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/Abstract

In this paper, we described how prototype-based classification can be used for knowledge acquisition and automatic image
classification. We developed the prototypical methods and techniques of the system in order to serve the special development issues
of an expert when starting a new image-based application. Often an expert can present a catalogue of prototypical images instead
of a large enough image database for setting up the system. Starting with the set of prototypical images we can learn the important
image features and the conceptual description of an image class. In this paper, we described the necessary functions a prototype-
based classifier should have. Besides the similarity calculated based on the numerical image features, we introduced the experts
estimated similarity as new knowledge piece and a new function that optimizes between this similarity and the automatically
calculated similarity by the system in order to improve the system accuracy. This function reduces the influence of the uncertainty
in the calculated features and the similarity measure and brings the similarity value closer to the true similarity value. The test of
the system is done in the study of the internal mitochondrial movement of cells. The basis for the development is fluorescent cell
images. The aim was to discover the different dynamic signatures of mitochondrial movement. For this application, the expert
knows from the literature how the different signatures should look like and based on this knowledge he picks prototypical images

~

N

from his experiment. We present our results and give an outlook for future work.

J

Keywords: Adjustment theory; Discover dynamic signatures
of mitochondrial movement; Feature selection; Knowledge acqui-
sition; Prototype-based classification; Prototype selection

Introduction

In this paper, the behavior of mitochondria in living cells is
studied in an experiment in drug discovery. Mitochondria are semi-
autonomous organelles with a large variety of functions in cellular
metabolism. Metabolic control mechanisms, as well as the balance
of the replication cycles of the nucleus and mitochondria, require
a subtle interplay between these organelles and the other parts of a
cell. The discovery of micro compartmentation attributes that play
a new physiological role to of cellular structure is essential. They
are no longer only morphological entities but rather provide a basis
for substance gradients and the organization of multi enzyme mul-
tienzyme complexes. The cytoskeleton is the most prominent and
ubiquitous system bringing organelles into the right position and
provides a large and heterogeneous surface for associations with
other structures and molecules. Thus, neither the distribution nor

the appearance of mitochondria (and all other organelles) might be
at random and without control.

Mitochondria are semi-autonomous organelles which are
endowed with the ability to change their shape (e.g., by elongation,
shortening, branching, buckling, swelling) and their location inside
a living cell. In addition, they may fuse or divide. Dislocation of
mitochondria may result from their interaction with elements of the
cytoskeleton, with microtubules in particular, and from processes
intrinsic to the mitochondria themselves [1]. The emphasis in sys-
tem biology is laid on the methods for visualizing mitochondria
in cells and following their behaviour. The most powerful tools to
detect and identify mitochondria in situ are advanced fluorescence
techniques. Fluorochroming endows the organelles with the ca-
pability of luminescence. Thus, very fine extensions, below the
resolution power of a light microscope, can be detected because of
their fluorescence. In addition, spatial or temporal variations of the
fluorescence emission along a single mitochondrion report changes
of the inner compartment. Fluorescence methods provide unique
possibilities because of their high resolving power and because
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some of the mitochondria-specific fluorochromes can be used to
reveal the membrane potential. Fusion and fission often occur in
short time intervals within the same group of mitochondria.

The main disadvantage of fluorescence techniques is that the
dyes are susceptible to photobleaching, which leads to the forma-
tion of cytotoxid free radicals and singlet oxygen, and even leads
to dissipation of the electrochemical gradient [2]. Photobleaching
and its deleterious effects can be almost avoided by using low ex-
citation intensities and image acquisition systems (e.g., intensified
SIT cameras, or cooled CCD cameras which allow photon integra-
tion on the chip).

Despite the general uniformity of mitochondria (an outer
membrane enclosing an inner membrane to which the tubular, ve-
sicular, crestlike, or prismatic membrane invaginations are con-
nected), it is still uncertain whether a single population, or several
populations inhabit a cell. The answer to this question depends on
the definition of “population” which could either be characterized
by morphological criteria, by different fate, or by genetic differ-
ences. This association with the spindle assures equal distribution
of the mitochondria to the spermatocytes during the meiotic divi-
sions. Proteins which bind to the outer mitochondrial membrane
and to microtubules have been identified.

The following work is restricted to those aspects related to
mitochondrial motion and the physiological significance of the
interactions. While imaging with fluorescence techniques allows
the visualization of the mitochondria, the automatic image analysis
and the detection of the different stage of the mitochondria appear-
ances is still missing.

