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Abstract

This review explores the impact of natural functional foods on oxidative stress in individuals infected with the human immunodeficiency
virus (HIV), with a specific focus on their implications for metabolic-associated fatty liver disease (MAFLD). The global prevalence
of HIV continues to pose significant public health challenges, with chronic liver disease, particularly MAFLD, being a common cause
of mortality among HIV patients. The pathogenesis of MAFLD involves multiple hits, including insulin resistance, lipid accumulation,
oxidative stress, and mitochondrial dysfunction. Oxidative stress, in particular, disrupts normal cellular metabolism, leading to
inflammation, fibrosis, and hepatocellular carcinoma. Antioxidants, found in various functional foods such as fish, pitaya, and certain
plant-based and microbial sources, have shown potential in reducing oxidative stress and improving liver health. However, the
mechanisms of action and the specific therapeutic effects of these functional foods require further investigation. Despite the promising
potential of antioxidant-active functional foods in managing MAFLD among people living with HIV (PLWH), current research
remains limited, and more in-depth studies are necessary to validate their efficacy and understand their underlying mechanisms.
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Introduction

First identified in 1981, human immunodeficiency virus (HIV)
continues to represent one of the most significant global public
health challenges, with approximately 39.9 million individuals
living with the virus by the end of 2023, according to the World
Health Organization (WHO) [1,2]. In addition to immunological
decline, HIV infection predisposes individuals to a wide range
of comorbidities, including chronic liver diseases. Among these,
metabolic-associated fatty liver disease (MAFLD), a newly defined
entity replacing the traditional concept of non-alcoholic fatty liver
disease (NAFLD), has gained attention due to its high prevalence
and associated risks in people living with HIV(PLWH) [3]. Unlike
NAFLD, which excludes other etiologies of liver disease, MAFLD
is diagnosed based on positive criteria that emphasize metabolic
dysfunction, including obesity, type 2 diabetes, and metabolic
dysregulation [4-6]. This shift toward a more inclusive definition
reflects the complex pathophysiology underlying MAFLD and
facilitates a more comprehensive understanding of its etiology,
particularly in high-risk populations such as PLWH [7,8].

Oxidative stress, characterized by an imbalance between reactive
oxygen species (ROS) production and antioxidant defenses, is a
critical factor in the pathogenesis of MAFLD [9,10]. It contributes
to lipid peroxidation, mitochondrial dysfunction, inflammation,
and hepatic fibrosis, forming a vicious cycle that exacerbation liver
damage [11-13]. In HIV-infected individuals, oxidative stress is
further amplified due to viral proteins, chronic immune activation,
and antiretroviral therapy, leading to an increased prevalence of
MAFLD compared to the general population [14]. Consequently,
addressing oxidative stress offers a promising therapeutic target
for managing MAFLD in PLWH [15].

Functional foods, defined as foods that provide health benefits
beyond basic nutrition, have emerged as a potential intervention
[16-20]. These foods, which include plant-based products,
animal-derived components, and microbial sources, are rich in
bioactive compounds, such as polyphenols, omega-3 fatty acids,
and carotenoids. Preliminary studies suggest these compounds
can modulate oxidative stress, improve hepatic metabolism,
and alleviate MAFLD-related liver damage [21,22]. However,
the therapeutic potential of functional foods in PLWH remains
underexplored, and their mechanisms of action are not fully
understood.

This review aims to critically evaluate the current evidence on
the role of functional foods in mitigating oxidative stress and
improving MAFLD in HIV-infected populations. By synthesizing
findings from experimental and clinical studies, this paper seeks to
identify research gaps and propose future directions for developing
effective dietary strategies to address this growing public health
concern.

HIV and Oxidative stress

Studies have found that HIV infection significantly increases
oxidative stress within the body and decreases antioxidant
capacity, which leads to oxidative damage to proteins, lipids,
and DNA, contributing to the pathogenesis of HIV-related
comorbidities, including metabolic-associated fatty liver disease
[14]. The envelope protein Gp120 and viral protein R (Vpr) have
been implicated in the increased ROS production in HIV infected
individuals. These viral components induce oxidative stress
by activating NADPH oxidase and mitochondiral dysfunction,
resulting in excessive ROS generation [23-26]. ROS, including
superoxide anions, hydrogen peroxide, and hydroxyl radicals, are
highly reactive intermediates that disrupt cellular homeostasis and
amplify inflammatory pathways [27-30].

