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Abstract

This article reviews the Intraoperatively Acquired Pressure Injuries (IAPIs) risk assessment model based on multimodal data fusion
and its clinical decision support system. Intraoperatively acquired pressure injuries refer to skin and soft tissue injuries caused by
prolonged positional compression during surgical procedures. The mechanism of these injuries is complex, involving multiple
factors such as body position, external pressure, and the patient’s physiological state. Multimodal data fusion technology, which
integrates heterogeneous data sources including clinical data, imaging data, and biomarkers, can significantly improve the accuracy
of risk assessment models. This article provides a detailed introduction to the principles of multimodal data fusion technology, the
construction method of the risk assessment model for intraoperatively acquired pressure injuries, and the design and implementation
of the clinical decision support system. Research indicates that multimodal data fusion technology excels in predicting the risk of
pressure injuries, with the model demonstrating significantly higher precision and recall rates compared to traditional methods. In the
future, with the continuous development of technology and the expansion of clinical applications, multimodal data fusion is expected
to provide more precise support for clinical decision-making, reduce the incidence of intraoperatively acquired pressure injuries, and

improve patient care quality.
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Background and Current Status of Intraoperative
Acquired Pressure Injuries

Definition and Classification of Intraoperative Acquired
Pressure Injuries (IAPIs)

IAPIs refer to skin and soft tissue injuries caused by prolonged
positioning or external pressure during surgical procedures. These
injuries commonly occur on the operating table, particularly
during extended surgeries, where factors such as patient
positioning, external pressure, and skin humidity can affect their

development. IAPIs can be classified into different grades based
on severity, typically assessed using the International Pressure
Injury Classification System.

Mechanisms of Intraoperative Acquired Pressure Injuries

The mechanisms underlying TAPIs are complex and primarily
related to several factors. Firstly, limited positional changes
during surgery can hinder local blood circulation due to prolonged
immobility, leading to tissue ischemia and necrosis. Secondly,
continuous external pressure can cause mechanical damage to the
skin and soft tissues, especially over bony prominences like the
sacrum, elbows, and knees. Additionally, the patient’s physiological
state (e.g., malnutrition, diabetes) and surgical environment (e.g.,
temperature, humidity) influence the risk of IAPIs [1].
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Clinical Manifestations and Diagnosis of Intraoperative
Acquired Pressure Injuries

Clinical manifestations of IAPIs typically include local skin
redness, swelling, pain, and skin breakdown. The severity of the
injury determines the specific symptoms, which may range from
skin erythema in early stages to ulcers or deep tissue damage
in severe cases. Diagnosis relies on clinical observation and
evaluation, considering the patient’s medical history and surgical
records. Recently, with advancements in information technology,
machine learning models based on electronic health records have
been applied to predict and assess IAPIs, demonstrating promising
predictive performance [2].

Epidemiological Data on Intraoperative Acquired Pressure
Injuries

Epidemiological studies indicate significant variations in the
incidence of IAPIs across different surgical types and patient
populations. A systematic review and meta-analysis reported a
wide range of incidence rates from 0.5% to 30% in various studies
[3]. Certain high-risk patient groups, such as elderly, obese, or those
with comorbidities, are more susceptible to [APIs. Research also
suggests that factors like extended surgical duration, positioning
choices, and intraoperative nursing quality are closely associated
with the occurrence of IAPIs [4]. In summary, intraoperative
acquired pressure injuries represent a complex and multifaceted
clinical challenge. A deep understanding of their definition,
mechanisms, clinical manifestations, and epidemiological data
provides a crucial foundation for establishing clinical decision
support systems. This, in turn, can effectively reduce the incidence
of IAPIs and enhance patient care quality.

