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Abstract
This article reviews the Intraoperatively Acquired Pressure Injuries (IAPIs) risk assessment model based on multimodal data fusion 
and its clinical decision support system. Intraoperatively acquired pressure injuries refer to skin and soft tissue injuries caused by 
prolonged positional compression during surgical procedures. The mechanism of these injuries is complex, involving multiple 
factors such as body position, external pressure, and the patient’s physiological state. Multimodal data fusion technology, which 
integrates heterogeneous data sources including clinical data, imaging data, and biomarkers, can significantly improve the accuracy 
of risk assessment models. This article provides a detailed introduction to the principles of multimodal data fusion technology, the 
construction method of the risk assessment model for intraoperatively acquired pressure injuries, and the design and implementation 
of the clinical decision support system. Research indicates that multimodal data fusion technology excels in predicting the risk of 
pressure injuries, with the model demonstrating significantly higher precision and recall rates compared to traditional methods. In the 
future, with the continuous development of technology and the expansion of clinical applications, multimodal data fusion is expected 
to provide more precise support for clinical decision-making, reduce the incidence of intraoperatively acquired pressure injuries, and 
improve patient care quality.
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Background and Current Status of Intraoperative 
Acquired Pressure Injuries
Definition and Classification of Intraoperative Acquired 
Pressure Injuries (IAPIs)

IAPIs refer to skin and soft tissue injuries caused by prolonged 
positioning or external pressure during surgical procedures. These 
injuries commonly occur on the operating table, particularly 
during extended surgeries, where factors such as patient 
positioning, external pressure, and skin humidity can affect their 

development. IAPIs can be classified into different grades based 
on severity, typically assessed using the International Pressure 
Injury Classification System.

Mechanisms of Intraoperative Acquired Pressure Injuries

The mechanisms underlying IAPIs are complex and primarily 
related to several factors. Firstly, limited positional changes 
during surgery can hinder local blood circulation due to prolonged 
immobility, leading to tissue ischemia and necrosis. Secondly, 
continuous external pressure can cause mechanical damage to the 
skin and soft tissues, especially over bony prominences like the 
sacrum, elbows, and knees. Additionally, the patient’s physiological 
state (e.g., malnutrition, diabetes) and surgical environment (e.g., 
temperature, humidity) influence the risk of IAPIs [1].
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Clinical Manifestations and Diagnosis of Intraoperative 
Acquired Pressure Injuries

Clinical manifestations of IAPIs typically include local skin 
redness, swelling, pain, and skin breakdown. The severity of the 
injury determines the specific symptoms, which may range from 
skin erythema in early stages to ulcers or deep tissue damage 
in severe cases. Diagnosis relies on clinical observation and 
evaluation, considering the patient’s medical history and surgical 
records. Recently, with advancements in information technology, 
machine learning models based on electronic health records have 
been applied to predict and assess IAPIs, demonstrating promising 
predictive performance [2].

Epidemiological Data on Intraoperative Acquired Pressure 
Injuries

Epidemiological studies indicate significant variations in the 
incidence of IAPIs across different surgical types and patient 
populations. A systematic review and meta-analysis reported a 
wide range of incidence rates from 0.5% to 30% in various studies 
[3]. Certain high-risk patient groups, such as elderly, obese, or those 
with comorbidities, are more susceptible to IAPIs. Research also 
suggests that factors like extended surgical duration, positioning 
choices, and intraoperative nursing quality are closely associated 
with the occurrence of IAPIs [4]. In summary, intraoperative 
acquired pressure injuries represent a complex and multifaceted 
clinical challenge. A deep understanding of their definition, 
mechanisms, clinical manifestations, and epidemiological data 
provides a crucial foundation for establishing clinical decision 
support systems. This, in turn, can effectively reduce the incidence 
of IAPIs and enhance patient care quality.