The oxidative stress in HIV infection is further compounded by
the chronic immune activation and inflammation associated with
the disease. Pro-inflammatory cytokines, such as tumor necrosis
factor-alpha (TNFa) and interleukin-1 beta (IL-1p), are elevated
in HIV-infected individuals, stimulating further ROS production
through the activation of NFkB and other signaling pathways [31-
34]. Studies have shown a positive correlation between oxidative
stress markers and immune dysregulation, as evidenced by elevated
malondialdehyde (MDA) levels and reduced antioxidant capacity
in HIV patients [14,35]. However, conflicting findings, such
as those reported by Halickoval et al., who found no significant
difference in oxidative stress markers between HIV-infected
individuals and healthy controls, highlight the complexity of this
relationship and the need for further investigation [36].
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Oxidative stress also impacts HIV-associated neurological
dysfunctions, such as HIV-associated dementia. Lipid
peroxidation products, including 4-hydroxynonenal (4-HNE),
have been found at elevated levels in the brain tissues of affected
individuals, contributing to neuronal apoptosis and mitochondrial
dysfunction [37,38]. Some studies have used antioxidants to treat
HIV-associated dementia, finding that antioxidant therapy can
halt the progression of the disease. However, potential statistical
significance was not observed between the experimental and
control groups likely due to insufficient sample sizes [39]. Another
study found that Selegiline may exert neuroprotective effects by
reducing ROS production and thereby reducing neuronal apoptosis
[40].

In addition to its direct effects on tissues, oxidative stress
contributes to the suppression of the immune system in HIV
infected individuals. It depletes key nutrients, such as tryptophan,
which are critical for maintaining antiviral responses and enhances
viral replications [41-46]. Antioxidant-rich interventions, including
dietary supplements and functional foods, have shown promise in
preclinical studies for mitigating these effects [47-50]. However,
the clinical efficacy of such approaches in improving oxidative
stress-related outcomes in HIV remains an area requiring robust
investigation [51].

Oxidative Stress and MAFLD

Oxidative stress plays a central role in the development and
progression of metabolic -associated fatty liver disease, particularly
in high-risk populations, such as individuals living with HIV
[52]. The pathogenesis of MAFLD involves the interplay of
multiple factors, including insulin resistance, lipid accumulation,
inflammation, and mitochondrial dysfunction. Among these,
oxidative stress has emerged as a primary driver, contributing to
hepatocellular injury, steatosis, and fibrosis [53].

ROS, produced during normal metabolic processes, are tightly
regulated by antioxidant defense mechanisms, such as superoxide
dismutase (SOD), catalase, and glutathione peroxidase [3].
However, when ROS production exceeds the capacity of these
defenses, oxidative damage occurs, triggering lipid peroxidation
and protein oxidation. In hepatocytes, excessive ROS activates
signaling pathways, such as NFkB and MAPKs, leading to the
production of pro-inflammatory cytokines, including TNFa, IL-
6, and IL-1B [54]. This inflammatory response exacerbates liver
injury and promotes fibrosis through the activation of hepatic
stellate cells [55,56].

The Nrf2 pathway, a key regulator of cellular redox homeostasis,
plays a protective role by inducing the expression of antioxidant
enzymes [57]. However, chronic oxidative stress can impair
the Nrf2 pathway, further tipping the balance between ROS
accumulation [58]. Conversely, the NF«B pathway, which is

activated by oxidative stress, perpetuates the inflammatory cycle
by promoting the expression of pro-inflammatory genes [59]. The
interplay between Nrf2 and NF«B signaling creates a feedback
loop, amplifying oxidative damage and inflammation in MAFLD.

In individuals living with HIV, oxidative stress is further amplified
by the combined effects of chronic viral infection, antiretroviral
therapy (ART), and metabolic disturbances [60]. These factors
synergistically exacerbate hepatic oxidative stress, creating a
permissive environment for the onset and progression of MAFLD.
Evidence suggests that the prevalence of MAFLD in people living
with HIV ranges from 20% to 63% significantly higher than in
the general population [61]. This underscores the need for targeted
interventions to address oxidative stress as a therapeutic strategy
for managing MAFLD in this vulnerable group.

Correcting oxidative stress has shown promise in improving
liver health and mitigating MAFLD [9]. Preclinical studies have
demonstrated that antioxidant compounds can reduce hepatic
lipid accumulation, inhibit inflammation signaling, and restore
mitochondrial function [62-64]. Functional foods rich in bioactive
compounds, such as polyphenols, anthocyanins, and omega-3
fatty acids, represent a promising dietary approach for managing
oxidative stress-related liver injury [9, 65-67]. However, more
rigorous clinical studies are needed to validate their efficacy and
establish standardized guidelines for their use.

Functional foods with anti-HIV activity

The concept of functional foods was first proposed by Japan in
1984 and subsequently recognized by countries around the world
[68,69]. Over the past decade, research on functional foods has
gained widespread attention. Functional foods offer additional
health benefits beyond basic nutrition, providing an attractive
new option for the prevention and treatment of certain diseases,
which has led to their increasing popularity [69]. Functional
foods exhibit a wide array of health benefits due to their diverse
bioactive components, which commonly include anthocyanins,
astaxanthin, lycopene, resveratrol, curcumin, and others [70-74].
These distinct bioactive compounds endow functional foods with
varied health-promoting properties, such as reducing blood lipid
levels, lowering blood pressure, protecting the heart, combating
cancer, exhibiting anti-inflammatory and anti-diabetic effects [75].
Recent studies on HIV have found that certain functional foods
possess anti-HIV effects. For instance, a longitudinal analysis of
data from over 60 months of follow-up by Sung et al. revealed that
long-term consumption of Korean red ginseng helped maintain
CD4+ T-cell counts in HIV patients and delayed the development
of drug resistance, thereby improving HIV treatment outcomes
and prognosis [76].

