatory loop by transcriptional activation by exogenous
CR-1 through Smad Binding Elements (SBEs) within the promoter
region of the endogenous CR-1 gene [108]. This same mechanism
of autoregulation also been demonstrated in human embryonal
carcinoma cells and in human colon cancer cell lines [55,56]. In
addition, auto-induction of endogenous CR-1 by exogenous CR-1
was observed in MCF-7 breast cancer cells and in non-transformed
human kidney HT-29 cells. Following treatment of the U87MG
cells with recombinant CR-1, there was an expansion in the CSC
subpopulation in U87MG cells as assessed by the expression of the
CSC maker, Multi-Drug Resistant Transporterl (MDR1) [108].
MDR1 is in the ABC transporter family of membrane pumps that
utilizes ATP hydrolysis to efflux various chemotherapeutic drugs
from CSCs which explains their drug resistance. CR-1 increased
MDR1 expression from a basal level of 13% in the non-treated cells
to 37% in the CR-1 treated cells. Therefore, a bimodal distribution
and heterogeneous existence of both low CR-1 expressing U87TMG
cells and high CR-1 U87MG CSCs subpopulations might also
exist in a dynamic equilibrium in other different types of tumors
such as melanomas, embryonal carcinomas and potentially breast
carcinomas and in in different tumor subpopulations [55,56,64,76,
86,97,100,102,108]. The percentage of such CR-1 positive low and
high cells between different tumors and/or tumor subtypes may
vary by several-fold depending upon the CSC niche properties
and cell types within the niche such as macrophages and secreted
growth factors and cytokines such as TGFB, Wnt3, TNFa, IL-6
and BMP 2/4 from these different supportive niche cell types that
might either enhance or repress CR-1 expression.
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Regulatory Peptides That Function as Tumor
Growth Factors Via Direct Trophic Effects or
Indirectly Through Angiogenesis

A New Definition of Endocrine Organs

Fifty years ago, there were seven major anatomical tissue
types (glands) that had been defined as endocrine in nature by
virtue of their ability to produce and release peptide hormones into
the blood stream and in turn, having distal effects on other organ
function. Adrenal, parathyroid, thyroid, pituitary, pancreas, testis
and ovary were considered classic endocrine glands. Today it is
well recognized that almost every know cells type can produce
and release bioactive peptides that have global effects on the host
body. The heart, lung, GI tract, skin, adipose are only a few of
the newly recognized tissue types having endocrine activity [109-
114]. Anomalies in these newly defined endocrine organs can have
detrimental effects on the host due to an abundant release of peptide
hormones. For example, individuals with overactive adipose in
obesity are known to have an increased risk for type-Il diabetes,
cardiovascular disease and cancer [115,116]. Adipocytokine
secretions from excessive fat deposits in breast cancer patients
can augment cancer cell proliferation, enlarge tumor stem cell
populations, enhance angiogenesis/lymphoangiogenesis, drive
pro-inflammatory environment and stimulate invasion [117-
120]. Chronic inflammation is an established hallmark of cancer
promotion primarily mediated by cytokines produced from
infiltrating immune cells [121-125]. Interestingly, hematopoietic
tumor infiltrates can also produce and respond to classic peptide
hormones such as Vasoactive Intestinal Peptide (VIP) and Prolactin
(PRL), transitioning breast cancer cells into a more aggressive
phenotype by trans-activating EGFR/HER2, inducing neoplasm
VEGF expression, enhancing microenvironment inflammation
and augmenting metastasis [126-133].

Post-Translational Modifications of Regulatory Peptides
and Resulting Biological Activity

All regulatory peptides are derived from larger precursor
proteins denoted as the prepro-hormone comprised of the
secretory signal peptide (specifying secretion) and the prohormone
component which is further enzymatically processed into
biologically active peptides. Several functional peptides can be
produced from a single prohormone, the best example of which
is Pro-Opiomelanocortin (POMC) hormones: ACTH, alpha-
melanocyte-stimulating hormone (aMSH), gamma-melanocyte-
stimulating hormone (yMSH), beta-endorphin (BEND) and
beta-lipotropin hormone (BLPH) [134]. There are a multitude
of post-translational modifications that can occur to proteins or
peptides that include phosphorylation, acetylation, cysteinylation,
farnesylation, glyosylaiton, sulfation, oxidation, palmitoylation,

pyroglutamation, methylation, and amidation. When evaluating
all of the structural alterations listed, it has been shown that only
Carboxy-Terminal Amidation (CTA) exclusively tracks with
bioactivity [135-137].
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Figure 5: Complete AA sequence of pre-pro-human gastrin-releasing
peptide (AA1-77). NCBI Accession number NP_002082.2. Identification
of trypsin-like and carboxypeptidase cleavage sites at basic arginines.
Targeted glycine-intermediate peptide that serves as a substrate for
Peptidyglycine a-Amidating Monooxygenase (PAM) processing that
converts the amine of glycine to the amide of it penultimate AA neighbor
methionine resulting in a bioactive peptide. GRP (Met-amide, prepro GRP
24-50).

