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/Abstract

to advance pharmacogenomics research.

Substance abuse is a healthcare epidemic with substantial costs to society, both financial and quality of life. Effective
pharmacotherapy options for treating substance abuse are critical, and approaches employing precision/personalized medicine
hold promise for optimization, not only for improving drug- and dose-selection strategies, but also for addressing reversible,
substance abuse-environment-coupled epigenetic changes. By presenting some of the more commonly studied genetic bio-
markers relevant to opioid pharmacotherapies, we provide a brief introduction to pharmacogenomics research. Also presented
are comprehensive descriptions and examples of contemporary and emerging methodologies and technologies being leveraged

~

J

Although the US comprises only about five percent of the
world’s population, it consumes nearly seventy percent of the
world’s opioid production — including ninety-nine percent of the
world’s hydrocodone [1]. As the uptick in opioid-related deaths
continues, the urgency to halt (or at least substantially alleviate)
this epidemic becomes increasingly paramount [2]. In 2015 there
were 52,404 drug overdose deaths in the United States, and more
than sixty percent involved an opioid [3]. In the subsequent year
the age-adjusted death rate attributed to drug overdose increased
by more than twenty percent to 63,600, representing a 3-fold
increase from 1999 to 2016 [1]. Much of the opioid epidemic has
been attributed to the consistent rise in use and subsequent abuse
of nonmedical pain relievers (NMPR) in past decades. Although
NMPR abuse is the most common pathway to abuse of stronger
opioids [4], other risk factors include various environmental and
genetic factors. Genetic predisposition is thought to be one of the
larger contributors to risk (e.g., up to fifty percent in some
studies) [5], and both drug abuse and alcoholism share genetic
influences including some that are both developmental stage
dependent [6].

Pharmacogenomics research involves the study of the
effects of genetic variation (i.e, gene mutations or
polymorphisms that alter structure, function or expression of
gene-encoded proteins) on patient response to pharmaceuticals.
As risk of substance abuse has a strong genetic component,
pharmacogenomics is poised to provide meaningful guidance for
tailoring approaches for risk determination and treatment of
substance abuse as well as pain treatment strategies that minimize
risk of substance abuse. For most pharmaceuticals genetic
variation accounts for twenty-five to fifty percent of
interindividual variation in drug response, and contemporary
scientific literature suggests its contribution may be even larger
for illicit drugs [7]. A few of the more commonly described
functional genetic variants pertinent to substance abuse include
enzymes, receptors and transporters involving dopamine,
glutamate, serotonin and morphine [8-9].

One of the more well-studied genes influencing opioid
response is the mu opioid receptor gene (OPRM1). Crist et al.
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recently reported that a single nucleotide polymorphism (SNP
pronounce “snip”) in the mu opioid receptor gene (OPRMI)
was associated with clinical outcomes in a 582-patient cohort
of European-Americans of a 24-week, randomized, open-label
trial of methadone or buprenorphine/naloxone (Suboxone) for
the treatment of opioid dependence [10]. The authors report
the SNP (rs10485058), characterized by a guanin to adenine
substitution resulting in variant mRNA and reduced expression of
mu-opioid receptors, was associated with decreased risk (relative
risk=0.76, 95% confidence intervals=0.73-0.80, P=0.0064) of
opioid abuse relapse as determined by urine screen. They also
reported supportive findings from analysis of self-reported data in
the Comorbidity and Trauma Study (CATS) of 1215 Australian
opioid dependent individuals of European descent. In the CATS
patient cohort, rs10485058 predicted abstinence of relapse
(measured during the final 30 days of the 24-week study) after
achieving abstinence (p=0.003) [10]. Importantly, Oslin e al.
had previously reported rs10485058 was associated with
efficacy of naltrexone for the treatment of alcohol dependence.
Homozygous rs10485058-Carriers had lower rates of relapse
(0.26 vs. 0.47, OR=2.27, p=0.044) compared to homozygous
wild-type (normal) and heterozygous carriers of rs10485058
[11]. Polymorphisms in OPRM]I, including rs10485058 and
others (e.g., rs1799971, rs2075572, rs558025, rs9384179 and
rs62638690), demonstrates promise potential for aiding prescribers
in opioid and dose selection as well as opioid-abuse treatment
strategies to achieve optimal clinical outcomes.

