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Abstract
New antibiotics have not been developed since the late 80s. This situation poses a disadvantage to fight new multi-

resistant emerging bacteria, thus limiting treatment possibilities for infected patients. The use of antibiotics revolutionized 
the world of modern medicine and allowed the development of fields such as agriculture and livestock. Additionally, the use 
of antibiotics indisputably led to cure multiple illnesses. Nevertheless, bacterial resistance to antibiotics in recent years has 
become a world health threat that calls for a coordinated action of many parts involved to address antibiotics resistance. Now 
a days, new research is being developed to find innovative alternatives to face this problem. In the present work we analyze 
new trends in the field of synthetic biology research focused on antimicrobial peptides, phage therapy and the use of gene 
editing tools CRISPR for controlling Multiple Drug Resistant pathogens (MDR).
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Introduction
The infections caused by bacterial resistance to antibiotics 

have increased considerably in recent years and these are the reason 
for an important amount of morbidity and mortality worldwide, 
even in developed countries [1]. There are emerging Multidrug 
Resistant Organisms (MDRO) spreading such as S. aureus resistant 
to methicillin [2], Enterococcos resistant to vancomycin, and Gram 
negative bacteria resistant to third-generation cephalosporin’s and 
carbapenems [3]. It has been estimated for the next decades that 
the number of deaths caused by multiresistant pathogens will be 
higher than deaths caused by cancer [4]. The steep rise of bacterial 
multiresistant pathogens to antibacterial agents has sped up 
dramatically in the last 10 years [5]. The prospects are so somber 
that even organizations such as the World Health Organization 
(WHO), the Centers for Disease Control and Prevention (CDC), 
the European Centre for Disease Prevention and Control (ECDC) 
contemplate the possibility to consider infections caused by 
multiresistant pathogens (MDR) as a global illness emergency 

and a public health problem [6]. Antibiotics resistance is a natural 
phenomenon [7] that occurs in response to the strong evolutive 
selective pressure due primarily to the exposure of microorganisms 
to such compounds. Point mutations de novo in a susceptible 
bacterial population (for example, point mutations in union sites 
of ribosomes lends resistance to tetracycline) and the horizontal 
diffusion (transfer) of mobile genetic resistance determinants 
are probably the reason for the mass use of these drugs in clinics 
(hospitals) and even in the agroindustry. This hypothesis, is backed 
up by the low rates in the resistance percentages to the antibiotics in 
groups of pathogen bacterial strains before the antibiotic Age [8].

From a global point of view, to understand the evolution 
and impact of microbial resistance in 2007 the term “resistome” 
emerged for the collection of all the resistance genes to the 
antibiotics and their precursors in pathogenic and non-pathogenic 
bacteria; thus, to understand and study their origins, evolution 
and resistance manifestation [9]. The level of understanding of 
microbial resistance is constantly growing, given that resistance 
to antimicrobial is attributed to natural bacteria in the environment 
that do not cause diseases in humans [10,11]. These organisms 
have evolved during millions of years to interact, produce and 
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metabolize small molecules obtaining as a result the development 
of a broad spectrum of mechanism to modulate the activities 
of these compounds. The genes associated to this, often offer a 
greater selective advantage, easing the mobilization and horizontal 
transfer to other microorganisms that share a specific ecological 
niche [12]. The release of chemical agents (disinfectants, heavy 
metals and other contaminants) to the environment can accelerate 
the transfer of resistance genes to the surrounding bacterial 
population [13], which leads to an increment in the selective 
pressure and possible increase in the number of multiresistance 
isolates with evolutionary and adaptive advantages. Human beings 
have created ideal environments to bring together human infectious 
associated bacteria and microorganisms in the environment, for 
example, the use of waste water treatment plants [14], chemical 
production factories [15], and manure as row material for crops 
fertilization [16], create conditions that facilitate in great manner 
the mobilization and transfer of resistance genes. This translates 
into a collection of perfect scenarios for human bacterial pathogens 
and countless microbial generations to acquire a multitude of 
genetic elements that confer them adaptive and evolutionary 
advantages. Antimicrobial consumption is an important factor to 
consider in resistance generation, because there is a direct relation 
between the volumes and consumption patterns of antibiotics with 
the resistance variations to antibiotics in different countries [17]. 
The use in excess of antibiotics in humans and animals is greatly 
decreasing their activity and is one of the major threats to health 
worldwide, food safety and general sustainable development at 
the moment. The number of infections resistant to conventional 
treatments is on the increase; for example, tuberculosis [18], 
pneumonia [19], meningitis [20] amongst others, require more 
and more complex treatments combining various antibiotic 
compounds to fight them [21]. The multiple arsenal available to 
microorganisms to face antibiotics and protect themselves from 
their effects is broad and diverse. These go from mechanisms that 
include the enzyme inactivation of the antibiotic, modifications 
site-specific of the antimicrobial objective and mechanisms that 
eliminate toxic intracellular concentrations of the antibiotic by 
means of efflux pumps. Thus, showing the great genome plasticity 
that microorganisms have to adapt and survive. In spite of the 
urgent need of new antibiotics effective against resistant bacteria, 
very few compounds are being developed and most of them are 
similar to the different known types antibiotics [6]. Under this 
scenario, the urgent search of new strategies to combat persistent 
infections is an urgent need for the global public health. 