A distinct Amino Acid (AA) motif in the precursor protein
codes for CTA to take place via a series of enzymatic processing
steps [138-140]. Glycine is the only known AA to donate its
amine to become the amide of its penultimate neighbor within
the precursor’s infrastructure [139]. Generally, CTA starts with
a trypsin-like cleavage event occurring within the pro-hormone
at a basic AA (arginine or lysine), followed by carboxypeptides
activity to give rise to the glycine-intermediate moiety. This in turn
is acted upon by an enzyme complex denoted as Peptidylglycine-
a-Amidating Monooxygenase (PAM) which is composed of
Peptidylglycine a-Hydroxylating Monooxygenase (PHM) that
hydroxylates the a-carbon on glycine next to its acid residue
and Peptidyl-a-Hydroxyglycine a-Amidating Lyase (PAL) that
amidates the penultimate AA to glycine and forms glyoxylate as
a by-product [140,141]. The prepro-human Gastrin-Releasing
Peptide (GRP) diagram given in Figure 5 reveals the enzymatic
processing steps necessary to generate a bioactive peptide amide
from its precursor molecule.
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Figure 6: PAM enzymatic cascade that takes place on the glycine-extended intermediate substrate of GRP, ultimately results in the formation of the
bioactive methionine amide derivative.

Step 1: Formation of the glycine-extended intermediate after two rounds of carboxypeptidease to remove adjacent basic arginines.
Step 2: Peptidylglycine a-Hydroxylating Monooxygenase” (PHM) hydroxylates the a-carbon on glycine.

Step 3: Peptidyl-a-Hydroxyglycine a-Amidating Lyase” (PAL) amidates glycine’s penultimate neighbor AA methionine to for the fully
functional bioactive peptide amide, plus generating glyoxylate as byproduct.

*Boxed area designates the site of amine to amide conversion.

(Figure 6) demonstrates the enzymatic cascade that takes place during the generation of the carboxy-terminal methionine-amide that is
critical for receptor binding and biological activity of GRP.

C-Terminal Amide A
Derivative
-C-Glycine
27
Free Acid Glycine-Extended
Derivative Intermediate Derivative

Figure 7: Bioactivity designation and structural comparison of inactive GRP glycine-extended intermediate (A), full functional bioactive amidated
methionine derivative (B) and the methionine free-acid form (C) that is 100-1,000 times less potent than its amide counterpart.
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(Figure 7) gives a structural comparison of GRP’s glycine-extended intermediate (having no activity), its methionine amide (fully
active) and the free-acid derivative (that is 100-1,000 times less potent than the amide). Peptide amides for all twenty commonly known
AAs have been identified in nature having different signaling amidation motifs that flank the amide donor glycine [138].

Glycine Is The Only Know Amino Acid

To Function As An Amide Donor
For Its Penultimate Neighbor

Amide Recipient Can
Be Any Amino Acid

E xamples

Multlple Proteolytic
Cleavage Sites

Met Gastrin-Releasing Peptide (GRP) -Lys-Lys-
Tyr Adrenomedullin (AM) -Arg-Arg-Arg-Arg-Arg-
Arg proAM-NH2-terminal 20 peptide (PAMP) -Lys-Arg-
Gly Salcut-NH2 -Arg-Arg-Lys-
Phe Gastrin or Cholecystokinin (G or CCK) -Arg-Arg-
Gly Arginine Vasopressin -Lys-Arg-

Pro Calcitonin (CT) -Lys-Lys-Arg-
Val [-Melanocyte Stimulating Hormone (IMSH)  -Lys-Lys-Arg-Arg-
Leu Growth Hormone Releasing Hormone (GHRH) -Arg-GIn-

lle Corticotropin-Releasing Factor (CRF) -Lys*

Figure 8: All twenty known AA have a naturally occurring peptide amide product found in nature. This diagram, utilizing the AA backbone of GRP,
presents several examples of human peptide hormones with flanking basic AA cleavage sites identified, all using glycine as their amide donor AA, and
giving various AA that can be enzymatically converted to their bioactive peptide amide.