Another study indicated that ajoene in garlic can inhibit HIV
from attaching to host cells, thus exerting antiviral effects [77].
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Furthermore, other antioxidant-rich foods, such as green tea
and ganoderma lucidum (Reishi mushroom), have also been
recognized for their potential to enhance immunity and combat
HIV [78-81]. The anti-HIV effect of ganoderma lucidum is
primarily achieved through the inhibition of HIV protease by its
constituents, ganoderma B and ganoderic acid B, indicating the
potential for use in the development of antiretroviral drugs [82-
84]. Green tea, containing epigallocatechin gallate (EGCQG), can
block HIV-1 from adhering to CD4 molecules through the gp120
protein, significantly reducing the infectivity of HIV-1[85].

Additionally, certain functional foods possess immunomodulatory
properties; for instance, sesamin, a polyphenolic compound
derived from sesame, can regulate levels of immune cytokines
such as IL-4, IL-5, IL-13, and inhibit the NF«kB signaling pathway
[86]. NFkB is a crucial molecule regulating HI'V replication and is
currently a significant potential target in HIV-1 chemotherapeutic
research. One major research direction in targeting NFxB for HIV
treatment involves the use of antioxidants, such as N-acetyl-L-
cysteine (NAC) [87]. Consequently, it is plausible that moderate
intake of antioxidant-functional foods could aid in the treatment
of HIV.

Antioxidant Functional Foods with and MAFLD

The onset and progression of MAFLD are closely related to
oxidative stress. Therefore, functional foods rich in antioxidant-
active compounds may play an important role in the prevention
and treatment of MAFLD. It has been confirmed that some
functional foods can neutralize free radicals and reduce oxidative

stress-induced liver damage, thereby inhibiting hepatic steatosis
by providing a variety of active compounds, such as polyphenols
and anthocyanins [88]. Based on their origin, these functional
foods can be categorized into three major groups: plant-based,
animal-based, and microorganism and algae-based, with most
currently discovered functional foods being plant-derived [75].
The following section will elaborate on functional foods with
antioxidant properties and protective effects against fatty liver
disease, classified by their source.

Plant-based Functional Foods

Plant-based foods are rich in bioactive compounds such as
polyphenols, flavonoids, and phytosterols, among others. Previous
studies have also shown that certain phenolic compounds found
in plants can prevent and treat hepatic steatosis by inhibiting
lipogenesis and promoting fat breakdown [89]. These plant
compounds not only protect the liver but also improve insulin
resistance and inflammation [90]. A summary of plant-based
functional foods that can antagonize oxidative stress is provided in
Table 1. Since the classification of many plant foods is ambiguous,
for example, bitter melon and avocado are considered both
vegetables and fruits---have not been subdivided plant-based
foods in the table. It should be noted that some of the research
findings listed in the table are controversial. For instance, while
some studies suggest that green tea can improve fatty liver disease,
others have found that green tea may exacerbate it, whereas black
tea effectively prevents and treats the condition [91, 92]. In such
cases, we have marked the entries with a symbol (). The specific
details are summarized in (Table 1).

Foods Bioactive ingredients Primary Benefits Mechanisms of Action Ref.
SchisandraChinensis Naringenin, rutin, chrysin intlg nlﬂilfl:lnr?iitori};}’i%tilt(i)g 1dl?: t’atic inhibit SREBP-1c, LXR-q, and [93]
bee pollen genin, - Yy WPOEYY > £hep FAS, balance gut microbiota
lipid accumulation
Black tea (Camellia Black tea extract (Tea flavonoids, gntloxldan, ant.1 -tumor., anti- . downregulat.e INQS’ eliminate NO
. . . . inflammatory, improving hepatic | production, inhibit oxygen free [91, 92, 94]
sinensis) theaflavin, troxerutin[TXER]) . . .
steatosis radicals production
. . . antlogl@ant, a.tntl-lnﬂammato‘ry, upregulate PPAR-a & PPAR-y,
.. . alkaloid, cardenolides, flavonoids, [hypolipidemic, hypoglycemic, .
Coccinia grandis (ivy . . . - g downregulate NF-«xB, iNOS,
terpenoids, saponins, and analgesic, antimicrobial, . [95]
gourd) leaves . . . TNF-a, upregulate eNOS, inhibit
polyprenols antipyretic, sedative, g
. . bcl-2 expression
hepatoprotective, anticancer
anti-inflammatory, antioxidant,
. charantlr}s, polypep.tlde—.p, antl-d.1al.:>et1c,. bl90d L . | regulate mtochondrial activity,
Bitter gourd momordin, oleanolic acid hypolipidemic, improving insulin |. ©. . .. . . [96]
. . . . inhibit lipid accumulation
3-o-monodesmoside resistance, alleviating hepatic
steatosis
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anti-inflammatory,anti-oxidant,

scavenging free radicals, inhibit

Olive leaf Oleuropein hypoglycemm,. hypoh.pl.demlc, chemical oxidation of LDL [97]
anti-hypertensive, antiviral
Vltamu‘l C, flavonoids, .. .. . inhibit CYP2EL, cytochrome
. glucosinolates, sulforaphane, antioxidant, hypolipidemic,