Antimicrobial Peptides
Antimicrobial Peptides (AMPs) are active molecules 

produced by a broad variety of organism as the main component 
in their innate immunological response. The main function of the 
AMPs is based in the host defense by means of microbial death; and 

additionally, there is solid evidence about their immunomodulation 
capability in superior organisms [22]. The AMPs are considered 
to be an interesting strategy to fight microbial multiresistance 
[23]. Their extensive antimicrobial activity spectrum and bacteria 
selectivity over eukaryotic cells, makes them appealing candidates 
for new pharmaceutical compounds. In fact, attempts to exploit 
their potential have been carried out and some of the AMPs have 
been tested in clinical trials [24]. Antimicrobial Peptides (AMPs) 
are effective antibiotic agents present in plants, animals and 
microorganisms [25]. These molecules have a broad range of action 
against bacteria, funguses and viruses. The amphipathic structure 
common in AMP favors their interaction and the anionic cellular 
wall and phospholipidic membrane insertion in microorganisms 
[26]. The activity of AMPs is frequently the result of the cellular 
membrane alteration. Nevertheless, the AMP can operate on 
different cellular targets including DNA [27], RNA [28], and other 
proteins [29] as a promising alternative compared to conventional 
antibiotics [30]. The AMPs are an essential part of the innate 
immunity that evolved in most of the living organisms during 2.600 
million years to fight the microbial challenge [31]. These small 
cationic peptides are multifunctional as innate immunity effectors 
on the skin and mucous surfaces [32]. These have proofed a direct 
antimicrobial activity against various bacteria, viruses, fungi and 
parasite species [30]. The AMPs have a broad range of secondary 
structures such as α-helix, β-pleated sheet with one or more 
disulfide bridges, loop and extended‐strands structures [24].

Their multiple structural forms allows them a broad range 
of antimicrobial activity. Beside these properties, certain crucial 
factors such as size, charge, hydrophobic and amphipathic 
properties and specific interactions with the cellular membrane 
components are attributed to their broad activity spectrum [33]. 
One of the most notable features is their small size that eases a 
quick diffusion and secretion outside of the cells which is necessary 
to have an immediate defense against pathogens [34]. Most of 
the antimicrobial peptides are cationic in a physiological pH due 
to the high arginine and lysine type of residue in comparison to 
negatively charged amino acid residues like glutamic acid and 
aspartic acid [26]. This occurs generally in a substantial proportion 
of hydrophobic residues (≥30%) with a net charge of +2 and +9. 
Additionally, the cationic character is usually reinforced by an 
amide type of modification in the C-terminal of the sequence 
[35]. The AMPs commonly adopt amphipathic structures with 
hydrophobic faces and hydrophilic ends which grants them union 
properties to bacterial membranes by means of electrostatic 
interactions of the cationic lateral chains of the amino acids and 
the polyanionic surfaces of bacterial walls [36]. This is true for 
the teichoic and lipoteichoic acids in Gram positive bacteria or 
the lipopolysaccharides in Gram negative bacteria [37] allowing 
them to eliminate specific target cells without damaging the hosts 
cells [38]. AMP from different sources have been reported such as 
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insects, plants. Mammals, marine invertebrates and environmental 
libraries (Figure 1)