Another important gene influencing opioid response is
CYP2D6, encoding the metabolism enzyme cytochrome P450
family 2 subfamily D member 6 cytochrome. Evidence
demonstrating its utility in opioid and dose selection is sufficient
that official recommendations have been established by the Clinical
Pharmacogenetics Implementation Consortium (CPIC) [12] and
in FDA-approved drug labeling for certain opioids [13].
Comprehensive information including references to additional
clinical and translational studies as well as population-specific
polymorphism frequencies for polymorphisms in a myriad of genes
affecting the pharmacology of opioids and/or a variety of other
pharmaceuticals is maintained by the NIH-sponsored website,
www.pharmgkb.org [14].  Recent technologic developments
improving our capacity to examine the human genome have greatly
improved our understanding of the interplay between genetic
structure, regulation and the subsequent downstream effects on
clinical response to pharmacotherapies. The clinical relevance
of gene-medication associations continues to expand as does the
list of FDA-approved drug labels containing pharmacogenomic

guidance. In fact, more than 150 medications are now included
in the FDA’s Table of Pharmacogenomic Biomarkers in Drug
Labeling table. [13].

Contemporary Technology in Pharmacogenomic
Research

Bioinformatics

Bioinformatics applications include computational tools
to organize, analyze, visualize and store information associated
with biological macromolecules. Advances in bioinformatics
allow for efficient processing and storage of large multivariate
data sets of molecular structures, genetic interactions, high-
throughput genotyping data and differential gene expression.
With the aid of contemporary bioinformatics methodologies, gene
expression studies can now be conducted without necessitating
implementation of in vitro experiments. In addition, in silico gene
expression analysis allows for quantitative analysis of the genes
comprising the entire genome (rather than only a subset of genes
fitted to a microchip array) [15].

Paramount to the recent transition of national health policy
towards the principles of precision medicine, bioinformatics has
merged with genomic medicine by (1) linking biobanks with
electronic health records (EHR) for genomics analysis, (2) initiating
patient genomics testing, (3) assimilating pharmacogenomics
into routine medical care, and (4) utilizing genomics in drug
development. [16].

Electronic Health Records and Biobanks

Electronic health records (EHR) are routinely utilized for
storage and retrieval of patient health data, and inclusion of patient
genomic data is becoming more common. Optimal EHR systems
are user-friendly, scalable, and capable of storing large amounts
of data for annotation, search and retrieval. As most patients are
likely to change healthcare systems several times during their
life, efficient, and accurate, transfer of data across various EHR
platforms is another essential attribute. Common limitations
in utilizing EHR for pharmacogenomics research include (1)
inaccurate, incomplete or incompatible data, (2) inability to
accurately identify and define phenotypes from available clinical
data, (3) biased health records, and (4) difficulty in generating
phenotype algorithms from complex data [17]. Biobanks are
repositories of patient tissue specimens, often including genetic
material. They are commonly linked to EHRs, creating a vast
resource of genomic and health related data, enabling researchers
to reclassify diseases based on molecular pathways. Schemes
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linking EHRs to biobanks provide a powerful, unprecedented
opportunity for investigating the relationship between heritability
and drug response. Compared to traditional clinical trials, these
methods involving the linkage of longitudinal phenotype data
(captured via EHR queries of prescriptions, procedures and
socioeconomic status) [18] to large patient repositories of either
genetic data or access to biological samples for genomic analysis
are superior for cost savings, efficiency and cohort size [19-20].

Genome-Wide and Phenome-Wide Association Studies

A Genome-wide Association Study (GWAS) is a statistical
analysis that simultaneously measures association between
hundreds of thousands of genetic polymorphisms and select
phenotypes (traits). Without bias regarding location or
plausibility of the genes and polymorphisms investigated,
GWAS are particularly useful for discovery of association(s). A
primary disadvantage of GWAS is that the p-value thresholds
must account for multiple hypothesis testing (e.g., p-values
often need be < 5x10°¢ to be considered statistically significant
rather than the customary p-value cut-off of 5x10?), resulting in
potentially important associations (those with biological
plausibility) going undetected. Additional limitations include
the inability to determine causality and linkage-dependent under-
or over-estimation of association(s).

