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Abstract
Salmonella Heidelberg is one of the most prevalent poultry Salmonella strains. Infection with S. Heidelberg strongly 

stimulates nitric oxide (NO) response in the chicken macrophage HD11 cells. In the present study, regulation of NO response 
to S. Heidelberg infection by the host mitogen-activated protein (MAP) kinases (p38, ERK1/2, and JNK) was investigated 
using the selective pharmaceutical inhibitors, SB203580, PO98059, and SP600125, respectively.  At the concentrations used, 
the p38 inhibitor strongly inhibited the NO productions in S. Heidelberg infected cells (61-80% reduction; p≤0.05); whereas 
ERK1/2 inhibitor produced a much less inhibition (14-20% reduction; p≤0.05) and JNK inhibitor showed no inhibitory effect 
(4-6% increase). The total MAP kinases p38 and JNK were not changed by Salmonella infection, with mild increase detected in 
ERK1/2.  However, large changes were observed in phopho-p38 (100% increase) and JNK (45% increase), with a minor change 
detected in phospho-ERK1/2 (9% increase). Although both p38 and JNK phosphorylation can be significantly inhibited (p≤ 0.05) 
by their inhibitors, only inhibition of p38 produced a significant reduction of NO. Together, these results indicated that p38 MAP 
kinase, not JNK and ERK1/2, plays a significant role in regulating the NO response of HD11 cells to Salmonella infection.
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Introduction
Macrophages are phagocytic mononuclear cells, playing a 

central role in the host innate immune system where they detect, 
phagocytize and eradicate invading pathogens by creating an 
inflammatory milieu through secretion of various proinflammatory 
cytokines, reactive radical oxygen species (ROS), nitric oxide 
(NO), lysozyme, and proteolytic enzymes [1,2].  In macrophages, 
NO is catalyzed by the inducible NO synthase (iNOS) when the 
cells are stimulated by pathogens, bacterial lipopolysaccharides 
(LPS), and the cytokine interferon-γ (IFN-γ) [3].  Production of 
NO by activated macrophages is an important innate immune 
response of cellular antimicrobial function [4,5]. As precursor to 
reactive nitrogen species (RNS), NO is actively involved in the 

host defense against intracellular pathogenic microorganisms such 
as Salmonella [6,7]. It is well established that chicken macrophages 
are activated to produce NO when exposed to pathogens [8-12] 
and pathogen associated molecules [13,14].

Salmonella Heidelberg is one of the top prevalent Salmonella 
strain in the poultry and has often been associated with human 
salmonellosis [15]. It has been shown that the strain stimulates 
a strong NO response in chicken macrophage cells [12]. As NO 
playing an important role in controlling intracellular pathogens 
like Salmonella, identifying cellular signaling mechanism that 
controls NO production is needed for a better understanding of 
the host-pathogen interaction. In mammalian cells, members of 
mitogen-activated protein (MAP) kinase family (p38, ERK1/2, 
and JNK) are known to regulate  iNOS activity [16,17]; however, 
information regarding the role of MAP kinases in chicken 
macrophage iNOS activation during Salmonella infection remains 
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unclear.  Therefore, the present study was to identify the regulatory 
role of MAP kinases (p38, ERK1/2, and JNK) in NO response of 
chicken macrophage (HD11) to S. Heidelberg infection.  

Materials and Methods
Reagents

Cell culture medium and reagents were obtained from Sigma 
(St. Louis, MO). The inhibitors PD98059 (ERK1/2 inhibitor), 
SB203580 (p38 MAPK inhibitor), SP600125 (JNK inhibitor) were 
obtained from Santa Cruz Biotechnology (Dallas, TX). Ultra-pure 
LPS from Salmonella Minnesota was obtained from InvivoGen 
(San Diego, CA). MAP kinase (p38, ERK1/2, and JNK) activation 
assay kit (RayBio® Cell-based ERK1/2 (activated) ELISA Sample 
kit) was obtained from RayBiotech (Norcross, GA).

Cell Line 
The MC29 virus-transformed chicken macrophage cell line 

HD11 [18] was maintained in a complete Dulbecco’s Modified 
Eagles Medium (DMEM) containing 10% chicken serum, 
antibiotics (100 U penicillin/ml and 100 µg streptomycin/ml), 
and 1.5 mM L-glutamine at 39ºC, 5% CO2, and 95% humidity. 
Aliquots of cell suspension (2x106 cells/ml) was seeded into each 
well at 500 μl/well for 24-well plate (BD Biosciences, Bedford, 
MA) and allowed to grow to about 85% confluence (~ 36 h) before 
used for infection.

Bacterium
The strain of S. Heidelberg used in the present study was a 

field isolates from a poultry farm and was serotyped by the National 
Veterinary Services Laboratory (Ames, IA). The bacterium was 
kept at -80°C in glycerol stocks, an aliquot of the stocks was 
cultured overnight at 41ºC in BD’s Tryptic Soy Broth (TSB), an 
aliquot of the overnight cultures was transferred to a fresh TSB and 
cultured at 41°C for 4 h to reach exponential growth phase, and the 
bacterium was collected, washed, and suspended in PBS buffer at 
a final concentration of ~1x109(cfu, colony-forming unit)/ml [12].  

