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/Abstract

The retina being a part of the central nervous system consumes large amounts of glucose and oxygen to generate ATP for

~

its visual function. During ATP generation in the mitochondrial electron transport chain, mitochondrial Reactive Oxygen Spe-
cies (mtROS) is generated as a byproduct. Although anti-oxidants are present in the mitochondrion to counter free radicals, ex-
cess mtROS causes damage to mitochondrial proteins, mtDNA, and membrane lipids. Furthermore, damaged mitochondria are
inefficient in ATP production but continue to release ROS. Mitochondrial components, when released into the cytosol, are rec-
ognized as Danger-Associated Molecular Patterns (DAMPS) by pattern recognition NOD-like receptors including the NLRP3
inflammasome. NLRP3 inflammasomes process inactive pro-caspase-1 to an active caspase-1, which cleaves pro-inflammatory
IL-1P to mature IL-1p causing inflammation and premature cell death. To counter the damaging action of mtROS and inflam-
masomes in fully differentiated retinal cells, the removal of dysfunctional mitochondria is needed by mitophagy, a specific form
of lysosomal degradation via autophagy. Nonetheless, mitophagy deregulation, lysosome destabilization and NLRP3 inflam-
masome activations occur in Diabetic Retinopathy (DR) causing chronic inflammation and disease progression. Recently, the
Thioredoxin-interacting protein, TXNIP, has been shown to be induced strongly by high glucose and diabetes inhibiting the
anti-oxidant function of Thioredoxin. Subsequently, TXNIP causes mitochondrial dysfunction, oxidative stress, mitophagy de-
regulation and inflammation in DR. Therefore, gene therapies targeting TXNIP, NLRP3 and/or the redox system have potentials

to prevent/slow down retinal damages in DR.
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Introduction

Diabetic Retinopathy (DR) is the number one cause of
ocular complications and blindness both in Type 1 and Type
2 diabetes mellitus in developed countries. Additionally, due
to increases in the number of obese people around the world
including developing countries, individuals with diabetes and
its complications are considered to increase significantly in
coming years. Initially, DR was considered to be a microvascular

complication involving capillary leakage due to breakdown of
the inner blood-retinal barrier, pericyte dropout and proliferation
of weak blood vessels (neovascularization) [1]. However, recent
studies support the idea that retinal neurodegeneration occurs
in early DR, which may influence microvascular abnormalities
leading to blindness [2]. Nonetheless, a direct correlation between
microvascular dysfunction and neurodegeneration in DR is yet to
be established. It is also not fully understood which one of the
two events (microvascular or neuronal dysfunction) occurs first.
Therefore, so far, an effective therapeutic method has not been
successfully devised to prevent or slow down the progression of
DR, indicating finding new potential targets are necessary.
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TXNIP and Diabetic Retinopathy

Thioredoxin-Interacting Protein (TXNIP) 1is strongly
induced by diabetes and high glucose in all tissues examined
including the retina [3-6]. TXNIP binds to and inhibits the anti-
oxidant and thiol reducing capacity of Thioredoxin (Trx). Trx1 is
found in the cytosol and nucleus while Trx2 is the mitochondrial
isoform. Therefore, TXNIP has been defined as a pro-oxidative
stress, pro-inflammatory and pro-apoptosis protein in diabetes
and its complications. TXNIP is known to localize in all cellular
compartments including the mitochondrion [7]. TXNIP is
significantly induced in the diabetic rat retina and inhibition of
TXNIP by intravitreal siRNA delivery reduces abnormalities of
early DR including capillary basement membrane thickening,
gliosis, and neuronal injury [3]. TXNIP also mediates high glucose-
induced cellular oxidative stress, mitochondrial dysfunction and
mitophagy deregulation in retinal Miiller cells [6]. Furthermore,
TXNIP has been shown to involve in the assembly of cytosolic
NOD-like receptor, the NLRP3 Inflammasome under oxidative
stress [7]. The NLRP3 Inflammasome activates pro-caspase-1
to caspase-1, which further processes pro-IL-1f to an active IL-
1B. IL-1P is a cytokine that initiates innate immune responses
and induces various cytokines including TNF-a, IL-6 and CXC
chemokines [8]. Therefore, TXNIP silencing may be an approach
to reduce early retinal defects in diabetes and slow down or prevent
the progression of ocular complications.