Principles of Multimodal Data Fusion Technology
Overview of Multimodal Data Fusion Technology

Multimodal data fusion is a technology that combines deep learning 
and machine learning, widely used in medical data analysis and 
risk assessment. By integrating data from different sources and 
types, this technology can more comprehensively capture patients’ 
health status and potential risks, thus providing support for clinical 
decision-making. The core of multimodal data fusion technology 
lies in its ability to handle heterogeneous data sources, including 
clinical data, imaging data, and biomarkers. Studies have shown 
that multimodal data fusion technology can effectively improve 
the accuracy of prediction models when processing complex 
medical data. For example, a study used a multimodal data 
fusion technology model to predict the invasive risk of lung 
adenocarcinoma, and the results showed that the accuracy of the 
model reached 88.5%, and the area under the ROC curve (AUC) 
was 0.957, which was significantly better than traditional single-
data source models [5]. Additionally, multimodal data fusion 

technology has demonstrated its potential in the risk assessment 
of pressure injuries. By fusing clinical variables and imaging 
data, the model can identify patients with different risk levels 
and provide a basis for clinical intervention. Studies have shown 
that when using a multimodal data fusion technology model for 
pressure injury risk prediction, the precision and recall rates of the 
model are significantly higher than traditional methods, indicating 
its effectiveness and feasibility in clinical applications [6].

Basic Principles of Multimodal Data Fusion

The basic principle of multimodal data fusion lies in integrating 
data from different sources to extract more comprehensive and 
accurate information. This process typically includes steps such 
as data preprocessing, feature extraction, feature fusion, and 
model training. Specifically, the data preprocessing stage requires 
cleaning and standardizing data from different modalities to ensure 
data consistency and comparability. In the feature extraction stage, 
deep learning models (such as convolutional neural networks) are 
widely used to extract features from imaging data, while traditional 
machine learning methods (such as random forests and support 
vector machines) are often used to process structured clinical data. 
By fusing these features, DML-GMM can capture complementary 
information between different modalities, thereby improving the 
predictive ability of the model. For example, in a study on brain 
diseases, researchers adopted a multimodal learning framework 
to fuse MRI and PET imaging data. The results showed that the 
model performed better in disease diagnosis than single-modality 
models, with an AUC value of 0.95 [7]. This fusion strategy not 
only improves diagnostic accuracy but also provides clinicians 
with a more comprehensive assessment of patients’ health.

Applications of Multimodal Data Fusion Technology in 
Medical Data

The application of multimodal data fusion technology in medical 
data is increasingly widespread, especially in areas such as 
disease prediction, risk assessment, and personalized treatment. 
By integrating multiple data sources, multimodal data fusion 
technology can provide more precise support for clinical decision-
making. In the risk assessment of pressure injuries, the multimodal 
data fusion technology model successfully identifies high-risk 
patients by fusing clinical and imaging data. Studies have shown 
that the model achieves an accuracy rate of 82% in predicting 
pressure injuries, which is significantly higher than traditional 
single-data source models [8]. Additionally, multimodal data fusion 
technology has been applied to the prognostic evaluation of trauma 
patients. By combining clinical, immunological, and imaging 
data, the model can effectively predict patients’ comorbidity risks 
and help doctors develop personalized treatment plans [9]. In the 
diagnosis of brain diseases, multimodal data fusion technology 
has also demonstrated its strong application potential. By fusing 
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MRI and clinical data, the model can more accurately identify 
the pathological features of Alzheimer’s disease patients, with an 
AUC value of 0.92, highlighting its importance in early diagnosis 
[7]. This multimodal fusion strategy not only improves diagnostic 
accuracy but also provides clinicians with a more comprehensive 
assessment of patients’ health. In summary, multimodal data fusion 
technology, as an advanced technology, is gradually changing the 
way medical data is analyzed with its powerful data processing 
capabilities and accurate predictive performance. It provides new 
ideas and methods for clinical decision-making

Construction of a Risk Assessment Model for 
Intraoperative Acquired Pressure Injuries
Data Collection and Preprocessing