Broceoli henethyl isothiocyanate reducing hepatic lipid deposition P450 1A, cytochrome P450 [98]
phenetiy ¥ ’ ghep P P 3A, downregulate TNF, CD68
isothiocyanates

. . improving insulin resistance, induce Nrf2, protect mitochondria,

Broceoli sprouts Glucoraphanin inhibiting oxidative stress inhibit the development of NASH [99]

Asian white fl-rne't hylthio-3-butenyl anti-inflammatory, anti-tumor,

. . isothiocyanate (MTBITC), .. . . . Lo .

radish(Raphanus sativus . . antioxidant, improving insulin reduce hepatic lipid accumulation | [66]
anthocyanins, polysaccharides, . iy .

L) X resistance, hypolipidemic
glucosinolates
3-(E)-(methylthio)methylene-2- .

Black radish (Raphanus | pyrrolidinethione, polyphenols, antioxidant, liver protective, enhance Nrf2 expression, [100]

sativus L. var. niger) MTBITC, a'nthocyanins', hypolipidemic climinate free radicals
polysaccharides, glucosinolates

anti-inflammatory, anti- upregulate FXR and
Tomato iuice Lyvcobene proliferation, antioxidant, HNF4A, increase the abundance [101]
J yeop hypolipidemic, reducing hepatic | of intestinal lactobacilli, decrease
lipid accumulation acetate:propionate ratio
scavenge ROS, induce antioxidant
B-carotene, flavonoids, phenolic hypoglycemic, hypolipidemic , enzymes (catalase, SOD, GPx, and
Spinach compounds, lutlein, lycopene, anti-obesity, antioxidant, anti- glutathione reductase), upregulate | [102]
linolenic acid, thylakoids inflammatory PPAR-y, downregulate TNF-a and
PTX-3
Orange carrot carotenoids gntl-lnﬂammator}./, antioxidant, upregulate PPAR-a, AMPK, and [103]
improving fatty liver PGC-1a
hypolipidemic, antioxidant,
Corn Corn peptide hepatoprotective, hypoglycemic, E%?glgulate SIRT1/PPARa and Nrf2/ [104]
anti-hypertensive
antioxidant,
improving insulin
. Puerarin(4’,7-dihydroxy-8-B-D- . activate JAK/STAT, upregulate
Pueraria lobata elucosylisoflavone) resistance, Nrf2 and HO-1 [105]
hypolipidemic,
hepatoprotective
upregulate AMPK,, inhibit
. . anti-oxidant, hypolipidemic, anti- | SREBP-1c activity, downregulate
Quinoa Quinoa polyphenol inflammatory SREBP-2 , HMGCR, IL-1p, 1L-6, | 10®107]
and TNF-a
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hypolipidemic,
hypoglycemic,
antioxidant,
improving insulin e
Oat Beta-glucan Eﬁfg{)ﬁfﬁ balance gut [108,109]
resistance,
immunomodulation,
anti-infection,
anti-tumor
Djulis(Chenopodium rutin, Phytochemicals antlox.ld.ant, l}epatoprotectl\{e, activate PPAR-y, upregulate SIRT1,
. . hypolipidemic,hypoglycemic , LXR, pAMPK, PPAR-a, p-ACChe |[65]
formosanum Koidz) (Polyphenols and catechins) .
anti-tumor CPTIB
antl-inflammatory, anti- inhibit NFxB, enhance Nrf2
. tumor, anti-oxidative stress, . !
Mango, anemarrhena Mangiferin (1,3,6,7-tetra}hydroxy- hypolipidemic, anti-diabetic, anti- expression, block TGF-f/Smad [110]
xanthone-C2-f-D-gluoside) . A o . pathway, downregulate NLRP3
aging, anti-viral, anti-microbial, . .
hepatoprotective expression, activate AMPK
downregulate phospho-JNK1/2/3,
phospho-NF-«xB p65, phospho-IRS1
and phospho-IKK o/B, upregulate
.. o XBP1, CPT-1A, LXRa, CYP7AL,
anti-inflammatory, antioxidant, .
Sesame lignans(sesamin h lycemic. hvpolipidemi reductions of TNF-a and IL-6
Sesame esame flgnansisesamin, nypoglycemic, ypolipiaemic, levels, increasing GSH, 38 vitamin [[111-113]
sesamolin, and sesamol) improving insulin resistance, .
improving hepatic steatosis C and Nrf2 levels, decreasing MDA
and NO levels, and enhancing SOD,
CAT 39 and GSH-Px activities,
activate AMPK and PPAR signaling
pathways
antoxidant, anti-cancer, improving
Purple sweet potato anthocyanins insulin resistance, anti-diabetic, inhibit Src/ERK/C/EBPf [114]
inhibiting liver fat accumulation
anti-inflammatory, antioxidant, upregulate the lysomal function
Purple corncob peonidin 3-O-glucoside (P3G) anti-hypertensive, anti-cancer, mediated by transcription factor [115]
inhibiting liver fat accumulation | EB, activate PPARa
. | antioxidant, immunomodulation, | 4 0 1ate NFiB, INOS, TNFa,
. anthocyanins, flavanols (quercetin | antibacterial, hypolipidemic, . .
Onion . .. . S balance gut microbiota, upregulate |[116]
and its derivatives) hypoglycemic, anti-inflammatory, Sirt]
reducing hepatic steatosis
Red cabbage(Brassica anthocyanins, flavonoids, antioxidant, anti-inflammato
& ascorbic acid, isothiocyanate R R scavenging ROS [117,118]
oleracea L.) . hypolipidemic, hepatoprotective
(glucosinolates)
Anthocyanin(mainly polyphenols),
Acai (Euterpe oleracea | polyunsaturated(PUFA) and antioxidant, improving hepatic increase the expression of Gpx1, [119]
Martius) monounsaturated (MUFA) fatty steatosis Gpx4, Sodl
acids
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tomatoes, watermelons,