TXNIP, Mitochondrial Dysfunction and Mitophagy

Mitochondria are the major source of cellular energy
(generation of ATP) by oxidative phosphorylation in the electron
transport chain. During this process, elections leak which are
captured by molecular oxygen generating Reactive Oxygen
Radicals or Species (ROS). These mtROS damages mitochondrial
components such as the mtDNA, proteins, and membrane lipids.
In order to circumvent such damages, the mitochondrion contains
several anti-oxidant proteins including GSH, SOD2, Trx2, and
others. However, under chronic diseases and stress, the anti-
oxidant capacity is over whelmed and mitochondrial membrane
depolarization occurs. Damaged mitochondria release ROS but are
ineffective in ATP production.

We recently showed that TXNIP is found in mitochondria
and causes mitochondrial dysfunction in retinal cells under high
glucose environment [6]. Removal or segregation of the damaged
mitochondria by mitophagy, a process of lysosomal degradation
via autophagy, is critical for cell viability (Figure 1). Therefore,
damaged mitochondria undergo fission/fragmentation, which
involves proteins such as Drpl and Fisl. These fragmented
mitochondria are flagged by Pinkl and Parkin via ubiquitination
of mitochondrial membrane proteins including VDAC1 and Mfn2.
Then, the fragmented and tagged mitochondria are engulfed by an
autophagophore containing LC3BII and ubiquitin adaptors such as

optineurin and p62/seqestrome 1. The initial formation of LC3BII
phagosomes require multiple factors or proteins called Autophagy-
Related Genes (ATGs) [9]. Among these, ATG4B has been shown
to be involved in autophagophore generation, which involves
TXNIP and REDDI1 complex formation and redox regulation of
ATG4B [10].
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Figure 1: A potential role for TXNIP in hyperglycemia-induced oxidative
stress, ER-stress, mitochondrial dysfunction, mitophagic flux and NLRP3
inflammasome assembly in diabetes and its complications including DR.

Once damaged mitochondria are completely engulfed by
a double-membrane autophagophore, lysosomes fuse with them
to form autolysosome. Lysosomal proteolytic enzymes such as
cathepsins degrade mitochondrial components and cytosolic
aggregates to their molecular components for recycling as nutrients.
Autophagy and mitophagy processes are highly complexed cellular
stress response and defense mechanism to maintain cellular
homeostasis and survival. However, both under acute and chronic
diseases, the process is derailed and cellular damage and disease
progression occur.

Mitophagic Flux Deregulation, Lysosome Destabilization
and Inflammasome Activation

Asmentioned before TXNIPis highly induced by diabetes and
high glucose and inhibits Trx1 and Trx2 causing cellular oxidative
stress. Stressed mitochondria release ROS into the Endoplasmic
Reticulum (ER) via the Mitochondria-Associated ER Membrane
(MAM) and causes ER-stress [11,12]. In addition, TXNIP also
interacts with protein disulfide isomerases (PDIs) in ER lumens and
induces protein misfolding thereby evoking an ER-stress response
(UPR®) [13]. In turn, ER-stress and UPR* increase calcium release
into mitochondria via MAM further enhancing mitochondrial
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oxidative stress and evokes a mitochondrial stress response
(UPR™) (Figure 1). While the UPR® mechanism is well studied,
the UPR™ is less known. Whether it begins with the mitochondrial
stress or ER-stress, a vicious cycle of ER-mitochondrial injury
is generated. Furthermore, uncontrolled UPR® itself induces an
interaction between TXNIP and NLPR3 inflammasome leading to
inflammation and cell death. This area of UPR* has been studied
more extensively in pancreatic beta cell death in diabetes and
innate immunity [13] and will not be a part of the present article.