Principles of Multimodal Data Fusion Technology
Overview of Multimodal Data Fusion Technology

Multimodal data fusion is a technology that combines deep learning
and machine learning, widely used in medical data analysis and
risk assessment. By integrating data from different sources and
types, this technology can more comprehensively capture patients’
health status and potential risks, thus providing support for clinical
decision-making. The core of multimodal data fusion technology
lies in its ability to handle heterogeneous data sources, including
clinical data, imaging data, and biomarkers. Studies have shown
that multimodal data fusion technology can effectively improve
the accuracy of prediction models when processing complex
medical data. For example, a study used a multimodal data
fusion technology model to predict the invasive risk of lung
adenocarcinoma, and the results showed that the accuracy of the
model reached 88.5%, and the area under the ROC curve (AUC)
was 0.957, which was significantly better than traditional single-
data source models [5]. Additionally, multimodal data fusion

technology has demonstrated its potential in the risk assessment
of pressure injuries. By fusing clinical variables and imaging
data, the model can identify patients with different risk levels
and provide a basis for clinical intervention. Studies have shown
that when using a multimodal data fusion technology model for
pressure injury risk prediction, the precision and recall rates of the
model are significantly higher than traditional methods, indicating
its effectiveness and feasibility in clinical applications [6].

Basic Principles of Multimodal Data Fusion

The basic principle of multimodal data fusion lies in integrating
data from different sources to extract more comprehensive and
accurate information. This process typically includes steps such
as data preprocessing, feature extraction, feature fusion, and
model training. Specifically, the data preprocessing stage requires
cleaning and standardizing data from different modalities to ensure
data consistency and comparability. In the feature extraction stage,
deep learning models (such as convolutional neural networks) are
widely used to extract features from imaging data, while traditional
machine learning methods (such as random forests and support
vector machines) are often used to process structured clinical data.
By fusing these features, DML-GMM can capture complementary
information between different modalities, thereby improving the
predictive ability of the model. For example, in a study on brain
diseases, researchers adopted a multimodal learning framework
to fuse MRI and PET imaging data. The results showed that the
model performed better in disease diagnosis than single-modality
models, with an AUC value of 0.95 [7]. This fusion strategy not
only improves diagnostic accuracy but also provides clinicians
with a more comprehensive assessment of patients’ health.

Applications of Multimodal Data Fusion Technology in
Medical Data

The application of multimodal data fusion technology in medical
data is increasingly widespread, especially in areas such as
disease prediction, risk assessment, and personalized treatment.
By integrating multiple data sources, multimodal data fusion
technology can provide more precise support for clinical decision-
making. In the risk assessment of pressure injuries, the multimodal
data fusion technology model successfully identifies high-risk
patients by fusing clinical and imaging data. Studies have shown
that the model achieves an accuracy rate of 82% in predicting
pressure injuries, which is significantly higher than traditional
single-data source models [8]. Additionally, multimodal data fusion
technology has been applied to the prognostic evaluation of trauma
patients. By combining clinical, immunological, and imaging
data, the model can effectively predict patients’ comorbidity risks
and help doctors develop personalized treatment plans [9]. In the
diagnosis of brain diseases, multimodal data fusion technology
has also demonstrated its strong application potential. By fusing
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MRI and clinical data, the model can more accurately identify
the pathological features of Alzheimer’s disease patients, with an
AUC value of 0.92, highlighting its importance in early diagnosis
[7]. This multimodal fusion strategy not only improves diagnostic
accuracy but also provides clinicians with a more comprehensive
assessment of patients’ health. In summary, multimodal data fusion
technology, as an advanced technology, is gradually changing the
way medical data is analyzed with its powerful data processing
capabilities and accurate predictive performance. It provides new
ideas and methods for clinical decision-making