antioxidant, anti-inflammatory,

leaves

deposition

ink guavas, grapefruits, | Lycopene(lyco) anti-cancer, anti-hypertensive, upregulate NR1H4 and [101, 120-
2 ricits an(,ig a pa as o|Hyeop Y hypolipidemic, anti-proliferation, | HNF4A activate SIRT1 122]
P > papay inhibiting lilver fat accumulation
antioxidant, hypolipidemic, .
Tomato Saponins (mainly Esculeoside A) | hypoglycemic, inhibiting liver fat ia(c;valte AMPK, upregulate Nrf2- [123]
accumulation P
antioxidant, anti-inflammatory, upregulate Nrf2,activate AMPKo/
Vine tea Vine tea polyphenol(VTP) improving insulin resistance, PPARGoRinhibit the expression of [124]
inhibiting liver fat accumulation | SREBP-1 and FAS
anti-inflammatory, antioxidant, increase NADPH oxidase activity, [80, 81, 85
Green teat EGCG anti-HIV, improving hepatis inhibit TLR4/MyD88 mediated 12 5’_1 2’7] ’
steatosis NF«B activation
anti-inflammatory, antioxidant,
phenolic compounds, mainly hypolipidemic, reversing hepatic | downregulate SREBP1c and NLR,
kombuchas . .. . . [128]
catechins steatosis, improving glucose upregulate CPT-1 and adipo-R2
tolerance
anti-thrombotic, antioxidant,
Sophora japonica Troxerutin(TXER) anti-inflammatory, anti-tumor, scavenging ROS, inhibit NFkB [94-129]
neuroprotective
anti-inflammatory, antioxidant,
Gardenia jasminoides | Geniposide lipid-lower, inhibiting liver fat up regl}late Nrf2/HO-1 and AMPK [130]
. signaling
accumulation
antioxidant, hypolipidemic,
citrus Aavonoids ar'ltl-canc'er, antl.-car.dlov.ascular activate SIRT1/PGC-1a signaling [131]
disease, improving insulin pathway
resistance
trans-anethole, y-himachalene, - ..
L . methyl chavicol, cis-isoeugenol, an‘qox‘ldan‘F, lower blood hp.ld’ inhibit TLR-4, decrease TNF-a,
Pimpinella anisum L. . . anti-diabetic, hepatoprotective, [132]
linalool, pseudo-iso-eugenyl-2- . . IL-6
reducing liver fat accumulation
methyl butyrate
Qu Zhi Qiao (Fruit .. . . .
of Citrus Paradisicv. total Flavonoids (TFCH) ?;tlrglizmhmeatgz ::;2?;;?11@ u;) tr}(:il;late Nri2-ARE signaling [133]
Changshanhuyou) P £hep p Y
total flavone of haw leaves
. (TFHL), polyphenolic antioxidant, hypolipidemic,
Haw (Cratacgus aronia) antioxidants, flavonoids(luteolin-7 | improving hepatic steatosis upregulate Nrf2 [134,133]
glucoside, hyperoside and rutin
Vitis coignetiae Pulliat Polyphenols and anthocyanins antioxidant, reducing liver fat inhibit CYP2E] [136]
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anti-nflammatory,
hypolipidemic,,
Crataegus oxyacantha L | flavonoids and triterpene acids reducing glﬁf;se the activity of GSH and [137]
hepatic fat
accumulattion
Dragon fruit (Red yplipidene, ypogtyeenie, | caveneing ROS, downregulte
rag betacyanins rypoupidemic, ypogly ’ TNF-o, IL-1pB, IL-6, upregulate IL- | [138]
Pitaya) improving insulin resistance, . .
. . . 10, balance gut microbiota
reducing hepatic steatosis
anti-inflammatory, antioxidant,
Grape seed extract proanthocyanidins, resveratrol | anti-cancer, improving hepatic gpr.egfulate PPARB/3, SOD, GPx, [139,140]
. inhibit MAPK
steatosis
antioxidant, anti-inflammato inhibit NF«B, upregulate
Grane fruit resveratrol,ellagic acid, anti-cancer,im rovine he atri}c,, Gstpl,FABP1,Gpx4, Gpx8, Gss, [141,143]
P pterostibene steatosis - 1mp ghep Gps7, Sod1, Nrf2, PPARa, HO-1, ’
downregulate mTORC1, SREBP-1c¢
downregulate Iipogenic factor
sterol regulatory-element binding
anti-inflammatory, antioxidant, protein-1c, upregulate lipolytic
Vitis vinifera L. skin anthocyanidins improving insulin resistance, pathway (phosphorylated liver [144]
improving hepatic steatosis kinase B1/phosphorylated
adenosine-monophosphate-
activated protein Kinase
antixodiant, improving insulin downregulate SREBP2, HMG-CoA
Black soybean Isoflavones resistance 1,1 cI))li ; de%n i reductase, upregulate PPARa/y, [145]
» IYPOUIP ABCA1,pAMPK,
ammatory. tproving ol | 0Y81¢ AMPKG and ACC.
Pea Pea albumin resistance rrg(’i ciIID1 E egr fatu downregulate SREBF1 and FASN, [[146]
> reducing v upregulate ATGL and PPARa/y
accumulation
anti-inflammatory, antioxidant, activate PI3K/Akt/GLUT-4,
Loquat fruit Polyphenols anti-cancer, anti-hypertensive, SREBP-1c, ChREBP, Nrf-2, inhibit |[147]
anti-diabetic TLR4/MyD88/TRIF pathway
Eriobotrya japonica Polyphenols (caffeic and blood hypolipidemic, antioxidant, .
seed chlorogenic acids) inhibiting liver fat accumulation scavenging ROS [148]
. . . hot water extract of Eriobotrya antioxidant, reducing hepatic lipid
Eriobotrya japonica japonica(EJW) accumulation upregulate AMPK, CPT-1, PPARa | [149]
tsoizflll:et:rp?g © gig:oslldce;;(jeCSB), anti-inflammatory, antioxidant, downregulate CYP2E1, p-JNK and
Loquat leaf qurtefpenc glyco ! improving insulin resistance, NLRP3, upregulate IRs-land Akt |[151-152]
total flavonoids (quercetin and hypolipidemic hosphorylation
kaemferol) YPOup Phosphory
8 Volume 9; Issue 2