Figure 1: NMR structures of antimicrobial peptides obtained from 
different origins. a) Human cathelicidin LL-37 (PMID 18818205 ;), 
b) Human β- defensin-1 (PMID 17071614 ;), c) Arenicin-2 (Arenicola 
marina PMID 17585874 ;), d) Cecropin A (Hyalophora cecropia PMID 
10424354 ;)

Mechanisms of Action
The size of AMPs can vary from 12 to 50 (or more) amino 

acids, which are cationic in general due to the excess of lysine and 
arginine amino acids. Approximately 50 % of the amino acids in 
the sequence are hydrophobic [39] prompting their quick action; 
they have a quick effect and a broad range of activity that includes 
Gram positive bacteria [40], Gram negative bacteria [41], fungi 
[42], encapsulated viruses [43], parasites [44]and even cancer cells 
[45]. In contrast to the antibiotics, the AMP´s mechanism of action 
is very different because the latter act as specific inhibitors for 

essential pathways in microbial cells; for example, inhibition of the 
cell wall synthesis (ß-lactam antibiotics: Penicillin and derivatives), 
inhibition of nucleic acids (quinolones: fluoroquinolones) or 
the inhibition of important metabolic routes (trimetroprim-
sulfametoxazol: Inhibition of the tetrahydrofolate synthesis route) 
amongst others. The AMPs due to their broad structural variety, 
do not directly address cellular targets like enzymes or receptors 
but they address common characteristics of bacterial membranes 
[46-48]. There is evidence that the induced membrane permeation 
by peptides is the result of their interaction with the lipid matrix of 
the cells membrane [49,50]. In Gram negative bacteria the external 
and internal membrane have anionic molecules facing towards the 
outside of the cell whilst most of the peptides are cationic [37]. 
These peptides interaction with negatively charged phospholipids 
would explain their specificity for bacterial membranes and not 
for the zwitterionic lipids of the extracellular layer of eukaryotic 
cells [51]. In regard to the mechanism by which AMPs destroy a 
membrane, it is possible that they induce a complete rupture of 
the bacteria or a disruption in such a way that allows the release 
of essential cell components at the same time that the membrane 
potential is diminished. The initial rupture mechanism consists of 
phospholipids recognition through electrostatic interactions.

Once the peptides are united to the membrane, they undergo 
a structural reorganization (reconfiguration) that goes from a 
denaturalized state to an amphipathic structure. The latter stabilized 
by the lipid interphase in water [39]. It is thought that due to this 
kind of interactions the membrane increases it permeability; this 
mechanism has not been established yet and for this reason the 
following five main models have been established (Table 1):

Mechanism of Action for AMPs

Mechanism of action for 
AMPs

Folder Model Membrane reduction
The peptides are not inserted into the membrane 

but remain linked to the external surface; once they 
reach a critical point they transformed into a carpet 
like shape capable of weakening the membrane and 

collapsing into a mycelium configuration. 

The AMPs are inserted only on one side of the lipid 
bilayer. They can create a space in between the lipid 
molecules in the chain area. This space in between 
creates a force that pulls the other neighbor lipid 

molecules in order to fill it.
Reference [52,53] [54,55]

Aggregation Toroidal pores Barrel model

In this model, the peptide merges with the membrane 
and at the right concentration it reconfigures to form 

mycelia like structure that stretches out across the 
bilayer in a lipid-peptide complex. These random 
lipid-peptide transmembrane aggregates in water 

form a canal that releases ions and produces cellular 
death due to the loss of cytoplasm content.