(Figure 8) gives both the flanking basic AA motif and
recipient AA amide for a few representative examples of bioactive
human peptide hormones. PAM deficiency in mice is embryonic
lethal, validating the critical role peptide amidation plays during
fetal development as well as in wound repair, immunity and
carcinogenesis [142-144]. CTA enzymes are highly conserved
in evolution and are found in lower order invertebrates such as
nematodes, confirming their importance in biological systems
[145]. Interestingly, when assessing well established growth factors
for the presence of amidation motifs in their respective precursor
proteins, it becomes evident that there are many more possible
bioactive components yet to be recognized given that pre-pro-
epidermal growth factor has eleven possible peptide amides, the
precursor of hepatocyte growth factor has six, preproendothelin-1
has five, intact transferrin has nine (is transferrin a prohormone
unto itself?), and the precursor of Insulin-Like Factor-1 (IGF-I) has
two potential amide products [138]. We have actually generated an
in-silico predicted peptide amide found in the alternatively spliced
IGF1-B prohormone coined Tyr-23-Arg-NH2 (Y-23-R-NH2) and
found it to be mitogenic for human tumor cells [146]. Y-23-R-NH2
did not mediate its cancer cell grow effects via the IGF1 receptor
but through a unique high affinity binding site nor did Y-23-R-OH

(free-acid) demonstrate any trophic ability or antagonize peptide
amide binding [146]. Given that Nature has the benefit of protracted
evolutionary time to develop biological control mechanisms via a
Push/Pull or Ying/Yang phenomenology, it is not too surprising
to find the existence of several deamidating enzymes that can
convert amides to their free-acids counterparts thereby modulating
bioactivity and having growth inhibitory effects in both the normal
and malignant setting [147-150].

Unique peptide amides that augment tumor
growth

For the remainder of this review we will be targeting three
unique peptide amides that included Amphibian Bombesin (BN)
and its mammalian counterpart GRP, Adrenomedullin (AM), and
a split product from the apelin gene denoted as Selective Apelin-
36 Cutting & Amidation peptide or Salcut-NH2 (SCNH2). These
amidated mediators function as either direct autocrine/paracrine
cancer cell growth factors or induce global angiogenic effects
throughout the tumor microenvironment. As such, they have been
investigated as potential targets for the clinical intervention of solid
tumor growth or as imaging tools for the anatomical localization
of cancers.
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Bombesin/Gastrin-Releasing Peptide (BN/GRP)

BN is tetra-decapeptide-amide (Pyr-GIn-Arg-Leu-Gly-Asn-
GIn-Trp-Ala-Val-Gly-His-Leu-Met-NH2) initially isolated from
the skin of the European frog Bombina bombina and shown to
have biological function in mammalian systems [151]. There are
two human homolog of BN, having the identical carboxyl-terminal
heptapeptide amino acid sequences, initially isolated from pig
stomach and spinal cord, and were termed GRP and Neuromedin-B
(NMB) respectively [152,153]. BN-like immune-reactivity or
mRNA has been found in the human brain, gastrointestinal tract,
pancreas, lung, and breast, showing elevated expression in disease
states [154-156]. BN or GRP have been shown to stimulate the
growth of Swiss 3T3 cells, normal fetal lung, and cancers of the
lung (SCLC/Non-SCLC), stomach, colon, head/neck, pancreas,
prostate, and breast [157-166]. The cDNA of GRP, NMB and their
respective receptor (GRPR/BB2, NMBR/BB1) have been cloned
and shown to have a high degree of conservation in mammals
[167-172]. Knockout mice for GRPR/BB2 and NMBR/BB1
have been generated and where shown not to be embryonic lethal
but have resulting phenotypes involving locomotor activity and
thermoregulation [173,174]. A third BN-like receptor denoted as
BN receptor subtype-3 (BRS-3/BB3) has been identified, cloned
and a knockout mouse generated that develops metabolic defects
and obesity [172,175].

Several reports now exist that define a variety of BN/GRP/
NMB regulated signal transduction pathways induced either
directly through GRPR/BB2 and NMBR/BB1 or through the
transactivation of the Epidermal Growth Factor Receptor (EGFR)
that encompass cAMP, MAPK/ERK, PI3K and Akt [176-180].
When considering what factors upregulate GRP/GRPR expression,
it has been demonstrated that cigarette smoke, oxidative stress or
targeted pulmonary irradiation can elevate ligand/receptor levels in
human lung epithelial cells, phorbol esters increase expression in
small cell lung cancer cells and Type-I interferon and progesterone
can enhance GRP levels in the ovine uterus [181-187].

Given the prevalent role that GRP/GRPR plays in neoplastic
disease, multiple reagents have been developed to suppress GRP
induced cancer cell growth by either masking the ligand with
neutralizing monoclonal antibody, small molecule compounds
preventing receptor interaction or peptide antagonists that bind
receptor and sterically block ligand binding [171,188-191].
Such reagents have been shown to be effective in blocking GRP
mediated growth of human breast cancer or lung cancer cells
in the in-vitro or in-vivo settings either directly by suppressing
tumor cell division or by blocking tumor induced angiogenesis or
lymphoangiogenesis [161,162,165,191-194].

As previously discussed, chronic inflammation is a hallmark
of cancer progression and infiltrating immune cells can make or
respond to classic peptide hormones [121-133]. BN or GRP have
been shown to regulate immune function by increasing lymphocyte
or mast cell proliferation, augmenting macrophage, neutrophil,
mast cell chemotaxis, enhancing cytokine release from activated

macrophages, increasing vascular adhesion of monocytes, and
performing a critical role in TLR4 mediated disease [195-203].