Coverage of most gene loci is commonly adequate to allow
reliable utilization of proxies in GWAS. When the polymorphism
of interest is not specifically included on a genetic assay, a proxy
with known linkage to the polymorphism of interest can be
substituted. The use of a proxy, however, introduces additional
probability  estimate(s) when linkage is not absolute.
Haplotype maps (HapMap) are constructs of several proxy
polymorphisms that can substitute (accurately predict) large
genomic segments when several genotypes occur with near
perfect linkage [21-23]. While GWAS have collectively made
profound contributions to genetic discovery, GWAS findings
alone are insufficient for properly informing clinical decision
strategies. Replication studies utilizing a candidate-gene
approach, limited to fewer select genes and polymorphisms, are
superior for better characterizing association(s) and potential
clinical importance. The utility of GWAS may likely be
enhanced when coupled with emerging methodologies and
technologies, providing greater clinical relevance and deeper
understanding of the complex relationships constituting the
heritability of response [24].

Measuring association(s) between genetic polymorphism(s)
and a variety of phenotypes, Phenome-Wide Association Studies
(PheWAS) are another complementary approach to GWAS.
Phenotypic data, often retrieved from EHR(s), can be aggregated
(e.g., similarly-defined phenotypes can be combined assuming
reasonable scale homogeneity) to drastically increase statistical

power. As Phe WAS-GWAS replication rates near seventy percent
were reported as earlier as 2013 (near the infancy of PheWAS)
[25], the potential for improved replication and PheWAS-GWAS
symbiosis remains promising as PheWAS continue to integrate
emerging methodologies and technologies [26].

Sequencing

Traditional DNAsequencing (Sanger sequencing) utilizes
dideoxy nucleotide triphosphates (DDNTPs) as DNA-chain
terminators, fragments large DNA polynucleotides into
smaller components and utilizes computer-based assembly
of the contiguous sequences. Considered the gold standard
of DNAsequencing for the past 30 years, this method has been
greatly successful in detecting monogenetic pathologic traits
in well-recognized phenotypes. Primary limitations of Sanger
sequencing include inability to identify copy number variants
and limited success for studies involving complex,
heterogeneous genetic diseases. As most diseases are not
monogenic (i.e., their etiology can include hundreds of genes and
mutations), Sanger sequencing has substantial limitations [27].

Compared with traditional sequencing, Next Generation
Sequencing (NGS) provides superior (time, cost, accuracy and
reproducibility) genetic sequencing. Introduced in 2007, NGS has
led to great enhancements in our abilities to understand and
interpret genetic data in disease and clinical decision models. As
early as 2014, readily available services were able to offer genetic
sequencing with nearly 100-fold improvement (financial and time
cost per nucleotide) compared to traditional sequencing. For
example, [llumina introduced the HiSeq X Platform in 2014 with
reported capability to sequence 16 entire human genomes in 3
days at a depth of 30-fold at a cost of only 1,000 USD per
genome [28]. NGS involves the direct sequencing of DNA
molecules and does not rely on amplification a priori to
sequencing. By eliminating the for DNA cloning and nucleotide-
library construction steps, NGS has emerged as a cost-effective
alternative to real-time Polymerase Chain Reaction (PCR) and
DNA microarray methods for the evaluation of global gene
expression [29].