In this paper, we described how prototype-based classifica-
tion can be used for knowledge acquisition and automatic image
interpretation of the appearances of the mitochondria. We described
why prototype-based classification is a novel method for this kind
of application compared to normal clustering. Also, we described
the necessary functions a prototype-based classifier should have.
We introduced the expert's estimated pairwise similarity between
the images as new knowledge piece and a new function that op-
timizes between this similarity and the automatically calculated
similarity by the system in order to improve the system accuracy.
This function reduces the influence of the uncertainty in the cal-
culated features and similarity measure and brings the similarity
value closer to the true similarity value. The test of the system is
done in the study of the internal mitochondrial movement of cells.
The basis for the development is fluorescent cell images. The aim
was to discover the different dynamic signatures of mitochondrial
movement. In Section 2, we presented related work. The material
used for this study is described in Section 3. Section 4 explains the
methodology for knowledge acquisition and for the development
of the automatic image classifier based on prototypical images.
The image analysis procedure is described in Section 5. Our novel

texture descriptor is presented in Section 6. The method and tech-
niques of the prototypical classifier are given in Section 7. They
are represented in our novel software tool protoclass. Results are
given in Section 8. We gave a conclusion and an outlook for future
work in Section 9.

Related Work

Prototypical classifiers have been successfully studied for
medical applications by Schmidt and Gierl [3], Perner [4] for im-
age interpretation and by Nilsson and Funk [5] on time-series data.
The simple nearest-neighbor-approach [6] as well as hierarchical
indexing and retrieval methods have been applied to the problem.
It has been shown that an initial reasoning system could be built
up based on prototypical cases. The systems are useful in practice
and can acquire new cases for further reasoning during utilization
of the system.

Prototypical images are a good starting point for the devel-
opment of an automated image classifier [7]. This knowledge is of-
ten collected by human experts in the form of an image catalogue.
It is often easier for an expert to show prototypical images instead
of describing the appearance of an object under consideration and
name the important image features. In our experiment described in
this paper, the biologist knows what he wants to trigger in a cell by
putting some chemical on it and how a prototypical image should
look like. This knowledge can be used as starting point for the de-
velopment of an automatic image classification system. Therefore,
our description is based on the study of the internal mitochondrial
movement of cells [8] how such a classifier in combination with
image analysis and feature extraction can be used for incremental
knowledge acquisition and automatic classification. We not only
use the numerical calculated similarity value as input we also used
the experts estimated pairwise similarity between the images as
new knowledge piece and a new function that adjusts this simi-
larity value given by the expert and the automatically calculated
similarity value by the system in order to improve the system ac-
curacy. The test of the system is done in the study of the internal
mitochondrial movement of cells.

The classifier is set up based on prototypical cell appear-
ances in the image such as for e.g. , healthy cell®, ,,cell dead®, and
,,cell in transition stage®. For these prototypes are calculated image
features based on the random set theory that describes the texture
of the cells [9]. The prototype is then represented by the attribute-
value pair, experts gave pairwise similarity value and the class la-
bel. These settings are taken as initial classifier settings in order to
acquire the concept description about the dynamic signatures.

The importance of the features and the feature weights are
learned by the protoclass-based classifier [4]. After the classifier is
set up each new cell is then compared with the protoclass-based
classifier and the similarity to the prototypes is calculated. If the
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similarity is high the new cell gets the label of the prototype. If the
similarity to the prototypes is too low, then there is evidence that
the cell is in a transition stage and a new prototype has been found.
With this procedure, we can learn the dynamic signature of the
mitochondrial movement.

The Application

After the assay has been set up and the interaction of the
cells with drug and proteins has been started it is not quite clear
what the concepts of the different phases of a cell are. This has to
be learnt during the usage of the system.

Based on their knowledge the biologists set up several de-
scriptions for the classification of the mitochondria. They grouped
these classes in the following classes: tubular cells, round cells and
dead cells. For the appearance of these classes the expert could
show different prototypical images (see images in Figure 1). It is
to be emphasized that the expert did not only pick one unique pro-
totypical image instead of he picked several prototypical images to
show the variances of the objects among the respective class. This
information can be taken as starting point for the development of
an automatic image classification system. We start with a set of im-
ages for each class that is limited to a few number of cases.

The aim should be to learn from these limited prototypical
image data set the important features for the object description and
the conceptual description of the different classes.

|ass Round
B03 8

Figure 1: Sample Images for three Classes.

The prototypical cells were selected, and the features were
calculated [10]. We chose to describe the texture of the cells.