Data collection and preprocessing are crucial first steps in 
constructing a risk assessment model for intraoperative acquired 
pressure injuries. According to the literature, the diversity and 
quality of data directly impact the predictive power and reliability 
of the model. Studies have shown that using multi-source and 
multimodal data can better capture the risk patterns of pressure 
injuries. For instance, Huang et al. (2022) proposed a multimodal 
fusion-based risk prediction model for sports injuries, utilizing 
various data such as training load, perceived health status, 
physiological responses, and physical performance. The results 
indicated high accuracy in classifying non-injured and minimally 
injured risks (with an average precision of 0.9932 and a recall rate 
of 0.9976) [6]. In the study of intraoperative acquired pressure 
injuries, data preprocessing is equally important. Jiang et al. 
(2021) conducted a systematic evaluation of machine learning 
techniques in pressure injury management, highlighting that 
the quality of data preprocessing directly affects the predictive 
performance of the model. The study mentioned that data 
cleaning, standardization, and feature extraction are critical steps 
to improve model accuracy [10]. Additionally, Zhou et al. (2022) 
established a pressure injury management information platform. 
Through the analysis of monitoring data from 578 patients, the 
platform demonstrated effectiveness in postoperative pressure 
injury assessment, emphasizing the importance of systematic and 
continuous data collection and processing [4].

Feature Selection and Feature Engineering

Feature selection and feature engineering are pivotal steps in 
building an effective risk assessment model. By selecting features 
relevant to pressure injuries, the predictive power of the model can 
be significantly improved. Song et al. (2021) extracted 28 clinical 
features from electronic health record data in their study and 
achieved efficient prediction of hospital-acquired pressure injuries 
using a random forest model, with an AUC value reaching 0.94, 
highlighting the importance of feature selection [2]. In terms of 

feature engineering, Nakagami et al. (2021) proposed a prediction 
model based on machine learning that utilizes health data collected 
by nurses on the first day of admission to successfully identify high-
risk patients. This study demonstrates that feature selection and 
construction not only depend on data availability but also require 
the integration of clinical experience and practical application 
scenarios [11]. Additionally, Mottaghi et al. (2022) presented 
a deep hybrid density neural network model that extracts deep 
features from motion data through multi-branch convolutional 
layers, further enhancing the predictive capabilities of the model 
and emphasizing the significance of feature engineering in complex 
data processing [12].

Model Development and Training

Model development and training are crucial steps for implementing 
pressure injury risk assessment. By selecting appropriate machine 
learning algorithms, the predictive performance of the model can be 
effectively improved. Song et al. (2021) trained their model using 
a random forest algorithm on different types of pressure injuries, 
achieving excellent performance with AUC values of 0.92 and 0.94 
on two test sets, respectively [2]. Furthermore, Huang et al. (2022) 
constructed a multimodal data fusion model using the Extreme 
Gradient Boosting (XGBoost) algorithm, which demonstrated 
superior performance over traditional models in classifying non-
injured and mildly injured risks, improving average precision and 
recall rates by 8.2% and 20.3%, respectively [6]. During model 
training, cross-validation serves as a critical method for evaluating 
model performance. In their study, Zhou et al. (2022) compared 
the performance of different models and found that the XGBoost 
model excelled in handling multimodal data, achieving an AUC 
value of 0.983. This outstanding performance demonstrates the 
model’s strong adaptability in complex data environments [3]. 
Additionally, Li et al. (2023) proposed a hybrid variable graphical 
modeling framework that integrates latent and mixed variables, 
achieving a balanced accuracy of 0.941. This further validates the 
effectiveness of model construction [13].

Model Validation and Performance Evaluation

Model validation and performance evaluation are crucial steps 
to ensure the reliability of risk assessment models. Through 
systematic evaluation of the model’s performance, its effectiveness 
and limitations in practical applications can be identified. Ma et 
al. (2024) pointed out in their systematic review that the AUC 
values of existing pressure injury risk prediction models range 
from 0.70 to 0.99, indicating variations in predictive ability among 
different models [3]. Furthermore, Gao et al. (2018) established a 
new risk assessment model for intraoperative acquired pressure 
injuries using multivariable logistic regression analysis, with an 
AUC value of 0.897. This suggests the potential of the model 
in clinical applications [1]. In the practical application of the 
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model, verifying its applicability across different populations and 
environments is essential. Li et al. (2023) conducted an external 
validation of a prediction model for hospital-acquired pressure 
injuries. The results showed that the model maintained good 
predictive performance in different clinical scenarios, with an 
AUC value of up to 0.983. This further demonstrates the stability 
and reliability of the model [13]. Through these studies, it becomes 
evident that model validation and performance evaluation are not 
only necessary steps for constructing effective risk assessment 
models but also crucial foundations for advancing clinical practice.