Next Generatim Sequencing has also advanced the
understanding of human diseases through epigenetics, genomics
and transcriptomics. This family of technologies provides the high-
throughput computing power needed to run Large-scale Unbiased
Sequencing (LUS)which includes DNA-Seq (genomics), RNA-
Seq (Transcriptomics), ChIP-Seq and Methyl-Seq (epigenetics).
DNA-Seq is applied to Whole Genome Sequencing and Whole
Exome Sequencing.. Exomes are the coding portions of the
genome (i.e., the portion of sense that code for the amino
acid sequence of the protein product). A newer technology,
RNA-Seq, allows sequencing of the entire transcriptome,
measuring environment-associated changes in gene expression
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including altered transcription secondary to coding and
noncoding genetic modifications. ChIP-Seq allows for
sequencing of the epigenetic architecture of the genome,
detecting genome-wide transcription factors, binding sites and
chromatin-associated modifications. Methyl-Seq profiles DNA
methylation at the single-nucleotide level. Collectively, these
LUS methods provide genetic data that is far deeper, richer and
more flexible compared with that from SNP-based genotyping,
transcript profiling, or multigene panel sequencing [30].

Omics Bioscience
Epigenomics

Epigenetics is the study of heritable changes in gene
expression that result from factors other than polymorphism in
DNA sequence. Epigenetic modifications can have significant
influence on both disease and patient response to
pharmaceuticals. Importantly, epigenetic changes are potentially
reversible and vary with age and tissue. Histone modification
and DNA methylation are commonly studied epigenetic
molecular mechanisms. A major epigenetic pathway for gene
expression modification involves methylation of cytosine at the
5’ position of CpG dinucleotide sites. Methylation at the
promotor region of a gene leads to decreased gene expression, a
signal for those genes to be silent. DNA methylation is essential
for normal organismal development and for tissue-specific gene
expression. Variation in DNAmethylation is influenced more by
environment than genetics. Environmental influence is about
90% and genetic influence is about 10% [7]. Another pathway
of epigenetic regulation chromatin remodeling (via methylation,
acetylation and phosphorylation of the four histone proteins
surrounding DNA).

Modifications of chromatin structure (chromatin includes
DNA- and RNA-wrapped proteins) are an additional
transcription regulatory mechanism. In short, DNA is wrapped
around the nucleosome (consisting of a segment of DNAwound
in sequence around a histone octamer consisting of 2 copies each
of the core histones H2A, H2B, H3, and H4) with histone tails
extruding from tightly packed histone protein cores. Exposed
protein cores are subject to modification (methylation,
acetylation and phosphorylation) of the histone tails to form
specific combinations that establish open/closed transcription
states regulating protein transcription. Although DNA
methylation and chromatin remodeling regularly vary across
different tissues and tissue regions, both acute and chronic
administration of drugs of abuse result in specific transcription-
modifying changes in the nucleus accumbent and other brain
areas comprising the reward center paramount in addiction
behaviors [31].  Epigenetic alterations occur over time or
immediate and can be secondary to drugs of abuse,
pharmacotherapy for drug addiction, prior stressful life

experiences, or through genomic imprinting.

As epigenomic modifications occur in real-time, newer
technologies allowing characterization of epigenetic markers
across the genome need to account for epigenomic vulnerability,
environmental stressors, nutritional assessments and cell-specific
epigenetic patterns [32]. The DNA methylation state can be
accessed via the Chromatin Immunoprecipitation Procedure
(ChIP) consisting of the following: proteins are crosslinked with
DNA to shear off DNA; fragments with methylated cytosines are
extracted by immunoprecipitation utilizing antibodies specific for
the 5’-methyl-cytosine; and the resulting DNA precipitate is
purified, amplified, tagged with a fluorescent label, and
subsequently subjected to DNA microarray assay. Modification
of histones, another epigenetic modification, is studied via mass
spectrometry. Recently reported modifications in histone H4
isoforms that regulate cell differentiation of human stem cells
were detected using mass spectrometry [33].

Proteomics

Complementary  to genomics approaches, proteomics
involves the analysis of the complete set of proteins in an
organism and can uncover protein regulation not dependent on
changes in genetic code (e.g., post-translational modifications
secondary to environmental or multigenic influences). Clinical
proteomic schemes generate protein profiles of various chemical
compounds found in tissue-specific fluids to serve as biomarkers.
Cryptic biomarker patterns in complex mass spectra require
specialized bioinformatics algorithms [34], and validation in
clinical studies requires a delicate balance of protective measures
to reinforce study design and statistical analysis [35]. Proteomics
also depends heavily on bioinformatics and technology.
Computer algorithms for database query and retrieval, mass
spectrometry for protein identification, ultra-performance liquid
chromatography and nucleotide sequence databases must be
carefully designed to ensure accuracy and reproducibility of
studies.