The expert rated the similarity between these prototypical
images. Our dataset consisted of 223 instances with the following
class partition: 36 instances of class Death, 120 instances of class

Round, 47 instances of class Tubular, and 114 features for each
instance. The expert chose for each class a prototype shown in
Figure 2. The test data set dataset for classification has had then
220 instances. For our experiments, we also selected 5 prototypes
pro class respectively 20 prototypes pro class. The associate test
data sets do not contain the prototypes.

=
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Figure 2: The Prototypes for the class Death, Round and Tubular.
Methodology

Figure 3 summarizes the knowledge acquisition process
based on protoclass-based classification.

We started with one prototype for each class. This prototype
is chosen by the biologist based on the appearance of the cells. It
requires that the biologist has enough knowledge about the pro-
cesses going on in cell-based assays and can decide what kind of
reaction the cell is showing.
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Figure 3: Methodology for Prototype-based Classification.
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The discrimination power of the prototypes is checked first
based on the attribute values measured from the cells based on our
random set texture descriptor and the chosen similarity measure.
Note that we calculated a large number of attributes for each cell.
However, many attributes do not mean that we will achieve a good
discrimination power between the classes. It is better to come up
with one or two attributes for small sample sizes in order to ensure
a good performance of the classifier. The expert manually estimates
the similarity between the prototypes and inputs these values into
the system. The result of this process is the selection of the right
similarity measure and the right number of attributes. With this
information is set-up first classifier and applied to real data.

Each new data is associated with the label of the classifica-
tion. Manually we evaluated the performance of the classifier. The
biologist gives the true or gold label for the sample seen so far.
This is kept in a database and serves as a gold standard for fur-
ther evaluation. During this process, the expert will sort out wrong
classified data. This might happen because of too few prototypes
for one class or because the samples should be divided into more
classes. The decision on what kind of technique should be applied
is made based on the visual appearance of the cells. Therefore, it is
necessary to display the prototypes of class and the new samples.
The biologist sorts these samples based on the visual appearance.
That this is not easy to do by a human and needs some experienc-
es in describing image information [6]. However, it is a standard
technique in psychology in particular gestalts psychology and is
known as categorizing or card sorting. As a result of this process,
we came up with more prototypes for one class or with new classes
and at least one prototype for these new classes.

The discrimination power needs to get checked again based

on this new dataset. New attributes, the new number of prototypes
or a new similarity measure might be the output. The process is
repeated as long as the expert is satisfied with the result. As a result
of the whole process, we get a dataset of samples with true class
labels, the settings for the protoclass-based classifier, the important
attributes and the real prototypes. The class labels represent the
categories of the cellular processes going on in the experiment.
The result can now be taken as a knowledge acquisition output.
Just about discovering the categories or the classifier can now be
used in routine work on the cell-line.

Image Analysis

The color image has been transformed into a gray level image
(see Figure 4). The image is normalized to the mean and standard
gray-level calculated from all images to avoid invariance caused by
the inter-slice staining variations. Automatic thresholding has been
performed by the algorithm of Otsu [11]. The algorithm can localize
the cells with their cytoplasmatic structure very well. We then ap-
plied morphological filters like dilation and erosion to the image in
order to get a binary mask for cutting out the cells from the image.

The gray levels ranging from 0 to 255 are quantized into 12
intervals t. Each subimage f(x,y) containing only a cell gets classi-
fied according to the gray level into t classes, with t=[0,1,2,..,12].
For each class, a binary image is calculated containing the value
“1” for pixels with a gray level value falling into the gray level in-
terval of class t and value “0” for all other pixels, see Figure 4. We
called the image f(x,y,t) in the following class image. Object label-
ing is done in the class images with the contour following method
[12]. Then the texture features from these objects were calculated
for classification.

|®
»

Figure 4: Examples of Cell Images for 10 different Classes.

Texture Feature Description based on Random Sets

Boolean sets were invented by Matheron [13]. An in-depth description of the theory can be found in Stoyan et al. [14]. The Boolean
model allows to model and simulates a huge variety of textures e.g. for crystals, leaves, etc. The texture model X is obtained by taking
various realizations of compact random sets, implanting them in Poisson points in R", and taking the supremum. The functional moment

O(B) of X, after Booleanization, is calculated as:
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P(Bc X¢)=0(B)=exp(-qMes(X ®B)  VBek

where K is the set of the compact random set of R", 9 the

—_— \4
density of the process and Mes(X © X) is an average measure
that characterizes the geometric properties of the remaining set of
objects after dilation. Relation (25) is the fundamental formula of

the model. It completely characterizes the texture model. o(B)

does not depend on the location of B ,1.e., it is stationary. One can
also provide that it is ergodic so that we can peak the measure for
a specific portion of the space without referring to the particular
portion of the space.

