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Editorial 
Thyroid Hormones (THs) display a key activities during the 

ordinary development [1-53] through genomic and non-genomic 
actions [51]. Extra nuclear or non-genomic actions of THs have 
been found in the cellular organelles, cytoplasm and plasma 
membrane [51,54,55]. Also, these actions have comprised the 
activation of Mitogen Activated Protein Kinase (ERK/MAPK) 
and Protein Kinases (PKA & PKC), modulation of glucose 
transport and sodium, potassium and calcium ions, and regulation 
of Phospholipases (PLC & PLD) [56,57]. Specifically, Thyroxine 
(T4) can bind to a membrane integrin receptor (αVβ3) inducing 
MAPK activity [58,59]. In addition, THs regulate the behaviors 
of interferon-γ (IFN-γ) [60] and growth factors, such as vascular 
growth factors [61, 62], transforming growth factor-β (TGF-β) 
[63], and Epidermal Growth Factor (EGF), by non-genomic 
mechanisms [49,64,65]. T4 can increase the levels of TGF-β and 
EGF-induced the expression of c-fos and activation of ERK1/2 
and in HeLa cells [63]. Thus, non-genomic mechanisms of TH are 
not regularly stimulatory because of TH can inhibit the actions of 
TGF-β and stimulate the autocrine/paracrine effects of EGF [49]. 

On the other hand, THs can induce the action of insulin 
growth factor I (IGF-I) on account of integrin αVβ3 has a cell 
surface receptor for THs and co receptor for IGF-I [49,66]. IGF-I 
supports the cellular growth, regulates the glucose homeostasis, and 
stimulates the level of insulin sensitivity in the biological tissues 
through paracrine, autocrine, and endocrine actions [40, 50]. More 
importantly, in the smooth muscle cells, the action of IGF-I may 
be mediated by the receptors of and integrin αVβ3 [67,68,49]. 
Thus, the nature of integrin as a structural and functional may be 
very important to the actions of the muscles [69-72]. Recently, 
my group reported that T4 (sub nano molar free hormone 
concentration) prevents IGF-I stimulation of glucose uptake and of 
cell proliferation [49]. This action may be mediated by the crosstalk 
between the IGF-I receptor (IGF-IR) and integrin αVβ3[68].

Thus, these data propose that the non-genomic action can 
show a significant role during the regular development. Additional 

examinations are desired to distinguish the crosstalk between THs 
and their non-genomic actions during the development. In addition, 
several studies are needed to explore the interactions between the T4 
and IGF-I on the actions of PI3K and ERK1/2 signal transduction 
pathway in the glucose uptake and cell proliferation.
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