Mitochondria are also main sites for cellular heme
biosynthesis and several mitochondrial TCA cycle enzymes and
electron transport chain complexes require Fe-S complexes for
their holoenzyme assembly [14]. Therefore, when there is excess
mitophagic flux to lysosomes, the accumulation of damaged
mitochondria with heme complexes occur resulting in lysosomal
enlargement and deficiencies in lysosomal hydrolytic enzyme
activities (Figure 2). Furthermore, an accumulation of free iron
in lysosomes will result in increases in the Fenton reaction [15],
which releases reactive hydroxyl ions damaging the lysosomal
membrane. We have also observed mitophagic flux and lysosomal
enlargement in human retinal pigment epithelial cells under
high glucose conditions and TXNIP silencing prevents these
events (unpublished data). Under these conditions, lysosomal
enzymes such as cathepsins B and L may leak out into the cytosol
and act on mitochondrial outer membrane proteins [16]. Thus,
another vicious cycle of mitochondria-lysosome injury and
oxidative stress is generated. Also mentioned earlier, defective or
depolarized mitochondria are inefficient in ATP production but
release mtROS and mtDNA, which facilitate an assembly of the
NLRP3 inflammasome containing ASC and pro-caspase-1 [17].
Assembled NLRP3 inflammasomes activate pro-caspase-1 and
caspase 1 further processes pro-IL-1p to an active IL-1f. IL-1p is
considered as an important initiator of innate immune responses
and inflammation via activation of downstream cytokines and
chemokines [18,19].
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Figure 2: An illustration as to how excess mitophagic flux leads to

lysosome enlargement, destabilization and inflammation under high
glucose and TXNIP overexpression in diabetes and its complications
including DR. Either a slow or excess mitophagic flux may lead to
accumulation of damaged mitochondria or enlarged lysosomes leading to
apoptosis, pyroptosis or autophagic/lysosomal cell death.

Lysosomal membrane permeabilization further leads to
increased lysosomal pH and inactivation of acidic lysosomal
hydrolytic enzymes, which subsequently may result in an
incomplete digestion of mtDNA and create fragments of double-
stranded CpG DNA [20]. These unmethylated mitochondrial
CpG DNAs are recognized by lysosomal membrane Toll-like
receptors such as TLR9 [20] and induce pro-inflammatory
cytokine expression such as pro-IL-1f and Pro-IL-18. In addition,
lysosomal cathepsins may also be able to process pro-IL-13 and
Pro-IL-18 to their active forms and evoke inflammatory responses.
Thus, several cell mechanisms under stress are integrated
with lysosomal stress responses [21]. It is known that a mild
lysosomal stress results in a lysosome-nuclear communication
via translocation of lysosome-associated transcription factors
such as TFEB and TFE3 to the nucleus and induce gene
expressions for lysosomal proteins and ATGs [22]. Nonetheless,
excess mitophagy flux will lead to lysosomal enlargement,
destabilization and membrane permeability and therefore these
defective lysosomes can’t properly fuse with autophagosomes.
Eventually, damaged mitochondria, autophagosomes and
endosomes accumulate in the cytosol. Such events lead to
cytosolic crowding, loss of sanctity and premature cell death.

Potentials of Gene Therapy for DR Using Nucleic Acid
Constructs Bearing A TXNIP Promoter

TXNIP is strongly induced by diabetes and inhibited
by insulin and IGF1 [3-6,23,24]. In diabetes, Type 1 (insulin
deficiency) or Type2 (insulin resistance), hyperglycemia prevails
and induces sustained TXNIPup-regulation [3]. TXNIPsilencing or
knocking out prevents various cellular dysfunctions and increases
cell viability under high glucose environment in the retina [24].
The transcription factors responsible for the induction of TXNIP
mRNA include Mondo A and ChREBP as well as transcriptional
co-factor p300 [5, 25-27]. Therefore, TXNIP silencing by Post-
Transcriptional Gene Silencing siRNAs (PTGS) targeting the
mRNA or promoter-targeted transcriptional gene silencing by
double-stranded siRNAs to gene promoters (TGS) prevents early
abnormalities of DR [5]. Furthermore, CRISPR/Cas9 and TXNIP
gRNA reduces mitochondrial damage and mitophagic flux in rat
retinal Miiller cells [6]. We have further shown that the TXNIP
promoter exists as an opened and poised configuration that
high glucose and histone deacetylase inhibitors activate TXNIP
transcription strongly and immediately [3,5].