Formula 1 shows us that the texture model depends on two
parameters:

e the density 9 of the process and

_
e a measure Mes(X © B) that characterizes the objects.
In the one-dimensional space, it is the average length of the

-
lines and in the two-dimensional space Mes(X © B) is the
average measure of the area and the perimeter of the objects
under the assumption of convex shapes.

We considered the two-dimensional case and developed
a proper texture descriptor. Suppose now that we have a texture
image with 8-bit gray levels. Then we can consider the texture
image as the superposition of various Boolean models, each of
them having a different gray level value on the scale from 0 to 255
for the objects within the bit plane.

To reduce the dimensionality of the resulting feature vector,
the gray levels ranging from 0 to 255 are now quantized into S
intervals t (S=12). Each image f(x,y) is classified according to the
gray level into t classes, with t={0,1,2,..,S}. For each class, a binary
image is calculated containing the value “1” for pixels with a gray
level value falling into the gray level interval of class t and value
“0” for all other pixels. The resulting bit plane f(x,y,t) can now be
considered as a realization of the Boolean model. The quantization
of the gray level into S intervals was done at equal distances. In
the following, we call the image f(x,y,t) a class image. In the class
image, we can see a lot of different objects. These objects get labeled
with the contour following method [12]. Afterwards, features from
the bit-plane and from these objects are calculated. Since it does
not make sense to consider the features of every single object
due to the curse of dimensionality, we calculated the mean and
standard deviation for each feature that characterizes the objects
such as the area and the contour. In addition to that, we calculated
the number of objects and the areal density in the class image.

The list of features and their calculation are shown in Table
1. The first one is the areal density of the class image t which is

the number of pixels in the class image, labeled by “1”, divided by
the area of the image. If all pixels of an image are labeled by “1”,
then the density is one. If no pixel in an image is labeled, then the
density is zero.

Description Name Type Farmula

Object ocourred in class | Gray ¢ boolean ¥es of 0o

image

Number of objects in class | Counnr ¢ numerical nit)

imags ¢

Mean aren of objects in class | Area_t munengal i 1 M=

mage | A= ---;E.ﬂ!.l.n

E nir g

Relative mean avea of objects | Rarea_t munerical jUJ

n ¢lass image 1 1o area of cell fdin) = 4

Mean shape factor tor objects | Formr munerical . 1 ":-II'] Aif)

in class image ¢ k= it = y A7)
wille wft)) comeer e the
length of the i-th object in
clazs tmage ¢

The contour length of a single object is &r = T+~2m with 1 being the number of

sontour pixsls having odd cham coding nwnbers and m bemg the mumber of sontour

pixels having even cham coding numbers.

Mean contour lenght  of | Lemgdh ¢ | mnnerical wiEl

olgects m class image 1 i) = ¥ )

=

Table 1: Texture Features based on Random Set.

From the objects in the class image t, the area, a simple
shape factor, and the length of the contour are calculated. Per the
model, not a single feature of each object is taken for classification
due to the curse of dimensionality, but the mean and the standard
deviation of each feature were calculated over all the objects in the
class image t. We also calculate the frequency of the object size in
each class image t.

Protoclass Classifiers
The Overall Method

A prototype-based classifier classifies a new sample accord-
ing to the prototypes in the database and selects the most similar
prototype as the output of the classifier. A proper similarity mea-
sure is necessary to perform this task but in most applications, there
is no a-priori knowledge available that suggests the right similar-
ity measure. The method of choice to select the proper similarity
measure is therefore to apply a subset of the numerous similarity
measures known from statistics to the problem and to select the
one that performs best according to a quality measure such as, for
example, the classification accuracy. The other choice is to auto-
matically build the similarity metric by learning the right attributes
and attribute weights. In the later one, we chose as one option to
improve the performance of our classifier.

When people collect prototypes to construct a dataset for a
prototype-based classifier, it is useful to check if these prototypes
are good prototypes. Therefore, a function is needed to perform
prototype selection and to reduce the number of prototypes used
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for classification. This results in better generalization and a more
noise tolerant classifier. If an expert selects the prototypes, this can
result in bias and possible duplicates of prototypes causing ineffi-
ciencies. Therefore, a function to assess a collection of prototypes
and identify redundancy is useful. Finally, an important variable
in a prototype-based classifier is the value used to determine the
number of the closest cases and the final class label. Consequently,
the design-options the classifier has to improve its performance are
prototype selection, feature-subset selection, feature weight learn-
ing and the ‘k’ value of the closest cases (see Figure 1).