Construction of a Risk Assessment Model for

Intraoperative Acquired Pressure Injuries
Data Collection and Preprocessing

Data collection and preprocessing are crucial first steps in
constructing a risk assessment model for intraoperative acquired
pressure injuries. According to the literature, the diversity and
quality of data directly impact the predictive power and reliability
of the model. Studies have shown that using multi-source and
multimodal data can better capture the risk patterns of pressure
injuries. For instance, Huang et al. (2022) proposed a multimodal
fusion-based risk prediction model for sports injuries, utilizing
various data such as training load, perceived health status,
physiological responses, and physical performance. The results
indicated high accuracy in classifying non-injured and minimally
injured risks (with an average precision of 0.9932 and a recall rate
of 0.9976) [6]. In the study of intraoperative acquired pressure
injuries, data preprocessing is equally important. Jiang et al.
(2021) conducted a systematic evaluation of machine learning
techniques in pressure injury management, highlighting that
the quality of data preprocessing directly affects the predictive
performance of the model. The study mentioned that data
cleaning, standardization, and feature extraction are critical steps
to improve model accuracy [10]. Additionally, Zhou et al. (2022)
established a pressure injury management information platform.
Through the analysis of monitoring data from 578 patients, the
platform demonstrated effectiveness in postoperative pressure
injury assessment, emphasizing the importance of systematic and
continuous data collection and processing [4].

Feature Selection and Feature Engineering

Feature selection and feature engineering are pivotal steps in
building an effective risk assessment model. By selecting features
relevant to pressure injuries, the predictive power of the model can
be significantly improved. Song et al. (2021) extracted 28 clinical
features from electronic health record data in their study and
achieved efficient prediction of hospital-acquired pressure injuries
using a random forest model, with an AUC value reaching 0.94,
highlighting the importance of feature selection [2]. In terms of

feature engineering, Nakagami et al. (2021) proposed a prediction
model based on machine learning that utilizes health data collected
by nurses on the first day of admission to successfully identify high-
risk patients. This study demonstrates that feature selection and
construction not only depend on data availability but also require
the integration of clinical experience and practical application
scenarios [11]. Additionally, Mottaghi et al. (2022) presented
a deep hybrid density neural network model that extracts deep
features from motion data through multi-branch convolutional
layers, further enhancing the predictive capabilities of the model
and emphasizing the significance of feature engineering in complex
data processing [12].

Model Development and Training

Model development and training are crucial steps for implementing
pressure injury risk assessment. By selecting appropriate machine
learning algorithms, the predictive performance of the model can be
effectively improved. Song et al. (2021) trained their model using
a random forest algorithm on different types of pressure injuries,
achieving excellent performance with AUC values of 0.92 and 0.94
on two test sets, respectively [2]. Furthermore, Huang et al. (2022)
constructed a multimodal data fusion model using the Extreme
Gradient Boosting (XGBoost) algorithm, which demonstrated
superior performance over traditional models in classifying non-
injured and mildly injured risks, improving average precision and
recall rates by 8.2% and 20.3%, respectively [6]. During model
training, cross-validation serves as a critical method for evaluating
model performance. In their study, Zhou et al. (2022) compared
the performance of different models and found that the XGBoost
model excelled in handling multimodal data, achieving an AUC
value of 0.983. This outstanding performance demonstrates the
model’s strong adaptability in complex data environments [3].
Additionally, Li et al. (2023) proposed a hybrid variable graphical
modeling framework that integrates latent and mixed variables,
achieving a balanced accuracy of 0.941. This further validates the
effectiveness of model construction [13].

Model Validation and Performance Evaluation

Model validation and performance evaluation are crucial steps
to ensure the reliability of risk assessment models. Through
systematic evaluation of the model’s performance, its effectiveness
and limitations in practical applications can be identified. Ma et
al. (2024) pointed out in their systematic review that the AUC
values of existing pressure injury risk prediction models range
from 0.70 to 0.99, indicating variations in predictive ability among
different models [3]. Furthermore, Gao et al. (2018) established a
new risk assessment model for intraoperative acquired pressure
injuries using multivariable logistic regression analysis, with an
AUC value of 0.897. This suggests the potential of the model
in clinical applications [1]. In the practical application of the
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model, verifying its applicability across different populations and
environments is essential. Li et al. (2023) conducted an external
validation of a prediction model for hospital-acquired pressure
injuries. The results showed that the model maintained good
predictive performance in different clinical scenarios, with an
AUC value of up to 0.983. This further demonstrates the stability
and reliability of the model [13]. Through these studies, it becomes
evident that model validation and performance evaluation are not
only necessary steps for constructing effective risk assessment
models but also crucial foundations for advancing clinical practice.