We, therefore, propose that nucleic acid constructs containing
the proximal promoter sequences from the transcriptional start site
linked to a gene of interest and/or siRNAs could be constructed
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for gene therapies using various vectors such as pcDNA3.1,
Adenovirus Associated Vectors (AAVs) or lentivirus (Figure 3)
[28]. AAV serotypes, such as AAV2, AAV9 and AAV2/8, exist in
nuclei as episomes upon transduction as compared to lentivirus that
incorporates into the genome therefore, AAV vectors have been
used to deliver genes efficiently in the retina via an intravitreal or
sub retinal injection method [29,30]. Such TXNIP promoter gene
constructs can sense elevated glucose environments and induce the
linked gene expression while maintaining a basal expression under
normal glucose levels.

TXNIP promoter
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Figure 3: Nucleic acid construct containing a rat TXNIP promoter linked to
arat Trx1 cDNA (in a pcDNA3.1 vector) and transfected in rMC1 cells and
its effects on TXNIP and autophagic receptor levels were examined. [28]

For initial experiments, we prepared a rat TXNIP promoter
(-1 to -1597 bp; Gene ID: 117514) linked with a rat Trx] cDNA
(NM_053800.3) and examined its expression in a rat Miiller cell
line, rMC1 (Figure 3) [28]. These transfected cells when treated
with high glucose have higher Trx1 mRNA levels than low
glucose conditions while Trx1 message was unchanged in control
rMCI1 cells. On the other hand, TXNIP is strongly induced by
high glucose in control tMCI1 cells than in low glucose, which
also correlates with decreases in the level of autophagy markers
- LC3BII and p62/Sequestromel. However, in the TXNIP-prom-
Trx1 expressing rtMC1 cells, the TXNIP level is marginally down
under high glucose (than that observed in control rMC1) while
both LC3BII and p62 levels are increased. These observations
provide an initial proof of concept that the TXNIP promoter can
be linked with a gene of interest or siRNA that will respond under
diabetic conditions. In addition, an anti-sense long noncoding RNA
targeted against the sense TXNIP promoter may also be employed
to regulate TXNIP and the redox system (Figure 4) [28]. Further
studies will be conducted to test effectiveness of these and other
TXNIP-promoter constructs both in vitro and in vivo systems.

A. Rat TXNIP Promoter anti-sense sequence = 270 bp (Gene ID 117514):
(-328 to -598 bases)
3'CAGGGTCTGA GGGCTCCCTC GGTGGGCGAC GGGGTCCGG GGCGGGGAGC
AGGGACCGTT CCGACGCGTG GGCTTGTTGA TGGTAAAAGG GGCGATTCTC
GTGTGACACA GGTGCGCGGA GACGCCGGAC CGACTAACCA ATCTCCGGAC
CATTTGTTCC TGGTTCATCG GTTACCCTCT TGACACGTGC TCCCTACGTG
CTCGGAGGCC CGGTCGTGAG CGCACCTCGC AGTTCGGTCC GCCGATATAT
TACGGCAAAG GCCGAGGGCG-5
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Figure 4: A long noncoding anti-sense RNA (270 bases) targeted to the
sense DNA of the proximal TXNIP promoter, based on the anti-sense DNA
sequence, was generated and transfected in rMC1 cells and its effects on
TXNIP and Trx1 were examined. [28]

Conclusion

Diabetic retinopathy is a complex disease developed after
a prolonged exposure to hyperglycemia in diabetes. Therefore,
its etiology and disease mechanisms are multifaceted. Currently,
it is recognized that both the microvasculature and neuroretina
are affected in DR. Therefore, identifying disease causing and/or
stage specific disease-associated abnormalities will be of critical
important. While there are a few treatment methods available for
DR patients, there is no satisfactory outcome. Hence, a search for
and development of new gene targets and improved treatment
methods continues to remain open. TXNIP is strongly up-regulated
by diabetes and high glucose in all tissues tested including the retina
as long as hyperglycemia prevails in the system. Furthermore,
TXNIP targets multiple cellular metabolic pathways including
the redox system, glucose transporters, and membrane receptors
at multiple organelles [3-6]. These actions of TXNIP cause
cellular oxidative stress, inflammation, neurovascular damage and
potentially the progression of DR. Therefore, we advocate that
TXNIP itself, its redox partners, and/or the NLRP3 inflammasome
constitute effective gene therapy targets. In this regard, nucleic
acid constructs containing the TXNIP promoter linked with a
target gene or an inhibitory RNA packaged in AAV vectors may be
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practical for gene therapies in DR.
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