Cell Infection with S. Heidelberg
Prior to infection, the culture medium was removed, and the 

cells were washed once and replaced with 200 μl of plain DMEM 
(without chicken serum and antibiotics). Aliquots of 50 μl of 
Salmonella suspensions (~1x109cfu/ml) were added to each well 
at 20 ~25 MOI (multiplicity of infection) with four replicates and 
incubated for 1 h at 39°C in a 5% CO2 humidified incubator. At 
1-hour post infection (hpi), the infection medium was removed, 
and the cells were washed once with plain DMEM, treated with 
100 μg/ml of gentamicin sulfate in complete DMEM for 1h to kill 
extracellular bacteria. After gentamicin-treatment, infected cells 
were washed twice and continued the culture in complete DMEM 
containing 25 mg/ml of gentamicin sulfate for 24 h.  

Nitrite Assay
Nitrite, a stable metabolite of NO, produced by activated 

macrophages was measured by the Greiss assay [19].  HD11 cells 
in 24-well plates were pretreated with or without kinase inhibitor in 
4-replicates for 30 min and proceeded with S. Heidelberg infection 
as described above or with LPS stimulation at concentration of 1 
µg/ml.  Cells were continued to culture at the absence or presence 
of various inhibitors at the indicated concentrations.  After 24 
hpi with S. Heidelberg or LPS stimulation, aliquots of 100 µl 
culture supernatant from each well were transferred to the wells 
of a new flat-bottom 96-well plate and mixed with 50 μl of 1% 
sulfanilamide and 50 µl of 0.1% naphthylenediamine (both were 
prepared in 2.5% phosphoric acid solution) sequentially. After 
10 min incubation at room temperature, the nitrite concentration 
was determined by measuring optical density (OD595) of each well 
using a SPECTRA MAX microplate reader (Molecular Devices, 
Sunnyvale, CA). Sodium nitrite (Sigma) was used as a standard to 
determine nitrite concentrations in the cell-free medium. 

MAP Kinase Activation Assay
For cell-based MAP kinase activation assays, 100 μl aliquots 

of cell suspension (2x106 cells/ml) was seeded into each well of 
a flat-bottom 96-well plate and allowed to grow to about 85% 
confluence (~ 36 h). Cells were infected with S. Heidelberg for 1 hr 
and then proceeded with the MAP kinase (p38, ERK1/2, and JNK) 
activation assay using a RayBio® Cell-based ERK1/2 (activated) 
ELISA Sample kit (RayBiotech, GA, USA) according to the 
manufacture’s instruction. Relative amounts of total or phospho-
MAP kinases were detected with specific antibodies and measured 
spectrophotometrically at OD450.

Data Analysis
Two independent experiments were conducted at different 

times. Within each experiment, four replicates were measured 
for each treatment. Data were analyzed by One Way ANOVA 
followed by multiple comparisons (Tukey test) using SigmaStat® 
software (Jandel Scientific, San Rafael, CA). The value of p< 0.05 
is considered to be significant.

Results and Discussion
In macrophages, NO is synthesized from L-arginine, oxygen 

and NADPH by iNOS in response to stimulation by microbial 
products [3]. NO exerts its antimicrobial function by disrupting 
respiration and DNA synthesis and repair, and by producing reactive 
nitrogen species (RNS) which cause oxidative and nitrosative 
stress to intracellular pathogens [20,21]. As a result, NO response 
to microbial stimulation is an important innate immune function of 
macrophages and has been shown to play a critical role in control 
of the proliferation of intracellular bacterial pathogens such as S. 
Typhimurium [22,23]. 
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There are three major pathways, including NF-κB, AP-1 
and JAK/STAT, that play a critical role in the regulation of 
iNOS activity which is responsible for the production of NO in 
macrophages [24]. The MAP kinase family is directly involved 
in activation of NF-κB and AP-1 [25-27] and there is plethora 
of evidence indicating the involvement of MAP kinase family in 
activation of iNOS in various cell types [17]. However, information 
regarding regulation of NO production in avian macrophage cells 
in response to microbial stimulation is limited [13,28-30]. 

In this study, infection with S. Heidelberg stimulates a strong 
NO response in chicken macrophage HD11 cells.  Using selective 
MAP kinase inhibitors, SB203580 (p38), PD98059 (ERK1/2), 
and SP600125 (JNK), we have demonstrated a differential role of 
MAP kinases in regulating NO response to S. Heidelberg infection 
in HD11 cells (Figure 1). 

Figures 1(A-C):  Effect of selective MAP kinase inhibitors on production 
of nitric oxide (NO) in chicken macrophage cell line HD11 cells infected 
with S. Heidelberg. Cells were infected with S. Heidelberg in the absence 
or presence of specific inhibitors at the indicated concentrations. Nitrite 
of the culture media was measured at 24 h post infection (hpi). A. p38 
inhibitor SB203580; B. ERK1/2 inhibitor PD98059; and C. JNK inhibitor 
SP600125. Different letters indicate that the difference between the 
treatments is statistically significant (p ≤ 0.05).  