The peptides merge with the membrane 
when reaching a limit concentration that 
makes the lipids bend, forming a canal 

defined by the head of the lipidic groups 
(associated) to the peptides. These form 

a mixed canal of the peptide and the 
lipids from the membrane.

Once the AMPs interact with the membrane 
and reach a critical level of peptide and lipid, 
the peptides reconfigure in a perpendicular 

fashion forming a palisade with the side 
of the hydrophobic chains facing the 

hydrophobic center of the membrane and its 
polar chains and face the center forming a 

hydrophilic pore.

[56,57] [58,59] [32,60]

Table 1: Proposed activity mechanism for AMPs.
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New Peptides Production
In the same way natural AMPs derivate largely from codified 

sequences in genes, bioinformatic methods have been used to 
create data bases of known AMPs as well as tools to predict specific 
AMPs from non-registered genomes. From the publication of the 
APD data bases 15 years ago [61] and ANTIMIC [62], various 
data bases have been created to emphasize certain features of 
AMPs, grouping them in different categories for example: natural, 
synthetic or recombined peptides (circular peptides, defensins and 
thiopeptides) [63,64]. There are data bases grouping AMPs based 
on their origins (human, bacteria, plants, insects and amphibian) 
[65,66]. The DADP data base amphibian peptides only [67].

More recently, the YADAMP [68], CAMP [69] and LAMP 
[70] data bases were created. A significant amount of research 
is focusing currently in the development of new AMPs for 
biomedical, therapeutic and biotechnological applications; the 
current methods to look for new functions and features of AMPs 
in the almost limitless known and predicted peptide sequences 
(empirically or computationally) are continuously evolving. Three 
clear known research approaches in this field can be distinguished: 
known AMP sequence modifications (so-called templates), 
biophysical modeling to understand the peptide activity and virtual 
screening [70]. The current methodologies used for AMPs library 
construction have advantages and disadvantages regarding the 
design of sequences, for example, the length of the sequence or the 
size to the library. Technics based on Polymerase Chain Reaction 
(PCR) such as saturation site-directed mutagenesis [71,72] DNA 
shuffling [73], were the randomly generated nucleic acid libraries 
that codify AMPs are expressed in the biological host have great 
complexity and the peptide length is not restricted in most cases 
because the mutations are randomly introduced. Nevertheless, to 
control of the sequence design by the user is very limited in these 
technics. On the other hand, the combinatory synthetic methods 
allows a sequence design customizing a variety of features in the 
sequences perse. This reason, the latter methodology has been 
implemented successfully to generate combinatory libraries of 
AMPs [74-76]. However, these methods still are limited by the 

size of the peptide sequence (optimal length up to 20 amino acids), 
as well as the large library due to the hard work in production and 
high costs associated to the complex chemical synthesis [77]. Build 
libraries that codify AMPs from a combination of oligonucleotides 
is comprised of 5 steps (Figure 2); the first three steps and the 
last step are essential for the technic, nonetheless the forth step 
can vary based on the appropriate expression host election for the 
library of interest.

Figure 2: Building process and AMPs library election. Image modified 
by [78].

Various AMP have been developed successfully for 
pharmaceutical and commercial proposes [79]. Information about 
the structure and sequence of approximately 2846 AMPs from 
different sources can be found in databases all over the world 
[61]. Representative AMPs currently undergoing clinical trials are 
shown in (Table 2). Nevertheless, for this compounds to fulfil their 
therapeutic purpose and surpass clinical impasses more studies 
are necessary to understand their mechanism of action and reduce 
the potential of undesired cytotoxicity while conferring them 
more resistance to protease degradation, improving the half-life 
in peripheral blood and establishing a reliable and profitable mass 
production process.
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Anti-microbial peptides in clinical trials or in development