Design and Implementation of a Clinical Decision 
Support System
System Requirements Analysis

Before designing and implementing a risk assessment model 
and clinical decision support system for intraoperative acquired 
Pressure Injuries (PI) based on multimodal data fusion, a systematic 
requirements analysis is essential. According to the literature, 
intraoperative acquired pressure injuries are a widespread yet 
preventable issue. However, managing this problem poses 
challenges due to nursing shortages and insufficient related 
knowledge [10]. Therefore, the system design must consider how 
Machine Learning (ML) techniques can enhance the prognosis 
and diagnostic accuracy of PI, thereby reducing the burden on 
medical staff. Studies indicate that current applications of ML in PI 
management primarily focus on risk factor identification, posture 
detection, and image analysis [10]. Consequently, the system needs 
to integrate multiple data sources, including preoperative and 
intraoperative data, to assess patient risk more comprehensively. 
Research has shown that ML models combining preoperative 
and intraoperative data excel in predicting postoperative 
complications, particularly in predicting complications such as 
pneumonia, acute kidney injury, and deep vein thrombosis, with 
AUC values exceeding 0.8 [14]. This suggests that the system 
should have the capability to process and analyze multimodal 
data to enhance the accuracy of risk assessment. Furthermore, the 
literature emphasizes the importance of multimodal monitoring 
in neurocritical care, highlighting the need for comprehensive 
monitoring of various physiological variables to support clinical 
decision-making [15]. Hence, the system design should consider 
effective integration of data from different monitoring devices to 
provide real-time clinical decision support.

System Architecture Design

The design of the system architecture is a crucial aspect of 
implementing a clinical decision support system. According to 
the literature, designing a generic clinical decision support system 
involves considering the integration and analysis of multi-scale 
data [16]. This system should be able to extract information from 

multiple data sources (such as electronic health records, imaging 
data, and physiological monitoring data) and analyze it using 
machine learning algorithms. In architectural design, deep learning 
and multimodal information fusion technology are recognized 
as effective methods to enhance behavior recognition and skill 
learning. Studies have shown that a multimodal information 
fusion architecture based on deep learning has achieved a 98.5% 
accuracy rate in recognizing the operational skills of interventional 
surgeons, significantly superior to traditional single data source 
methods [17]. Therefore, the system architecture should include a 
data acquisition module, a data processing module, and a decision 
support module to enable efficient processing and analysis of 
multimodal data.

Functional Modules of the System

The design of the system’s functional modules should revolve 
around the core requirements of clinical decision support. 
According to the literature, the application of machine learning 
techniques in predicting postoperative complications shows 
promising prospects, especially when integrating preoperative and 
intraoperative data [14]. Therefore, the system should include the 
following key functional modules:

•	 Data Acquisition Module: Responsible for collecting 
patient information from various sources, such as electronic health 
records, monitoring devices, and imaging data.

•	 Data Processing Module: Utilizes machine learning 
algorithms to clean, integrate, and analyze the collected data to 
identify potential risk factors.

•	 Decision Support Module: Provides real-time clinical 
decision support based on analysis results, assisting medical staff 
in developing personalized treatment plans.

Furthermore, the literature also indicates that deep learning models 
demonstrate good performance in the classification of stages of 
pressure injuries, aiding nurses in more accurately assessing patient 
risks [18]. Hence, the system should incorporate image analysis 
capabilities to facilitate early identification and intervention of 
pressure injuries.

User Interface Design

User interface design is crucial to ensure the system’s ease of use 
and effectiveness. According to the literature, the user interface 
of a clinical decision support system should be simple and 
straightforward, capable of intuitively presenting analysis results 
and suggestions for medical staff to quickly understand and apply 
[19]. The interface should include the following aspects:

•	 Data Display: Clearly showcases patients’ multimodal 
data and analysis results, including risk assessments and suggested 
interventions.
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•	 Interactive Functionality: Allows users to adjust input 
parameters as needed and view risk assessment results in different 
scenarios in real-time.

•	 Feedback Mechanism: Provides a user feedback channel 
to continuously optimize the system’s functionality and user 
experience.