 At 12.5, 25, and 50 µM concentrations, the p38 inhibitor, 
SB203580, strongly inhibited the NO productions (61%, 70%, 
and 80% reduction (Figure 1A); whereas the ERK1/2 inhibitor, 
PD98059, was shown to be less effective (14%, 16%, and 20% 

reduction (Figure 1B) and the JNK inhibitor, SP600125, had no 
inhibitory effect at all (4%. 6%, and 4% increase (Figure 1C). These 
results suggest that p38 MAP kinase have a more influential role in 
regulating chicken macrophage cell iNOS activity in responding to 
S. Heidelberg infection than its counterparts ERK1/2 and JNK. 

To validate the observation, a cell-based MAP kinase 
phosphorylation assay was conducted to examine the activation 
of MAP kinases in HD11 cells when infected with S. Heidelberg. 
There was no change in total protein contents of p38 (Figure 2A) 
and JNK (Figure 2E), with a slight increase of ERK1/2 (Figure 2C) 
when cells were infected by S. Heidelberg. However, S. Heidelberg 
infection significantly increased the activated state phosphor-p38 
(100%, Figure 2B) followed by JNK with 45% increase (Figure 
2F), with ERK1/2 the least with 9% increase (Figure 2D). The 
increase of phospho-p38 MAP kinase was effectively inhibited by 
SB203580 (Figure 2B), which corresponded well with the strong 
inhibitory effect of SB203580 on NO production (Figure 1A). These 
results confirmed the critical role of p38 MAP kinase in chicken 
macrophage NO response to S. Heidelberg infection. The phosphor-
ERK1/2 proteins were little changed (Figure 2D) whether or not 
cells were infected by S. Heidelberg and which together with that 
the production of NO was mildly affected by the inhibitor PD98059 
(Figure 1B) suggest that ERK1/2 may not have a significant 
role in regulating the NO response to S. Heidelberg infection. 

Figures 2(A-F):  Phosphorylation of MAP kinases induced by S. 
Heidelberg infection in chicken macrophage HD11 cells. Cells were 
pretreated with specific inhibitors at the indicated concentrations for 30 
min and then infected with S. Heidelberg for 1 h. The protein contents of 
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total and phosphorylated MAP kinase were detected by specific antibodies 
using the ELISA kit from Ray Biotech (GA, USA). A. Total p38 MAP 
kinase; B. Phospho-p38 MAP kinase; C. Total ERK1/2; D. Phospho-
ERK1/2; E. Total JNK; and F. Phospho-JNK. Different letters indicate that 
the difference between the treatments is statistically significant (p ≤ 0.05).  

Although S. Heidelberg infection induced increase of 
phospho-JNK can be significantly inhibited by its selective 
inhibitor, SP600125 (Figure 3F), treatment with the inhibitor 
resulted in no reduction, rather a slightly increased production of 
NO in HD11 cells (Figure 1C). The results clearly indicate that 
JNK is less likely involved in the activation of iNOS in chicken 
macrophages in response to S. Heidelberg infection. 

Lipopolysaccharides from the outer membrane of Gram-
negative bacteria, including Salmonella, are known to strongly 
stimulate NO production in the chicken macrophage HD11 cells. 
The same inhibitors were evaluated to verify whether MAP kinases 
(p38, ERK1/2, and JNK) play the similar role in LPS-stimulated 
NO production in chicken macrophage cells. Indeed, an identical 
pattern of inhibitory effects on the NO production emerged: the p38 
inhibitor strongly abolished, in a dose-dependent manner, the LPS-
stimulated NO production (Figure 3A), while inhibition of ERK1/2 
and JNK produced less or no inhibitory effects (Figure 3B and 
Figure 3C) respectively. These results confirmed the importance of 
p38 MAP kinase in regulation of chicken macrophage NO immune 
response.

In conclusion, we have demonstrated that S. Heidelberg 
infection induces a strong NO production in the chicken 
macrophage cell line HD11. The p38 MAP kinase, but not 
ERK1/2 and JNK, plays a critically important regulatory role in 
the NO response to S. Heidelberg infection and LPS stimulation 
in chicken macrophage HD11 cells. These results demonstrate a 
unique aspect of MAP kinase family in regulating iNOS activity in 
chicken macrophages.

Figures 3(A-C):  Effect of selective inhibitors on production of nitric 
oxide (NO) in chicken macrophage cell line HD11 cells stimulated with 
lipopolysaccharide (LPS). Cells were stimulated with LPS at 1 µg/ml in the 
absence or presence of specific inhibitors at the indicated concentrations. 
Nitrite of the culture media was measured at 24 h post stimulation. A. 
p38 inhibitor SB203580 9SB); B. ERK1/2 inhibitor PD98059 (PD); C. 
JNK inhibitor SP600125 (SP). Different letters indicate that the difference 
between the treatments is statistically significant (p≤ 0.05).  
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