Metabolomics

Metabolomics is the study of the complete set of
metabolites in the organism. The metabolome is composed of a
large diversity of small molecules that are molecular
intermediates and end-products of different cellular and
physiological processes. These small molecules are present
during health, disease and during treatment and may function as
biomarkers.  Proteomics and metabolomics are highly linked
with proteomics focusing on large molecules (proteins) and
metabolomics focusing on small molecules (metabolites).
Underlying this symbiotic relationship, proteins are designed to
act on the metabolome and metabolites are designed to act on the
proteome [36]. The downstream product of the genome are
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endogenous metabolites resulting from transcription and
translation. The environment acts on the organism and gives rise
to the upstream product - exogenous metabolites (including
metabolites of drugs of abuse). Metabolomics is an ideal tool for
studying gene-environment interaction [37].

Metabolomics involves analytical chemistry coupled with
computational methodologies to characterize complex biochemical
mixtures. Separation methods typically include high-resolution
liquid chromatography or gas chromatography, and metabolites
are subsequently characterized by mass spectroscopy or nuclear
magnetic resonance.

Transcriptomics

Gene expression is a dynamic process influenced by cellular,
genetic and environmental influences. The transcriptome is the
completesetofmRNA transcriptsinacellataspecificdevelopmental
stage or physiological condition. Transcriptome analysis reveals
the molecular constituents of cells and functional elements of the
genome, both essential for understanding mechanism of disease.
Transcriptomics, also termed gene-expression profiling, is the
direct analysis of mRNA as a representation of gene-expression
patterns. While microarray technology has traditionally been
used, analysis of the entire transcriptome can now be accomplished
using RNA-seq. Sequencing of full length mRNA within a single
cell allowing results in single-cell transcriptomic analysis, and
utilization of bioinformatics-coupled high-throughput sequencing
allows for in situ multi-omic detection analyses [38].

Gene expression can be regulated by small non-coding RNA
species including small interfering RNA (siRNA) and microRNA
(miRNA). They silence gene expression by blocking mRNA
translation and their range of regulation (physical coverage)
is about 30% of exons (gene segments that code for proteins)
[39]. Derived from longer double-stranded RNAs processed to
siRNA and miRNA, their discovery occurred while observing
mammalian cell culture introduced to short double-stranded RNA
oligonucleotides (siRNA) resulted in RNA interference (RNA1i)
without inducing interferon response [40]. Identification of siRNA
species can be obtained via siRNA high-throughput screening
experiments using > 5000 siRNA libraries assuming appropriate
biostatistics methodologies [41].

While most pharmacogenomics studies have focused on
polymorphisms in DNA exons (i.e., DNA segments that code for
the amino-acid sequence of the protein product), variants in DNA
introns (i.e, regulatory segments of DNA including promotor,
enhancers and miRNAs) can significantly influence drug response.
Variants in miRNA impacts the protein product, and variation in
enhancer or promotor regions impact mRNA. Human disease and
variability in patients’ drug response are associated with genetic
variation in both intronic and exonic DNA segments. More than

ninety-five percent of impactful SNPs reported have been within
noncoding regions (i.e., introns) [42].

With expression scores similar to that of microarrays,
RNA-seq is an accurate and cost-effective method to analyze
mRNA transcripts. RNA-seq can survey the entire transcriptome
without prior knowledge of the transcribed regions and can
identify novel and alternative transcripts of protein-coding genes
not possible with microarrays [43]. RNA-seq datasets are
generated by extracting, purifying and segmenting mRNA
subsequently producing cDNA by subjecting segmented mRNA

to reverse transcriptase; attaching adapters to fragments
and sizing selection via sequencing of the cDNA [29].
Systems Biology