Recent preclinical studies have generated promising results
for the use of labeled BN or GRP analogs to image human tumors
with high GRPR expression that include cancers of the breast,
lung, and prostate [204-209].

Adrenomedullin/Proadrenomdullin
Peptide (AM/PAMP)

AM is a 52 AA tyrosine amide peptide having a single
disulfide bond in the mid portion of the molecule, initially isolated
from a human pheochromocytoma, shown to stimulate cAMP
activity, and elicit a dose-dependent hypotensive response in rats
[210]. Human AM cDNA has been cloned and the prohormone
was predicted to contain an additional bioactive peptide amide
denoted as “proAM N-terminal 20 peptide” (PAMP) [211]. The
predicted PAMP amidation motif and peptide is highly conserved
in rat and porcine prepro hormones [212,213].
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Figure 9: Complete AA sequence of prepro-human adrenomedullin (AA1-
185) that identifies enzymatic processing sites for both AM (Try-amide,
prepro AM 95-146) and PAMP (Arg-amide, prepro AM 22-41). GenBank
Accession number BAA03589.1.

13

Volume 2019; Issue 01



Citation: Salomon DS, Cuttitta F (2019) Novel Angiogenic Peptides in Breast Cancer. Adv Breast Cancer Ther: ABCT-112. DOI: 10.29011/ABCT-112/100011.

(Figure 9) illustrates the AA sequence of pre-pro-human
AM and enzymatic processing site required for the generation of
bioactive peptides. As was discussed previously in this text, the free
acid and glycine-extended intermediates of peptide amides have
diminished or completely absent bioactivity, representing a similar
relationship that has been observed with AM [214, 215]. PAMP
was proven to be a bioactive arginine amide that can function as a
vasodilator in rats and a bronchodilator in guinea pigs [216,217].
AM mRNA and peptide have been shown to be expressed in a
variety of animal tissues including normal adrenal, heart, lung,
kidney, brain, vascular endothelium, liver, and intestine [211,218-
220]. AM has been implicated to play a critical autocrine and/or
paracrine role in mouse and rat embryogenesis and it is highly
expressed in amniotic fluid and fetal tissue [221,222]. Genetically
altered mice having non-functional AM die at mid-gestation with
extreme hydrops fetalis and cardiovascular abnormalities [223].

Calcitonin Gene-Related Peptide (CGRP) and AM are
related peptides with distinct pharmacological profiles [224]. The
individual biological function for each peptide is mediated through
a common primary receptor called the Calcitonin-Receptor-
Like Receptor (CRLR/CLR), which is structurally modified to
selectively respond to a given peptide by the interaction with co-
receptors termed Receptor-Activity-Modifying-Proteins (RAMPS)
[224]. The CRLR/RAMP1 complex initiates CGRP bioactivity
while CRLR/RAMP2/RAMP3 controls AM function [224]. An
AM-Binding Protein (AMBP-1) has been identified in plasma that
is identical to complement factor H which augments AM induced
breast cancer cell line growth without effecting ligand/receptor
affinity. AM/AMBP-1 complexing has a negative effect on the
complement cascade and suppresses AM’s bacterial defensin
capabilities [225]. Interestingly, CR-1 can upregulate RAMP2
expression in mammary epithelial cells (Table 3).
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(Cumulative data obtained from assessment of 12,600 mouse genes from Affymetrix Oligo Array; from the 588 Mouse cDNA Gene Atlas Clontech
Filter array and from RTPCR of 75 different embryonic genes. Expression of 90 gene found to be significantly altered in 2-3 separate assays)

Table 3: Gene profiling in CR-1 transduced EpH-4 mouse mammary epithelial cells.
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AM orchestrates a major impact on species survival given
its evolutionary conservation, broad spectrum regulatory role on
animal physiology, and its critical involvement in normal cell
proliferation during embryogenesis and wound repair [223,226-
228].

1 10 20
A

Human  Tyr-A Phe-Gln-Gly-Leu-Arg-Ser-Phe-Gly-Cys-Arg-Phe-Gly-Thr-Cys-Thr-Val-

Tyr-Arg-Gln-Ser-Met-A
Rat  Tyr-Arg

y-Ser-Arg-Ser-Thr-Gly-Cys-Arg-Phe-Gly-Thr-Cys-Thr-Met-

Cow  Tyr-ArgGln Asn-Phe-Gln-Gly-Leu-Arg-Ser-Phe-Gly-Cys-Arg-Phe-Gly-Thr-Cys-Thr-Val-

Dog  Tyr-Arg-Gn-Ser-Met-Asn-Asn-Phe-Gln-Gly-Pro-Arg-Ser-Phe-Gly-Cys-Arg-Phe-Gly-Thr-Cys-Thr-Val-
Pig  Tyr-ArgGln