Name AMP de-
rivative Description Company / 

Location Structure Administra-
tion Indication Phase Clinical Trials 

Identifier References

Pexiganan 
acetate 

(MSI-78)

Magainin-2 
(Xenopus 
frog skin)

Linear antimi-
crobial Peptide 
with 22-amino-
acid, formula-

tion named 
Locilex

Dipexium 
Pharma 
(White 

Plains, New 
York)

α-Helix Cream

Skin and 
soft tissue 
infections 

and diabetic 
ulcers

1 and 3 NCT01590758

(“Homepage 
of dipexium 
pharmaceuti-

cals. Available 
from: https://
plxpharma.
com/dipexi-

um-plx-merg-
er/,” n.d.)

Omiganan 
(MBI-226) Indolicidin

Synthetic 
cathionic 

peptide analog 
of indolicidin 

(bovine)

Micro-
biologix 
Biotech 
Vancou-
ver, BC 

(Canada)

α-helical Cream Rosacea 2 NCT00608959

(Sader, Fedler, 
Rennie, Ste-

vens, & Jones, 
2004)

OP-145 LL37

Synthetic 24-
mer peptide 
binding to 

lipopolysac-
charides or 
lipoteichoic 

acid

OctoPlus; 
Leiden Uni-
versity, The 
Netherlands

α-Helix Eardrops
Chronic 
bacterial 
middle 

ear infection 2 NCT01071902 (Malanovic 
et al., 2015)

Novexatin 
(NP213)

Fungicidal 
Active Phar-
maceutical 
Ingredient 

(API)

Cationic anti-
fungal peptide 
that has been 

formulated as a 
brush

NovaBiotics 
(Aberdeen, 

UK)

Cyclic argi-
nine-based 
heptamer

Topical
Treatment 
onychomy-

cosis
1 and 2 NCT02343627

(“Homepage 
of NovaBiot-

ics. Avail-
able from: 

http://www.
novabiotics.

co.uk/pipeline/
novexatin-

np213,” n.d.)

Lytixar 
(LTX-109)

L-Argin-
amide

Broad spectrum 
synthetic 

antimicrobial 
peptidomimetic

Lytix 
Biopharma 

(Oslo)
N/A Topical

Nasal de-
colonisation 

of MRSA
2 NCT01158235

(“Homep-
age of Lytix 
Biopharma. 
Available 

from: http://
www.lytixbio-
pharma.com/

news/152/252/
Successful-
Proof-of-

Concept-for-
topical-antimi-
crobial-drug-
Lytixar-LTX-

109.html,” 
n.d.)
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NVB302

Posttrans-
lationally 
modified 
peptides 

(lantibiotics)

Type B lantibi-
otic (lanthion-
ine-containing 

antibiotics) 
selectivity 

Clostridium 
difficile

Novacta 
(Welwyn 

Garden City, 
UK)

N/A Oral

Treat hospi-
tal-acquired 
Clostridium 

difficile 
infection

1 NVB302/001
(Boakes & 
Dawson, 

2014)

MU1140 Lantibiotics

22-amino acid 
lantibiotic 

produced by 
Streptococcus 

mutans

Oragenics 
(Tampa, 
Florida)

N/A N/A

Treat 
resistant S. 
aureus and 

resistant En-
terococcus 

faecalis

Preclinical N/A

(Kang, Liao, 
Wester, Leed-
er, & Pearce, 

2010)

Arenicin
Lugworm 
Arenicola 

marina

21 amino acids 
Antimicrobial 
peptide , with 
two disulphide 

bonds

bridging
Adenium 

Biotech Co-
penhagen

N/A N/A

Multiresis-
tant Gram-

positive 
bacteria

Preclinical N/A

(Panteleev, 
Bolosov, 

Balandin, & 
Ovchinniko-

va, 2015)

Iseganan 
(IB-367)

Protegrin 
(pig leuko-

cytes)

Antimicrobial 
peptide under 
development 

for the preven-
tion of oral 
mucositis

Intrabiotics 
Pharmaceu-
ticals, Inc. 
Mountain-
view, CA

Peptide con-
taining two 

disulfide 
bonds

Oral/ aero-
sol Mouthwash 3 N/A (Giles et al., 

2017)

Table 2: Anti-microbial peptides in clinical trials or in development.