Design and Implementation of a Clinical Decision
Support System

System Requirements Analysis

Before designing and implementing a risk assessment model
and clinical decision support system for intraoperative acquired
Pressure Injuries (PI) based on multimodal data fusion, a systematic
requirements analysis is essential. According to the literature,
intraoperative acquired pressure injuries are a widespread yet
preventable issue. However, managing this problem poses
challenges due to nursing shortages and insufficient related
knowledge [10]. Therefore, the system design must consider how
Machine Learning (ML) techniques can enhance the prognosis
and diagnostic accuracy of PI, thereby reducing the burden on
medical staff. Studies indicate that current applications of ML in P1
management primarily focus on risk factor identification, posture
detection, and image analysis [10]. Consequently, the system needs
to integrate multiple data sources, including preoperative and
intraoperative data, to assess patient risk more comprehensively.
Research has shown that ML models combining preoperative
and intraoperative data excel in predicting postoperative
complications, particularly in predicting complications such as
pneumonia, acute kidney injury, and deep vein thrombosis, with
AUC values exceeding 0.8 [14]. This suggests that the system
should have the capability to process and analyze multimodal
data to enhance the accuracy of risk assessment. Furthermore, the
literature emphasizes the importance of multimodal monitoring
in neurocritical care, highlighting the need for comprehensive
monitoring of various physiological variables to support clinical
decision-making [15]. Hence, the system design should consider
effective integration of data from different monitoring devices to
provide real-time clinical decision support.

System Architecture Design

The design of the system architecture is a crucial aspect of
implementing a clinical decision support system. According to
the literature, designing a generic clinical decision support system
involves considering the integration and analysis of multi-scale
data [16]. This system should be able to extract information from

multiple data sources (such as electronic health records, imaging
data, and physiological monitoring data) and analyze it using
machine learning algorithms. In architectural design, deep learning
and multimodal information fusion technology are recognized
as effective methods to enhance behavior recognition and skill
learning. Studies have shown that a multimodal information
fusion architecture based on deep learning has achieved a 98.5%
accuracy rate in recognizing the operational skills of interventional
surgeons, significantly superior to traditional single data source
methods [17]. Therefore, the system architecture should include a
data acquisition module, a data processing module, and a decision
support module to enable efficient processing and analysis of
multimodal data.

Functional Modules of the System

The design of the system’s functional modules should revolve
around the core requirements of clinical decision support.
According to the literature, the application of machine learning
techniques in predicting postoperative complications shows
promising prospects, especially when integrating preoperative and
intraoperative data [14]. Therefore, the system should include the
following key functional modules:

. Data Acquisition Module: Responsible for collecting
patient information from various sources, such as electronic health
records, monitoring devices, and imaging data.

. Data Processing Module: Utilizes machine learning
algorithms to clean, integrate, and analyze the collected data to
identify potential risk factors.

. Decision Support Module: Provides real-time clinical
decision support based on analysis results, assisting medical staff
in developing personalized treatment plans.

Furthermore, the literature also indicates that deep learning models
demonstrate good performance in the classification of stages of
pressure injuries, aiding nurses in more accurately assessing patient
risks [18]. Hence, the system should incorporate image analysis
capabilities to facilitate early identification and intervention of
pressure injuries.

User Interface Design

User interface design is crucial to ensure the system’s ease of use
and effectiveness. According to the literature, the user interface
of a clinical decision support system should be simple and
straightforward, capable of intuitively presenting analysis results
and suggestions for medical staff to quickly understand and apply
[19]. The interface should include the following aspects:

. Data Display: Clearly showcases patients’ multimodal
data and analysis results, including risk assessments and suggested
interventions.

4
J Surg, an open access journal
ISSN: 2575-9760

Volume 10; Issue 03



Citation: Chen X, Liao S, Wang P, Huang G, Li J, et al. (2025) Multimodal Data Fusion-Based Risk Assessment Models and Clinical
Decision Support Systems for Intraoperative Acquired Pressure Injuries. J Surg 10: 11261 DOI: 10.29011/2575-9760.011261

. Interactive Functionality: Allows users to adjust input
parameters as needed and view risk assessment results in different
scenarios in real-time.