Met-Asn-Asn-Phe-Gln-Gly-Leu-Arg-Ser-Phe-Gly-Cys-Arg-Phe-Gly-Thr-Cys-Thr-Val-

30 40
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50
Human  Ser-Pro-GIn-Gly-Tyr-NH;
Rat  Ser-Pro-Gln-Gly-Tyr-NH;
Cow  Ser-Pro-GIn-Gly-Tyr-NH,

Dog  Ser-Pro-GIn-Gly-Tyr-NH,

Pig  Ser-Pro-GIn-Gly-Tyr-NH,

Figure 10: Identification the high degree of evolutionary conservation
found for AM in mammalian species when comparing the AA sequence
of the peptide amide derived from diverse species of human (Accession#
BBAO03589.1), rat (Accession# AAB60519.1), cow (Accession#
AA123827.1), dog (Accession# AAD09957.1) and pig (Accession#
BAA03590.1). Note all products contain conserved disulfide bond regions
and identical carboxyl-terminal hepta peptide amide AA sequence that
has been proven critical for bioactivity [214,215]. AA differing from the
human AA sequence is indicated by “*”. Interesting that both dog and pig
AM differ by one AA from the human sequence in a biologically irrelevant
region of the peptide.

(Figure 10) compares the AA structure among diverse
mammals, it is interesting to note that there is only a single AA
difference between human, dog and pig AM. AM-like peptides are
also expressed in non-mammalian vertebrates (cartilaginous and
bony fish, amphibians, reptiles, and birds), found in invertebrates
(starfish), and has recently been demonstrated to have growth
promoting qualities in plants [229-231].

Mitogenic events associated with embryogenesis, wound
repair and carcinogenesis all share common growth potentiating
pathways that are corrupted in disease states [117,232,233]. We
have previously discussed the involvement of AM in embryogenesis
and wound healing and will now present a historic overview of
the peptide’s participation in human tumor development, growth,
invasion and metastasis. AM was initially shown to function as a
trophic factor for murine Swiss 3T3 fibroblast cells by elevation
intracellular cAMP [234]. Follow up studies demonstrated that
AM was expressed in a variety of human lung cancer cell lines
(carcinoids, large cell CA, adeno CA, and squamous CA) and that
the peptide amide could mediate autocrine and/or paracrine tumor

cell growth [118,235]. Over the years, numerous solid human
neoplasms have been shown to produce AM, including tumors
of the brain, colon, stomach, kidney, skin, pancreas, adrenals,
prostate, uterus, ovary, and breast [236-250]. Several reports
have implicated AM to underpinning cancer progression via the
regulation of tumor cell proliferation, migration, angiogenesis,
and inflammation, which are modulating events that ultimately
enhances the malignant process [241,244,250-254]. Multiple
reagents have been developed (neutralizing antibodies, small
molecule inhibitors, shRNA, peptide receptor antagonists) that
block AM bioactivity and have been shown to suppress in-vivo
cancer cell growth, offering promising therapeutic application
potential in the clinic [189,235,255-259]. Cumulative scientific
evidence has reported that AM can induce a wide range of internal
cell signaling which include initiating Ca2+ mobilization, elevating
intracellular cAMP and activating MAPK/PKA/PKC/PI3K/Akt/
eNOS signal transduction pathways [234,239,251,260-262].
Some of the reported factors that can upregulate AM expression
are hypoxia, phorbol ester, retinoic acid, Interleukin-1beta (IL-
1B), Tumor Necrosis Factor-Alpha (TNFa), Interferon-Gamma
(INF-y), Lipopolysaccharide (LPS), EGF, FGF, PDGF, CR-1 and
cigarette smoke [263-268].

AM represents yet another example of a peptide amide
functioning as a modulator of the immune response expressing
first line defensin capabilities as an antimicrobial compound and
regulating the activity of tissue infiltrating leukocytes. Defensin-
like compounds are small protein primitive immune products of
both plants and animals that lyse bacteria by intercalating into the
outer cell wall of pathogens and disrupt the selective permeability
barrier allowing the free movement of water and causing a lytic
event in the invading organism, qualities shared by both AM
and PAMP [269-271]. Several members of the leukocyte family,
include macrophages, mast cells, basophils and lymphocytes, have
been shown to express AM, CRLR, RAMPs and play a role in
regulating immune function [272-278]. Recent evidence has shown
that tumor mast cell infiltrates in breast cancer patients augment
tumor progression and track with disease severity [279-281].
Mast cell mobility exhibits a biphasic response to AM gradients
produced by cancer cells in that they migrate up from lower to
higher concentrations of the peptide amide and once within the
tumor infrastructure they stop their movement and de-granulate
releasing angiogenic factors such as VEGF, MCP-1, basic FGF
and AM, and can thereby enhance malignant progression and
metastasis [274]. Recent studies have revealed that tumor-
expressed AM accelerates breast cancer bone metastasis and that
small molecule AM inhibitors can effectively block this process in
an animal model [282].