J Dig Dis Hepatol, an open access journal
ISSN: 2574-3511



Citation: Jin D, Jin S, Gao P, Li G (2024) Impact of Natural Functional Foods on Oxidative Stress in HIV-Infected Individuals: Implications for MAFLD. J Dig
Dis Hepatol 9: 219. DOI: 10.29011/2574-3511.100219

Coconut oil po}yphenols (feru.hc acid, caffeic z'int10x1c.1ant, hypf)hpldeml.c, upregulate Nrf2 [153]
acid, coumaric acid) improving hepatic steatosis
polyphenols, nitro-fatty anti-inflammatory, antioxidant, up regula.te Nrf2, AMP.K’ gnd
. . . . .. . .. PPARSs, inhibit the activation of
. . acids (NO2-FA),oleic acid, improving insulin sensivity, .
Olive oil monounsaturated fatty acid hypolipidemic, improving hepatic INK, promote the'expressmn of [154-162]
tvrosol ’ steatosis ’ Bcl2 and Bax, activate CBS and
Y CSE mediated H S synthesis
anti-inflammatory, antioxidant downregulate SREBP1c, FASN,
Pine nut Pinolenic acid . atory, ’ SCD1, upregulate AMPK/SIRT1 [163]
hypolipidemic . ;
signaling pathway
. NTRT L .. . . improve mitochondrial ETC
Avocado oil oleic acid, linolenic acid antioxidant, hypolipidemic function, upregulate PPAR-3 [164]
. T antioxidant, reducing hepatic lipid | activate PPARa, inhibit FAS and
Flaxseed oil Alpha-lipoic acid accumulation SREBPI [165-167]
antioxidant, blood hypolipidemic,
. . . improving glucose tolerance, downregulate SREBP-1c¢, pERK,
Berberis vulgaris Berberine reducing hepatic lipid TNF-0, INK [168]
accumulation
anti-inflammatory, antioxidant downregulate TNF-,TGF-f and
Sesame oil sesamol, sesamolin, and sesamin .. Ys L leptin, inhibit the activation of [169]
reducing liver fat accumulation
NF«xB
phenolic compounds(sinapic,
salicylic, protocatechuic, .. S
Rapeseeds oil phydroxybenzoic, gentisic, antioxidant, inhibiting inhibit FAS, ACC, SREBP1 and [165,170]
P ferulic, p-coumaric, cinnamic, lipogenesis SREBP, upregulate PPAR-a/y ’
caffeic, syringic acids),
tocopherol,phytosterols
. . anti-inflammatory, antioxidant, activate Nrf2, PPARa and CPT1,
Coffee Caffeic acid, caffeine alleviating hepatic steatosis inhibit FAS and ACC [171,172]
Polyphenolsv(catechin, antioxidant, slowing the
Dark chocolate epicatechin) progression of hepatic steatosis downregulate Nox2 [173-175]
anthocyanins(cyanidin-3- anti-inflammatory, antioxidant, inhibit NFxB, downregulate FAS,
4 Y . improving insulin resistance, SREBP-1¢ and ACC, upregulate
blackberry glucoside, total alkaloids), . Lo . . . [176]
flavonoids, _ellagic acid and reducing hepatic lipid CPT-1, improve gut microbiota
! accumulation balance, increase SCFA levels
caffeine, chlorogenic acid activate CaMKII/CREB/BDNF
’ L anti-inflammatory, antioxidant, pathway, upregulate Sirt1, inhibit
Coffecberry CE?Iiecnsjgip;giﬁtil;(;cc}ilzmdms’ improving hepatic steatosis NF«B,iNOS, COX-2, PARP-1, [177]