We assumed that the classifier can start in the worst case
with only one prototype per class. By applying the classifier to new
samples, the system collects new prototypes. During the lifetime
of the system, it will change its performance from an oracle-based
classifier, which will classify the samples roughly into the expected
classes, to a system with high performance in terms of accuracy.

In order to achieve this goal, we need methods that can work
on less number of prototypes and on a large number of prototypes.
As long as we have only a few numbers of prototypes feature sub-
set selection and learning the similarity might be the important
features the system needs. If we have more prototypes we also
need prototype selection.

In the case with less number of prototypes, we chose meth-
ods for feature subset selection based on the discrimination power
of attributes. We used the feature based calculated similarity and
the pair-wise similarity rating of the expert and applied the adjust-
ment theory [15] to fit the similarity value more to the true value.

For a large number of the prototypes, we chose a decremen-
tal redundancy-reduction algorithm proposed by Chang [16] that
deletes prototypes as long as the classification accuracy does not
decrease. The feature-subset selection is based on the wrapper ap-
proach [17] and an empirical feature-weight learning method [18]
was used. Cross-validation was used to estimate the classification
accuracy. A detailed description of our prototype-based classifier
ProtoClass was given in [4]. The prototype selection, the feature
selection, and the feature weighting steps were performed inde-
pendently or in combination with each other in order to assess the
influence, these functions had on the performance of the classifier.
The steps were performed during each run of the cross-validation
process. The classifier schema shown in Figure 5 is divided be-
tween the design phase (Learning Unit) and the normal classifi-
cation phase (Classification Unit). The classification phase starts
after we had evaluated the classifier and determined the right fea-
tures, feature weights, the value for ‘k’ and the cases. Our classifier
has a flat database instead of a hierarchy that makes it easier to
conduct the evaluations.
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Figure 5: Prototype-based Classifier.

Classification Rule

Assume we have n prototypes that represent m classes of
the application. Then, each new sample is classified based on its
closeness to the n prototypes. The new sample is associated with
the class label of the prototype that is the closest one to sample.

More precisely, we call x;, {xX,,....X,...X } a closest case

tox if mind(xi,x): d(x;,,x), where i=1,2,...,n.

The rule chooses to classify x into category C,;, where x/, is

the closest case to x and x|, belongs to class C; with / € {l,...,m}
In the case of the k-closest cases, we required k samples of the
same class to fulfill the decision rule. As a distance measure, we
can use any distance metric. In this work, we used the city-block
metric.

The pair-wise similarity measure Simij among our prototypes
shows us the discrimination power of the chosen prototypes based
on the features.

The calculated feature set must not be the optimal feature
subset. The discriminatory power of the features must be checked
later. For a less number of prototypes, we can let the expert judge

the similarity SimEij i,j€{l,...,n} between the prototypes. This
gives us further information about the problem which can be used
to tune the designed classifier.

Using Expert’s Judgmenton Similarity and the Calculated
Similarity to Adjust the System

Humans can judge the similarity SimEij among objects at
a rate between 0 (identity) and 1(dissimilar). We can use this
information to adjust the system to the true system parameters
[15]. Using the city-block distance as the distance measure, we got
the following linear system of equations:
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N
SimE; = %Zalm -/ | with i, j € {l,...,n}, f; the feature 1 of the i-th prototype and N the number of attributes.
I=1
The attribute a, is the normalization of the feature to the range {0,1} with g, =;that is calculated from the
prototypes. |fmax,l _fmin,l

That this is not the true range of the feature value is clear since we have fewer samples. The factor a, is adjusted closer to the true
value by the least square method using expert's SimEij:

-1 N 2
”Z z [SimE]- —%Za,b‘i —fj| = Min ,
I=1

i=1 j=i+l

PN S
|fmax,l - fminl

with the restriction 0 < g,

Results

Figure 6a shows the accuracy of classification based on a different number of prototypes for all attributes and Figure 6b shows
the accuracy of a test set based on only the three most discriminating attributes. The test shows that the classification accuracy is not so
bad for only three prototypes but with the number of prototypes the accuracy increases. The selection of the right subset of features can
also improve the accuracy and can be done based on the method presented in Section 6 for a low number of samples. The right chosen
number of closest cases k can also help to improve accuracy but cannot be applied if we only have three prototypes or fewer prototypes
in the database.