Stromal fibroblasts of tumors, also known as Cancer
Associated Fibroblast (CAFs), are phenotypically different
from normal tissue fibroblasts in that they have been usurped
by the tumor cells to produce a large array of growth promoting
substances that cross-talks to adjacent cancer cells augmenting
tumor progression [283]. In breast cancer, CAFs have been shown
to promote tumor cell growth and convey therapy resistance,
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hence are actively being pursued as a new drug target for clinical
intervention of disease [284]. Along this same theme, new evidence
has been revealed that CAFs produce large quantities of AM in
breast cancer that contribute to the regional expansion of tumor
blood vessel formation driving neoplasm progression and that such
events can be blocked with anti-AM, anti-AM receptor antibodies
or the peptide antagonist AM22-52 [285]. Given the collective
cellular components encompassing the tumor microenvironment
that include cancer cells, infiltrating leukocytes (macrophages,
mast cells, basophils, and lymphocytes), endothelial cells and
stromal fibroblasts, all of which can produce and release AM, it is
relatively easy to see how critical a role this neuropeptide plays in
the progression process of carcinogenesis.

Lastly, given that this review article is targeting novel
angiogenic factors of breast cancer, it should be noted that AM
is expressed in luminal epithelium of small/large ducts and in
terminal end buds during normal mammary gland development,
is elevated during lactation and AM/AMBP-1 are found in milk
as beneficial supplements that participate in gut maturation of
the neonate [286-288]. Hence, under normal circumstances this
peptide amide is already present in the ductal epithelium of the
mammary gland and when malignant transformation takes place,
all of AM’s previously discussed growth promoting biological
assets can contribute to breast cancer progression.

Apelin/APELA/ELABELA/ELA/Toddler/APJ/AR/
APLNR/SalcutNH2

The natural ligand for the orphan G protein-coupled receptor
APJ was initially isolated from bovine stomach tissue extracts,
shown to bind APJ at high affinity, and stimulate APJ cell signaling.
The ligand was produced from a 77AA prepro-molecule based on
human cDNA cloning data, and named “apelin” as a truncation of
APJ endogenous ligand [289]. Further analysis of the predicted
precursor protein showed that several synthetic carboxy-terminal
peptide derivatives can activate APJ signal transduction with
apelin-13 (last 13 AA of the prepro-hormone) and its pyroglutamate
homolog being the most potent ligands [289].
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Figure 11: Complete AA sequence of prepro-human apelin (AA1-77) that
identifies enzymatic processing sites for apelin-36 (AA42-77)/apelin-13
(AA65-77) and a potentially new peptide amide found within the apelin
precursor. UniProKB/Swiss-Prot Accession No. Q9ULZ1.1.

(Figure 11) represents the human prepro-apelin precursor
molecule along with proven and predicted enzymatic processing
sites. Later on in this text we will discuss in detail a putative
peptide amide derived from apelin-36 and its implications in both
normal and malignant cell growth.

Evolutionary Conservation of the Apelin Gene in Animals
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Figure 12: Conservation of apelin-13 structural integrity is maintained
over 450 million years of evolutionary adaptation with a single AA
substitution at the amino-terminus of the peptide (GIn- > Pro) occurring
when going from humans to bony fish. It is interesting to note that the
putative amidation motif within apelin-36 (indicated by the highlighted
GGRRK or GGRKK) that coded for SCNH2 is consistently carried in
all mammals, maintained in marsupials representing transitionary animals
going from egg laying to live birth, and lost in lower vertebrates like frogs
and fish. UniProKB/Swiss-Prot, NCBI or GenBank accession numbers
are given below each animal prepro-hormone AA sequence. Diagram is a
modification of the figure presented in Fang C et al.

(Figure 12) demonstrates that the conservation of apelin-
13 structural integrity is maintained over 450 million years of
evolutionary adaptation with a single AA substitution at the
amino-terminus of the peptide (GlIn- > Pro) occurring when going
from humans to bony fish. It is interesting to note that the putative
amidation motif within apelin-36 is consistently carried in all
mammals, maintained in marsupials representing transitionary
animals going from egg laying to live birth, and lost in lower
vertebrates like frogs and fish.