d ’ PI3K/Akt/mTOP/p70S6K signaling
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quercetin, phytosterols, dietary
.. .. downregulate TGF-
Orange fibers, mono and pf)ly-unsaturated anti-inflammatory, antioxidant B,CTGFcollagen- 1, inhibit NFxB [178]
fatty acids, phenolic compounds
tioxi t, anti-infl t .
Citrus reticulate blanco Zﬁtfc):gzci:r, ii:’ll lrg‘l/i;‘mtf:;a a(l)tri}c], activate Nrf2, upregulate CPTla,
polymethoxyfalvones (PMFs) fieer, IMproving ep ACOX1, PPARa, downregulate IL- | [34]
peel steatosis, hypolipidemic,
. S . 6, TNF-a, IL-1B
improving insulin resistance
upregulate adenylate cyclase
. anti-inflammatory, antioxidant, activity, increase cCAMP levels,
Pu-erh tea theabrownin improving insulin resistance activate PKA/AMPK, upregulate [175-180]
PPARs, inhibit NFkB/JNK
anti-inflammatory, anti- upreguate PPARs, promote gut
Fuzhuan brick teat theabrownin, caffeine oxidant, bloqd k}ypohp ?demlc, . microbiota ba}ance, lower ERK [181-182]
hypoglycemic, improving hepatic | phosphorylation, downregulate
steatosis TGFB, a-SMA, Col1A1, Col3A1
anti-inflammatory, antioxidant, upregulate Nrf2, adiponectin and
Que Zui tea 6-O’-caffeoylarbutin hypolipidemic, hypoglycemic, adipoR2, activate AMPK/PPAR-0. | [183]
reducing liver fat accumulating signaling pathway
Red wine flavonoids, resveratrol anti-inflammatory, antioxidant inhibit NFkB, activate Nrf2, AP-1 | [21-184]
Lycium barbarum Lycium barbarum polysaccharides gntl-lnﬂammatory ; antioxidant, downregulate NLRP3/6, NF«xB [185]
immunomodulation
EZ?;I; };izzljfli:g lr(liss, lrlfilljir;s;ci d anti-inflammatory, antioxidant,
Phyllanthus emblica L Lo Co .” | hypolipidemic, hypoglycemic, downregulate SREBP-1¢, LXRa,
. gallic acid, ellagic acid, quercetin, . . . . .| [186]
fruitf .. . anti-cancer, anti-bacterial, upregulate PPARa and adiponectin
geraniin, chebulagic acid, hepat tecti
corilagin, phyllanthin) cpatoprotective
) hypoglycemic,
Mulbe cﬂgl\;qot(ﬁg(sl’sp(l)}zzgzngi)'irim cin |increasing insulin upregulate PPARS, inhibit FAS and [187-188]
my p ’ ynojuimy & HMGCoA reductase
(DNJ)
secretion
Cherr anthocyanins(cyanidin-3- anti-inflammatory, antioxidant, inhibit NFKB, upregulate PPAR-y, [189]
Y rutinoside), flavones hypoglycemic, hypolipidemic Nrf2
anti-inflammatory, antioxidant,
Ginkgo biloba Ginkgolide B(GB) inhibiting hepatic fat upregulate Nrf2 [190]
accumulation
Cranberry (Vaccinium VitE, Vit G, phepohc polyp hegols ant10>(.1(1.ant, %lnt{-lnﬁa}tl.lmatory, .| inhibit SREBP-1c, TLR4/NF«B,
(proanthocyanidins, anthocyanins, |hypolipidemic, inhibiting hepatic [191-192]
oxycoccos L.) . downregulate TNFao and IL-6
resveratrol) fat accumulation
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anthocyanins, flavonoids(D-
catechin, L-epicatechink, rutin,
isoquercitrin, iridin and quercetin),