In summary, the design and implementation of an intraoperative 
acquired pressure injury risk assessment model and clinical 
decision support system based on multimodal data fusion require 
comprehensive consideration of system requirements, architecture 
design, functional modules, and user interface to ensure its 
effectiveness and usability in clinical practice.

Clinical Application and Evaluation
Clinical Trial Design and Implementation

In recent years, studies have demonstrated the profound potential 
of risk assessment models based on multimodal data in the 
management of trauma patients, especially in terms of clinical 
trial design and implementation. Moris et al. (2022) conducted 
a prospective study that utilized clinical, flow cytometry, and 
serum cytokine data to develop a sparse logistic regression 
model. This model aimed to predict multiple clinical outcomes 
for trauma patients, including ventilator-associated pneumonia 
and acute kidney injury. The study encompassed 179 patients, 
and the results indicated that the model’s Area Under the Curve 
(AUC) for prediction ranged from 0.70 to 0.91. This significantly 
underscores the improved accuracy achieved through the 
integration of multimodal data [9]. Furthermore, Ma et al. (2024) 
performed a systematic review and meta-analysis evaluating the 
performance of 99 risk prediction models for pressure injuries 
across 62 studies. The findings revealed that 32 models exhibited 
an AUC range of 0.70 to 0.99, while the validation models showed 
an AUC range of 0.70 to 0.98. This highlights the good predictive 
performance of these models in identifying high-risk patients [3]. 
These investigations provide valuable insights for the design of 
clinical trials, emphasizing the significance of multimodal data in 
risk assessment.

Evaluation of Clinical Application Effectiveness

In terms of evaluating clinical application effectiveness, risk 
assessment models based on multimodal data have demonstrated 
profound performance in prognostic prediction for various 
diseases. Wang et al. (2024) developed the DeepClinMed-PGM 
model, which significantly improved the prediction accuracy of 
disease-free survival for breast cancer patients by integrating 
clinicopathological and molecular data. In the training cohort, 
the model achieved AUC values of 0.979, 0.957, and 0.871 for 
1-year, 3-year, and 5-year disease-free survival, respectively. In 

the external testing cohort, the AUC values were 0.851, 0.878, 
and 0.938 for 1-year, 2-year, and 3-year survival, respectively, 
indicating the model’s consistency and reliability across different 
cohorts [20]. Simultaneously, Li et al. (2024) developed a 
multimodal learning system that successfully predicted the 
natural pregnancy rate of patients with intrauterine adhesions by 
integrating electronic health records and hysteroscopic images. 
The model achieved AUC values of 0.967, 0.936, and 0.965 in the 
training, validation, and testing datasets, respectively, surpassing 
single-modal methods. This result suggests that models combining 
multiple data sources possess significant advantages in clinical 
decision support [21].

User Feedback and System Improvement

User feedback plays a crucial role in the improvement of 
multimodal data fusion systems. Seo et al. (2023) developed a 
deep learning model for pressure injury staging, achieving a macro 
F1 score of 0.8941, which exceeded the average performance of 
experienced nurses (0.8781). This finding indicates that the deep 
learning model exhibits high accuracy in classifying pressure 
injury stages, assisting less experienced nurses in conducting 
evaluations [18]. By collecting feedback from clinical nurses, 
researchers can further optimize the model, enhancing its usability 
and accuracy in practical applications. Additionally, Snoek et al. 
(2023) proposed a clinical decision model capable of identifying 
patients with delayed diagnosis of injuries after high-energy 
trauma. The model achieved a sensitivity of 92.3% and a specificity 
of 86.4%. This study underscores the importance of clinical 
decision support systems in improving the management of trauma 
patients and provides directions for future system improvements 
[22]. In summary, the intraoperative acquired pressure injury risk 
assessment model based on DML-GMM multimodal data fusion 
has demonstrated remarkable performance in clinical applications. 
Models that combine multiple data sources can significantly 
improve prediction accuracy and provide strong support for 
clinical decision-making. Through continuous collection of user 
feedback and system improvements, these models are expected to 
play a greater role in future clinical practice.