A recent review by Shin K, et al. provides a comprehensive
overview of the human apelinergic system and its relationship with
normal and disease states [290]. Apelin/APJ have been shown to
be ubiquitously expressed in brain, vascular endothelium, heart,
lung, gut, pancreas, adipose, liver, kidney, adrenal gland, testis,
ovary, thyroid, and bone [290-294]. A variety of human disease
are attributed to anomalies in apelin/APJ expression and include
cardiovascular disorders, obesity, type-11 diabetes and cancer
[295]. Hypoxic insult causes a marked elevation of apelin/APJ
expression followed by activation of the MAPK and PI3K/Akt
pathways which leads to enhanced proliferation of endothelial
progenitor cells [296,297]. Interestingly, in two independent in
vivo studies on oxygen deprivation disease involving stroke and
acute lung injury in rats, therapeutic intervention with exogenous
apelin-13 reduced disease severity, enhanced vascular stability
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and suppressed inflammation induced tissue damage while APJ
antagonist enhanced these processes [298,299]. The expression
of apelin or APJ are elevated in cancers of the lung, liver, breast,
kidney, colon, prostate and brain [295]. Apelin can promote
lymphangiogenesis and lymph node metastasis in a mouse model
of melanoma [300]. Human cholangiocarcinoma cells express
APJ receptor and their growth was markedly diminished by the
APJ antagonist ML221 both in vitro and in vivo [301]. In cancer
patients, apelin blood levels track with disease stage representing
a possible risk marker for cancer progression [302]. In vitro studies
with MCF-7 cells have demonstrated that exogenous addition of
Apelin-13 can augment breast cancer cell proliferation and gel
matrix invasion in a dose-dependent manner through the p44/42
MAPK signaling pathway [303]. Western blot analysis of patient
colon cancer tissue showed that apelin, APJ and Notch 3 were
elevated in these tumors but not in patient matched normal tissue
[304]. Follow-up studies by the same group, using the human
colon cancer cell line LS180, demonstrated that these cell actively
produce and secret apelin, that the peptide can function as an
autocrine growth factor that increases cell proliferation via a Notch
3 signaling pathway and that inhibition of either apelin or Notch 3
could block the mitogenic process [196].

Two independent studies have identified the existence of a
second peptide that binds the APJ receptor termed ELABELA/
ELA/Toddler. ELABELA/ELA was present in human embryonic
stem cells and shown to a secreted 37 AA peptide that regulated
cardiovascular system development in zebrafish, with null
mutations being lethal [305]. Toddler, identical to ELABELA/
ELA, was shown to be important initiating an early signal that
promotes gastrulation movement during the embryogenesis of
zebrafish [306]. ELABELA/ELA/Toddler are now referred to
as apelin receptor early endogenous ligand or apela based on
UniProtKB/Swiss-Prot: PODMC3 universal nomenclature.

Prepro Apelin
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Pyroglutamate Apelin-13 pERPRLSHKGPMPF
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Figure 13: Compares AA sequence of human apelin (UniProKB/Swiss-
Prot Q9ULZ1.1) verses apela (GenBank AHW47894.1) prepro-hormones
and their reported processed peptide derivatives. Boxed area indicates
“secretory signal sequence” for each precursor peptide.

Note: Pyroglutamate (“Pry-E” designation) is derived from
the amino-terminal glutamine (“Q” designation). Highlighted AA
represents the bioactive sequence dictating receptor recognition
and bioactivity for each truncated in isoforms of apelin or apela.
Diagram represents a modification of the figure from Chapman
NA, et al. [307].

(Figure 13) compares the AA sequence of human apelin to that
of apela, defines the reported processing peptides from the prepro-
hormone and identifies the APJ binding region of each peptide
[307]. Loss of apela expression in mice has been shown to induce
low penetrance embryonic lethality and effects early mesodermal
development [308]. Down regulation of apela expression can lead
to pulmonary arterial hypertension in human and rats, a disease
condition that can be compensated for by treatment with exogenous
peptide in animal models [309]. Various histological types of human
ovarian cancer express apela and experimental manipulation of the
peptide in ovarian cell lines tracks with increased or decreased cell
growth and migration in a p53-dependent manner [310]. Recent
experimental studies of apela mutants in developing zebrafish
showed mesodermal cell migration under peptide control that was
downstream of Nodal/CR-1 signaling and indirectly modulating
endodermal cell movement by the Cxcrda pathway [311].