. Feedback Mechanism: Provides a user feedback channel
to continuously optimize the system’s functionality and user
experience.

In summary, the design and implementation of an intraoperative
acquired pressure injury risk assessment model and clinical
decision support system based on multimodal data fusion require
comprehensive consideration of system requirements, architecture
design, functional modules, and user interface to ensure its
effectiveness and usability in clinical practice.

Clinical Application and Evaluation
Clinical Trial Design and Implementation

In recent years, studies have demonstrated the profound potential
of risk assessment models based on multimodal data in the
management of trauma patients, especially in terms of clinical
trial design and implementation. Moris et al. (2022) conducted
a prospective study that utilized clinical, flow cytometry, and
serum cytokine data to develop a sparse logistic regression
model. This model aimed to predict multiple clinical outcomes
for trauma patients, including ventilator-associated pneumonia
and acute kidney injury. The study encompassed 179 patients,
and the results indicated that the model’s Area Under the Curve
(AUC) for prediction ranged from 0.70 to 0.91. This significantly
underscores the improved accuracy achieved through the
integration of multimodal data [9]. Furthermore, Ma et al. (2024)
performed a systematic review and meta-analysis evaluating the
performance of 99 risk prediction models for pressure injuries
across 62 studies. The findings revealed that 32 models exhibited
an AUC range of 0.70 to 0.99, while the validation models showed
an AUC range of 0.70 to 0.98. This highlights the good predictive
performance of these models in identifying high-risk patients [3].
These investigations provide valuable insights for the design of
clinical trials, emphasizing the significance of multimodal data in
risk assessment.

Evaluation of Clinical Application Effectiveness

In terms of evaluating clinical application effectiveness, risk
assessment models based on multimodal data have demonstrated
profound performance in prognostic prediction for various
discases. Wang et al. (2024) developed the DeepClinMed-PGM
model, which significantly improved the prediction accuracy of
disease-free survival for breast cancer patients by integrating
clinicopathological and molecular data. In the training cohort,
the model achieved AUC values of 0.979, 0.957, and 0.871 for
1-year, 3-year, and S5-year disease-free survival, respectively. In

the external testing cohort, the AUC values were 0.851, 0.878,
and 0.938 for 1-year, 2-year, and 3-year survival, respectively,
indicating the model’s consistency and reliability across different
cohorts [20]. Simultaneously, Li et al. (2024) developed a
multimodal learning system that successfully predicted the
natural pregnancy rate of patients with intrauterine adhesions by
integrating electronic health records and hysteroscopic images.
The model achieved AUC values of 0.967, 0.936, and 0.965 in the
training, validation, and testing datasets, respectively, surpassing
single-modal methods. This result suggests that models combining
multiple data sources possess significant advantages in clinical
decision support [21].

User Feedback and System Improvement

User feedback plays a crucial role in the improvement of
multimodal data fusion systems. Seo et al. (2023) developed a
deep learning model for pressure injury staging, achieving a macro
F1 score of 0.8941, which exceeded the average performance of
experienced nurses (0.8781). This finding indicates that the deep
learning model exhibits high accuracy in classifying pressure
injury stages, assisting less experienced nurses in conducting
evaluations [18]. By collecting feedback from clinical nurses,
researchers can further optimize the model, enhancing its usability
and accuracy in practical applications. Additionally, Snoek et al.
(2023) proposed a clinical decision model capable of identifying
patients with delayed diagnosis of injuries after high-energy
trauma. The model achieved a sensitivity of 92.3% and a specificity
of 86.4%. This study underscores the importance of clinical
decision support systems in improving the management of trauma
patients and provides directions for future system improvements
[22]. In summary, the intraoperative acquired pressure injury risk
assessment model based on DML-GMM multimodal data fusion
has demonstrated remarkable performance in clinical applications.
Models that combine multiple data sources can significantly
improve prediction accuracy and provide strong support for
clinical decision-making. Through continuous collection of user
feedback and system improvements, these models are expected to
play a greater role in future clinical practice.