08 Accuracy (all attributes) Accuracy (AreaS, ObjCtn0, ConSk3)
8 - 0.9 -
i e -
e or '\57
0s C“"’f / e !/
04 /f( —— = | 2: / —— |
i -
03 ‘f il k=3 03 f/ =
02 02
o / 0.1 P
I: / . v u { T
3 prototypes 15 prototypes 0 prototypes 3 prototypes 15 prototypes 60 protorypes

Figure 6b: Accuracy for different number of prototypes using 3 attributes

Figure 6a: Accuracy for different number of prototypes using all attri- ;
(Area5, ObjCtn0, ConSk3).

butes.

Figure 6: Accuracy versus Prototypes and for two different feature subsets.

Figure 7 shows the classification results for the 220 instances started without adjustment, meaning the weights al are equal to one
(1;1;1) and with adjustment based on expert's rating where the weights are (0.00546448; 0.00502579;0.00202621) as an outcome of
the minimization problem

7 Volume 2017; Issue 01



Citation: Perner P (2017) Incremental Learning of the Different Dynamic Signatures of Mitochondrial Movement in Drug Discovery and System Biol-
ogy. Adv Proteomics Bio inform: APBI -101. DOI: 10.29011/APBI -101. 100001

Accuragy

=3t
151
B

Figure 7: Accuracy depending on choice of attributes (k=1)

B6 23 B03 22 F10 2
B6 23 0 0,669503257 0,989071038 (0,6)
0.8)
B03 22 0,669503257 0 0,341425705 (0,9)
0.8)
0,989071038 0,341425705
F10.2 0.6) 0.9) 0

Table 2: Difference between 3 Prototypes using the 3 attributes
(ObjCnt0,ArSig0, ObjCntl),

Table 2 shows the different values of three prototypes. The
result shows that accuracy can be improved by applying the adjust-
ment theory and especially the class-specific quality is improved
by applying the adjustment theory (see Figure 8).

Accuracy without adjustment and with
adjustment based on expert’s sim rating

088
g /
3 0.8 +
0.5
FB EB
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Figure 8: Accuracy with and without adjustment theory.
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Figure 9: Number of removed Prototypes.

Number of remoted Featres after Featre Subset Selection with
MMethods of large Number of Prototypes

I!!A‘\\
— L =

Figure 10: Number of removed Features.

The application of the methods for larger samples set did
not bring any significant reduction in the number of prototypes
(see Figure 9) or in the feature subset (see Figure 10). The proto-
type selection method reduced the number of prototypes only by
three prototypes. We took it as an indication that we have had not
yet enough prototypes and that the accuracy of the classifier can
be improved by collecting more prototypes. How these functions
worked on another data set can be found in [18].

In Summary, we have shown that the chosen methods are
valuable methods for a prototype-based classifier and can improve
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the classifier performance. For future work, we will do more inves-
tigations on the adjustment theory as a method to learn the impor-
tance of features based on less number of features and for feature
subset selection for less number of samples.

Conclusions

We have presented our results on a prototype-based classi-
fication. Such a method can be used for incremental knowledge
acquisition and automatic image classification. Therefore, the clas-
sifier needs methods that can work with fewer numbers of proto-
types and on a large number of prototypes. Our result shows that
feature subset selection based on the discrimination power of a
feature is a good method for fewer numbers of prototypes. The
adjustment theory in combination with an expert similarity judg-
ment can be taken to learn the true concept description of a class in
case of fewer prototypes. If we had a large number of prototypes,
an option for prototype selection that can check for redundant pro-
totypes is necessary.

The system can start to work on a low number of prototypes
and can instantly collect samples during the usage of the system.
These samples get the label of the closest case. The system per-
formance improves as more prototypes the system has in its data-
base. That means an iterative process of labeled sample collection
based on prototype-based classification is necessary followed by
a revision of these samples after some time in order to sort out
wrong classified samples until the system performance has been
stabilized.

The test of the system is done in the study of the internal
mitochondrial movement of cells. The biologist knows from the
literature how the different signature of mitochondrial movement
of cells should look like. Based on this knowledge he can pick pro-
totypical images that are the starting point for our system develop-
ment. If we give him an introduction to the concept of similarity
[17] he is also able to give a value for the pairwise similarity value
between the different prototypical images. These values and the
calculated similarity values can be used to come close to the true
similarity value from our adjustment function. It reduces the influ-
ence of the uncertainty in the features.
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