Future Development and Prospects
Technology Development Trends

With the continuous advancement of medical technology, the 
application of multimodal data fusion technology based on deep 
learning in medical image classification and clinical decision 
support systems is becoming increasingly widespread. Multimodal 
medical imaging combines information from different imaging 
modalities, providing a more comprehensive pathological 
understanding for clinical diagnosis and research. In recent 
years, deep learning-driven multimodal fusion technology has 
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been recognized as a powerful tool to improve the performance 
of medical image classification. Studies have shown that input 
fusion, intermediate fusion (including single-layer fusion, 
hierarchical fusion, and attention-based fusion), and output fusion 
are the three main fusion schemes for multimodal classification 
networks, which have demonstrated good applicability in different 
multimodal fusion scenarios and application areas [23].

In the field of surgical intervention, there is relatively little research 
on behavior recognition and skill learning related to interventional 
doctors’ operating skills. Through an innovative deep learning 
multimodal information fusion architecture, researchers can identify 
and analyze eight common operational behaviors of interventional 
doctors. Experimental results show that the overall accuracy of 
this deep learning fusion architecture reaches 98.5%, which is 
significantly higher than the performance of traditional machine 
learning classifiers (93.51%) and single-modal data (90.05%). This 
achievement indicates that deep learning multimodal information 
fusion technology has important application potential in enhancing 
the autonomy and intelligence of surgical robot systems [17]. Deep 
multimodal fusion technology also demonstrates its importance 
in disease diagnosis and prognosis. With the rapid development 
of diagnostic technology, doctors need to process and integrate 
heterogeneous and complementary data. Personalized cancer 
diagnosis and treatment planning rely on multiple images (such 
as radiology, pathology, and camera images) and non-image data 
(such as clinical and genomic data). Through multimodal deep 
learning technology, researchers are committed to extracting and 
aggregating multimodal information to provide more objective 
and quantitative computer-aided clinical decision-making [24].

In clinical risk prediction, intelligent models based on the Internet 
of Things and electronic health record data have been established 
to predict complications in dialysis patients. The prediction 
accuracy and recall rate of these models range from 71% to 
90%, indicating their potential application in clinical health 
services [25]. Additionally, significant progress has been made 
in multimodal learning methods for gastric cancer. By combining 
full-slice pathological images and gene expression data, prediction 
accuracy has been improved in multiple tasks, especially in 
survival prediction and pathological staging classification [26].

Prospects for Clinical Application

Multimodal data fusion technology holds vast potential for 
clinical applications. With the widespread use of Electronic 
Health Record (EHR) systems, accessing clinical data has become 
more convenient, providing a rich foundation for multimodal 
data fusion. By combining patient records from various sources, 
including medical tests, medical images, clinical notes, and more, 
researchers can more comprehensively evaluate patients’ health 

status. This integration of multimodal data not only enhances the 
accuracy of clinical risk prediction but also supports personalized 
healthcare [27]. In terms of predicting hospital-acquired pressure 
ulcers, researchers have proposed an AdaBoost-based algorithm 
capable of detecting these ulcers even in the presence of labeling 
conflicts. This algorithm utilizes truth inference methods to 
resolve inconsistencies in labeling across different case definitions, 
demonstrating potential for application in clinical settings [28]. 
Additionally, machine learning shows promising results in 
predicting surgical outcomes for patients with Cushing’s disease. 
Studies indicate that machine learning algorithms can effectively 
identify predictors that influence surgical results, supporting future 
patient care and consultation [29].

Limitations and Future Directions of Research

Despite the promising prospects of multimodal data fusion 
technology in clinical applications, there are still some limitations. 
Firstly, existing studies are often constrained by inadequate sample 
sizes and the accuracy of sample labeling. The lack of externally 
validated datasets may lead to insufficient generalization ability 
of the models [30]. Secondly, machine learning models may 
encounter overfitting or underfitting, affecting their performance 
on unseen data [30]. Future research directions should focus on 
expanding sample sizes, improving data labeling quality, and 
developing more robust machine learning algorithms. Additionally, 
optimizing and standardizing multimodal data fusion methods for 
different clinical scenarios will be an important topic for future 
studies. These efforts can further promote the application of 
multimodal data fusion technology in clinical decision support 
systems, providing patients with more precise and personalized 
medical services [31]. 
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