Future Development and Prospects
Technology Development Trends

With the continuous advancement of medical technology, the
application of multimodal data fusion technology based on deep
learning in medical image classification and clinical decision
support systems is becoming increasingly widespread. Multimodal
medical imaging combines information from different imaging
modalities, providing a more comprehensive pathological
understanding for clinical diagnosis and research. In recent
years, deep learning-driven multimodal fusion technology has
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been recognized as a powerful tool to improve the performance
of medical image classification. Studies have shown that input
fusion, intermediate fusion (including single-layer fusion,
hierarchical fusion, and attention-based fusion), and output fusion
are the three main fusion schemes for multimodal classification
networks, which have demonstrated good applicability in different
multimodal fusion scenarios and application areas [23].

In the field of surgical intervention, there is relatively little research
on behavior recognition and skill learning related to interventional
doctors’ operating skills. Through an innovative deep learning
multimodal information fusion architecture, researchers can identify
and analyze eight common operational behaviors of interventional
doctors. Experimental results show that the overall accuracy of
this deep learning fusion architecture reaches 98.5%, which is
significantly higher than the performance of traditional machine
learning classifiers (93.51%) and single-modal data (90.05%). This
achievement indicates that deep learning multimodal information
fusion technology has important application potential in enhancing
the autonomy and intelligence of surgical robot systems [17]. Deep
multimodal fusion technology also demonstrates its importance
in disease diagnosis and prognosis. With the rapid development
of diagnostic technology, doctors need to process and integrate
heterogeneous and complementary data. Personalized cancer
diagnosis and treatment planning rely on multiple images (such
as radiology, pathology, and camera images) and non-image data
(such as clinical and genomic data). Through multimodal deep
learning technology, researchers are committed to extracting and
aggregating multimodal information to provide more objective
and quantitative computer-aided clinical decision-making [24].

In clinical risk prediction, intelligent models based on the Internet
of Things and electronic health record data have been established
to predict complications in dialysis patients. The prediction
accuracy and recall rate of these models range from 71% to
90%, indicating their potential application in clinical health
services [25]. Additionally, significant progress has been made
in multimodal learning methods for gastric cancer. By combining
full-slice pathological images and gene expression data, prediction
accuracy has been improved in multiple tasks, especially in
survival prediction and pathological staging classification [26].

Prospects for Clinical Application

Multimodal data fusion technology holds vast potential for
clinical applications. With the widespread use of Electronic
Health Record (EHR) systems, accessing clinical data has become
more convenient, providing a rich foundation for multimodal
data fusion. By combining patient records from various sources,
including medical tests, medical images, clinical notes, and more,
researchers can more comprehensively evaluate patients’ health

status. This integration of multimodal data not only enhances the
accuracy of clinical risk prediction but also supports personalized
healthcare [27]. In terms of predicting hospital-acquired pressure
ulcers, researchers have proposed an AdaBoost-based algorithm
capable of detecting these ulcers even in the presence of labeling
conflicts. This algorithm utilizes truth inference methods to
resolve inconsistencies in labeling across different case definitions,
demonstrating potential for application in clinical settings [28].
Additionally, machine learning shows promising results in
predicting surgical outcomes for patients with Cushing’s disease.
Studies indicate that machine learning algorithms can effectively
identify predictors that influence surgical results, supporting future
patient care and consultation [29].

Limitations and Future Directions of Research

Despite the promising prospects of multimodal data fusion
technology in clinical applications, there are still some limitations.
Firstly, existing studies are often constrained by inadequate sample
sizes and the accuracy of sample labeling. The lack of externally
validated datasets may lead to insufficient generalization ability
of the models [30]. Secondly, machine learning models may
encounter overfitting or underfitting, affecting their performance
on unseen data [30]. Future research directions should focus on
expanding sample sizes, improving data labeling quality, and
developing more robust machine learning algorithms. Additionally,
optimizing and standardizing multimodal data fusion methods for
different clinical scenarios will be an important topic for future
studies. These efforts can further promote the application of
multimodal data fusion technology in clinical decision support
systems, providing patients with more precise and personalized
medical services [31].
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