A multidisciplinary, holistic approach, systems biology
integrates all interacting networks of genes, proteins and
biochemical reactions of the organism. The techniques and
technologies of Systems Biology are those that support
Epigenomics, Proteomics, Metabolomics and Transcriptomics.
Although not focused on a drug of abuse nor on a pharmacologic
treatment for substance abuse, Folkersen’s et al. recent report of
the COMBINE biobank, one of the largest collection of patient
multi-omics data, nicely demonstrates the high potential for
discovery and replication achievable via Systems Biology. The
overall hypothesis, response to medication can be predicted by a
precision-medicine Systems-Biology approach coupled with a
multi-omics patient biobank, was tested with DNA, RNA and
protein measurements in 451 blood samples (61 controls and 185
cases collected pre-treatment, baseline and 3-months post-
treatment). Impressively, more than fifty percent of the variation
in patient 3-month response was accounted with a sensitivity of
0.73 and specificity of 0.78 [44]. With the inclusion of other
contemporary and emerging modalities (e.g.,  epigenetics),
Systems-Biology approaches will provide opportunity for
discovery and integration of genetic biomarkers with real clinical
significance.

The range of epigenetic changes characterized in substance
abuse patients continues to expand as researchers increasing
harness the investigative power of these emerging technologies
and methodologies. The following provides some examples of
recently reported and promising findings. Nicotine Epigenetic
modification of DNA occurs in hematopoietic stem and
progenitor cells during smoking and persists in peripheral blood
many years after cessation, [45] is partially reversible, [46] and is
transmitted to the fetus in utero by maternal smoking [47].
Maternal smoking is associated with variable DNA methylation
in fetal lung and placental tissues that suggests a fetal origin for
chronic pulmonary and immune-related diseases [48]. Ethanol
Ethanol-induced up-regulation of the NMDA receptor of the
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NR2B gene was found after chronic administration of ethanol and
was associated with demethylation [49] and histone acetylation
[50]. Fetal Alcohol Spectrum Disorders (FASD), characterized
by irreversible cognitive and behavioral disability, results from
significant ethanol exposure in utero. Demethylation of normally
hypermethylated imprinted regions in sperm DNA is associated
with chronic alcohol use, suggesting a potential molecular
mechanism for paternal transgenerational transmission of FASD
[51]. Opioids Epigenetic activation and silencing of mu opioid
receptor (MOR) expression can be achieved through coordination
at both the histone and DNA levels. DNA methylation and
histone deacetylation at the OPRMI promoter decrease/silence
MOR expression. The in vivo interaction between the histones
and MeCP2, a methyl-CpG binding protein, which binds
preferentially to methylated DNA and directly represses
transcription, was reduced in the MOR promoter region upon
differentiation, and MOR expression increased. When siRNA
was used to disrupt the MeCP2, MOR expression increased [52].
The MOR gene in blood and sperm DNA was significantly
increased in opioid addicts, suggesting evidence of a mechanism
for transgenerational continuation of the opioid dependence
phenotype [53]. Cocaine Acute and chronic administration of
cocaine produces immediate and lasting gene expression changes
through epigenetic modifications mirroring the behavior
adaptations seen in human cocaine addiction. Acute cocaine
treatment induced hypermethylation of the promoter region of
the DNA methyltransferase gene (DNMT) and resulted in
transcriptional downregulation (transcriptional silencing) in the
nucleus accumbens. Repeat cocaine administration resulted in
hypomethylation and upregulation of fosB (immediate early
transcription factor) in the nucleus accumbens [54].

Conclusion

Substance dependency and addiction result largely from
environment-gene interactions occurring in specific areas of the
brain. Pharmacogenomics focuses on heritable variations in the
genome leading to individual differences in drug response and
interfaces with bioinformatics, molecular genetics, neuroscience,
clinical pharmacology, EHR/Biobanking, genome and phenome-
wide association studies, proteomics, transcriptomics, and
metabolomics. Interdisciplinary systems-biology approaches are
increasingly needed to harness these contemporary and emerging
technologies and methodologies to adequately characterize this
complex disease at the molecular level. The linking of EHR and
biobank systems and the application of genomic science and
technologies to substance abuse are highlighting the potential of
personalized-medicine approaches related to substance abuse.
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