Analysis of the human prepro-apelin protein as presented in
Figure 11 reveals the possibility of a secondary bioactive peptide
derived from the carboxy-terminal end of apelin-36. As previously
discussed in this text, peptide amidation consistently tracks with
bioactivity and is defined by a distinct AA sequence motif comprised
of a glycine followed by basic amino acids (lysine or arginine)
[137,138]. Within the mid-portion internal AA structure of apelin-
36, we have identified a bona fide AA sequence (gly-gly-arg-arg-
lys) that would potentially dictate enzymatic processing events that
could lead to the formation of a bioactive glycinie-amide peptide
(leu-val-gln-pro-arg-gly-ser-arg-asn-gly-pro-gly-pro-trp-gln-gly-
NH2) [312]. As previously discussed, this predicted peptide amide
was named Salcut-NH2 (SCNH2) [312]. Although SCNH2 was
derived from apelin-36, it had a totally different AA sequence than
apelin-13 and was shown to interact with a different receptor than
APJ. There is historic precedence to show that a peptide amide
can be derived from another non-peptide amide hormone as seen
with ACTH and its internal partner aMSH [141,313]. We have
previously demonstrated that in-silco analysis of prepro-hormones
can be a viable approach to identify new bioactive peptide amides
as was shown with Y-23-R-NH2 derived from the IGF-1B precursor
and PAMP identified in the prepro-AM molecule [38,211,216,217].
To validate the importance of CTA in the predicted glycine-amide
SCNH2 peptide, the following peptide isoforms where synthesized
and evaluated for bioactivity: SCNH2 (peptide amide), SC-OH
(free-acid derivative) and SC-Gly (glycine intermediate peptide).
These peptide isomers were evaluated in a variety of bioassays
and only the SCNH2 (peptide amide) proved effective in inducing
a biological response. Initial proliferation studies with SCNH2
were performed using APTlite one-step firefly luciferase assay and
the peptide amide was shown to give a dose-dependent mitogenic
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response with statistical differences over negative controls at
1nM concentrations using primary Human Umbilical Vein Cells
(HUVEC), Human Microvascular Endothelial Cells (HMEC-1),
Porcine Endothelial Cells (PAE), Mouse Mammary Epithelial
Cells (NMuMG), human breast cancer cells (MCF-7/T47D),
human fibrosarcoma cells (HT-1080), human leiomyosarcoma cells
(SK-LMS-1) and human mast cells (HMC-1). SCNH2 was shown
to be a potent angiogenic factor which was able to induce, in a
dose-dependent manner, HUVEC tube formation with a statistical
significant response at the 10pM range. Similar angiogenic
effects were seen using the rat aortic ring assay or using chick
embryo chorioallantoic membrane analysis. SCNH2 was shown
to activate p44/42 MAPK, PI3K/Akt, p38 MAPK, CXCR4 signal
transduction pathways and enhance migration and invasion of
human melanoma cells (MB435). MB435 cells bound biotinylated
SCNH2 at high affinity and this interaction was not blocked SC-
OH (free-acid), SC-Gly (glycine intermediate), apelin-13 nor other
glycine amide peptides (luteinizing hormone-releasing hormone,
arginine vasopressin, or oxytocin). Interestingly, SCNH2 induced
phosphorylation of p44/42 MAPK or PI3K/Akt on MB435 cells was
resistant to pertussis toxin treatment but sensitive to cholera toxin,
the complete opposite of what was seen with apelin-13 activating
the APJ receptor [314]. Given the combined data obtained from
the two previous MB435 studies, it becomes abundantly clear
that SCNH2 interacts with a yet to be determined novel G-protein
coupled receptor that is independent of APJ.

A series of interesting findings has been recently reported
that link apelin/APJ with Nodal/TGFB/CR-1 downstream
signaling which modulates stem cells activity in both embryonic
cardiogenesis and early carcinogenesis [315,316]. As apelin/APJ
are known to modulate angiogenesis, the precise mechanism
how vascular elongation actually occurs has remained elusive.
Independent studies by Del Toro R et al and Palm MM et al
have identified an anatomical separation of apelin and APJ at the
leading edge of the sprouting blood vessel where tip cells express
apelin and stalk cells express the APJ receptor, thus defining
a biological push/pull ligand/receptor relationship that drives
microvasculature advancement [317,318]. A relatively new study
done by the National Cancer Institute demonstrates that APJ
activates JAK1 which regulates tumor responses to INF-y and
that immunotherapies of adoptive cell transfer in mouse models
are reduced in efficiency when APJ is lost or mutated leading
to a reduction in therapeutic immunomodulation [319]. Finally,
glioblastoma is a rapidly advancing brain tumor associated with
poor clinical outcome and having a 50% mortality rate 15 months
after diagnosis. Ongoing studies by Team SOAP (University of
Nantes, France) have demonstrated a novel apelin/APJ nexus point
between endothelial cells (ligand donor) and glioblastoma stem
cells (receptor expressing recipient) that drives tumor proliferation
and augments plasticity, progressionary events that can be blocked
by the APJ antagonist MM54 inducing tumor regression and
increased survival in animal models [320,321].

Summary

The consideration that single modality therapy in cancer
treatment including breast cancer has proven to be virtually
ineffective. Therefore, novel combinatorial therapeutics and
new targets are needed to treat primary cancer initiation, tumor
growth, metastasis and angiogenesis at early stages in each of
these biological processes. We have attempted to elucidate a
number of novel proteins and peptides that have proven to be
involved in these different stages of cancer progression. CR-1,
Nodal, GRP, AM, Apelin and SCNH2 have been shown to interact
at a biological level in cancer progression and CR-1 has been
demonstrated to directly regulate AM, RAMP-3, Apelin, APJ and
Apela expression through a Nodal and Smad-dependent signaling
pathway. Moreover, each of these proteins/peptides can directly
regulate the expression of more classic angiogenic peptides such
as VEGF, FGF, angiopoietin and some of their cognate receptors
which can further be modified by micro-environmental agents such
as hypoxia, inflammatory cytokines, cancer stem cell transcription
factors, regulatory signaling pathways and systemic hormones
(Figure 4 and Table 3). In conclusion this new class of angiogenic
peptides that have multiple biological activities may represent
novel targets in cancer for therapeutic intervention.
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