Many of the AMPs have been tested in prophylactic therapy 
and therapeutic agents against biofilm formation in in vitro and 
in vivo [80,81]. Given the AMPs capability to act quickly on a 
broad spectrum of bacteria, including slow growing bacteria and 
non-growing bacteria [82], their effect on the different stages of 
the biofilm formation and the few selection of resistant strains 
are attractive features for their use as an alternative amongst the 
current low efficient antibiotics. On the other hand, the use of 
AMPs as immunomodulation agents have drawn great interest 
due to the role that cationic AMPs could perform in the innate 
immune modulating response, boosting the infection resolution 
by stimulating the host’s own immunity [83] while controlling the 
potential pro-inflammatory damage.

Non-conventional Therapeutic Alternatives
There has been a new interest in non-traditional antimicrobial 

agents, especially in those generated by means of genetic 
engineering and synthetic biology. This due to the concerning rate 
growth of multiresistant bacterial pathogens specifically in hospitals 
in the last decades, as well as the gradual decline of new antibiotic 

compounds discoveries [84]. The search for new alternatives to the 
conventional antibiotics has become an important research goal. 
Two current alternatives in constant development are described 
below.

Bacteriophage Against Resistant Bacteria - 
Medicines as a Customized Therapy

Phage therapy refers to the use of bacteriophage (or simply 
phages, viruses that infect bacteria) to treat bacterial infections 
[85]. Bacteriophage are very abundant [86] and it is believed 
that each bacteria has its own specific virus that could be used 
as an antibacterial agent [86-88]. Historically, phages were 
used therapeutically at the beginning of the 20th century [89]. 
Nevertheless, the discovery of highly effective antibiotics slowed 
down the development of phage therapy in western countries 
and only when the antibiotics started to fail the old tool resume 
its development [90]. However, this second comeback of phage 
therapy phases challenges related with strict regulations and 
the development of an effective therapeutic practice [91-92]. 
Nonetheless, phage therapy provides an evolutive sustainable 
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alternative to conventional antibiotics [93], if we could only adjust 
our regulations and procedures to meet the special requirements 
of phage based medicine [94-95]. It is important to highlight that 
phages infect bacteria in a very selective manner. The narrow 
spectrum of hosts is often considered an advantage over traditional 
antibiotics because phage treatment con focus with accuracy on 
the pathogen without damaging the commensal intestinal flora 
[91]. Bacteria can quickly develop phage resistance as well and 
consequently the antibacterial effect could only be transitory [96]. 
When a group of different phages is used simultaneously in a 
phage cocktail, resistance development becomes less likely [97], 
but it is difficult to obtain an effective phage group against all 
variations of a specific pathogen [98]. There can be a compensation 
between the spectrum of bacterial targets and the therapeutic 
efficiency of a phage cocktail for a specific bacteria species. 
This happens whenever the number of phages in a cocktail are 
increase in an attempt to broaden the number of bacterial targets, 
the number of phage for a specific microbial strain can be reduced 
[99]. Therefore, the phage specificity to microbial cells, though 
benefic in theory, poses a practical problem when it is combined 
to treat resistant phenotypes that quickly emerge. For this reason, 
the therapeutic use of phages is considered a possible alternative 
to conventional antibiotics. Bacteria add foreign DNA or RNA 
inside their own genetic code and promote gene dispersion from 
a species to another through the phage translation, transformation 
or the connective plasmids and increases antibiotic resistance by 
Horizontal Gene Transfer (HGT). This allows bacteria to adapt to 
an ecologic variety and protect it against environmental pressures 
such are the antibiotics.
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