anti-inflammatory, antioxidant,

induce the expression of

AMPK/PGC-10/SIRT3,

acid

IL10

Blueberry leaf L S inhibiting hepatic fat [193]
phenolic ac1d((.:h10rog.en.10 acid), accumulation upregulate ERRa, Nifl,
last anthocyanin(cyanidin-3-O-
glucoside), catechol Nrf2
Flavonoids, polyphenols ant%-lnﬂamn?atory, :a'lnt10x1dar.1t, activate SIRT1/PGC-1a, inhibit [143, 194,
blueberry (anthocyanins), pterostibene anti-cancer, improving hepatic SREBP-1c and nTORCI, 195]
¥ P steatosis upregulate PPAR-a, Nrf2, HO-1
chorogenic acid derivative anti-inflammatory, antioxidant, upregulate PPARa, inhibit FAS
Mulberry leaf extracts ge . L anti-diabetic, hypolipidemic, preg i > [109,188]
flavonoid, rutin, quercetin Y L HMGCoA reductase
reducing liver fat deposition
phenolic acids (caffeic, ferulic,
Bayberry juice sinapic, salicylic acids), anti-inflammatory, antioxidant downregulate TNF-a, IL-8 [196]
anthocyanins, vitamin C
. . anti-inflammatory, antioxidant, activate CBS and CSE mediated
White wine tyrosol hepatoprotective H2S biosynthesis [162]
. ant{-mﬂarnmator}f, ianno)'(ldant, induce Nrf-2-FXR-LXR signaling | [168, 197-
curcuma longa curcumin anti-tumor, hypolipidemic,
. pathway 200]
hepatoprotective
anti-inflammatory, antioxidant, upregulate Nrf2, AMPK, PGC-1a,
Lemon balm Rosmarinic acid improving insulin resistance, PPARa and downregulate SREBP- | [201]
reducing liver fat accumulation 1c
polyphenol(anthocyanin, . o
Maoberry(antidesma cyanidin, peonidin, ascorbic acid, Entlollr; ﬂ;?ﬁitoirym’ iﬂg?f(ﬁ:t;ﬁc downregulate ACC and GPAT-1, [202]
bunius) gallic acid, (-)-epicatechin(+)- YPOUD 1P ghep TNFo, and IL-6
. . . steatosis
catechin, cyanidin-3-O-glucoside
anti-inflammatory, antioxidant,
. i . improving insulin resistance, inhibit JNK, p38 MAPK, and
Satsuma mandarin B-Cryptoxanthin hypolipidemic, reducing liver fat | NF«B, upregulate PPARs [203,204]
accumulation
anti-inflammatory, antioxidant, activate beclin 1, Atg4 and Atg5,
Beet (Beta vulgaris) Betaine hypolipidemic, reducing hepatic | induce autophagy, upregulate Akt/ |[205]
steatosis mTOR signaling
downregulate p47phox, and
rasobe Ellagic Acid, raspberry ketone, anti-inflammatory, antioxidant, HIF-a, activate Nrf2, and Akt, [7, 142,
poerry resveratrol reducing hepatic steatosis downregulate TNFa and IL-6, 192, 206]
inhibit TLR4/NF«B
reduce the expression of
Polyphenols, anthocyanidins,
Pomegranate tannic acid, gallic acid, and ellagic | anti-inflammatory, antioxidant TNFa, IL-1B, IL-6, and [207,208]
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anti-inflammatory, antioxidant,

reducing oxidative/nitrosative stress

pathay, reducing the contents of

Thymbra spicata L. Rosmarinic acid, carvacrol me(r)cl)iwilzlge Il:i:gatlc steatosis, intracellular NO and ROS, inhibit [209]
YPOUp NFxB
anti-inflammatory, antioxidant,
Carob pod polyphenols anti-diabetic, reducing liver fat upregulate SIRT1, PCG-1a,CTP-1a | [210]
accumulation
Polyenylphosphatidylcholine anti-inflammatory, antioxidant, balance the gut microbiota,
Soybean (PPC), phytic acid, pinitol, soy hypolipidemic, improving insulin | reducing TNFa, upregulate Cyp7bl,|[211-214]
protein resistance FXR, and FGFR4
polyp hegols (delp }'nr.ndm antioxidant, hypolipidemic,
3-glucoside, petunidin increasing insulin secretion.
Black bean 3-glucoside, and malvidin Sing L ’ downregulate SREBP-2, Cyp7A1l [215]
. . reducing hepatic lipid
3-glucoside), flavonoids concentration
(anthocvanins)
. . hypolipidemic, reducing hepatic | activate AMPK, upregulate CPT-1,
Green coffee bean chlorogenic acid fat accumulation GLUT4 and PPARYy, inhibit ACC | 21©]
Chickpea (Cicer hypolipidemic, hypoglycemic, 1, . e Sir3/AMPK/ULK-1
Hep biochanin A(Bio-A) anti-inflammatory, inhibiting . . [217]
arietinum) . . signaling
hepatic steatosis
hypocholesterolemic, anti- increase fecal excretion of
Mung bean (Vigna . . inflammatory, antioxidant, cholesterol, upregulate CPT1,
radiata L.) phenolic acids hepatoprotective, inhibiting Bcl2ala, downregulate SREBP-1, [218]
hepatic steatosis HMG-CoA reductase
antioxidant, anti-inflammatory,
anti-cancer, anti-obesity,
White kidney bean phaseolin, polyphenols, resistant | cardioprotective, hypolipidemic, |balance gut microbiota, inhibiting
. . . Lo L [219,220]
(Phaseolus vulgaris L.) | starch, oligosaccharides hypoglycemic, improve insulin a-amylase
resistance, reducing hepatic fat
accumulation
Pigeon pea (Cajanus stilbenes,phytosterol(f-sitosterol, .. . . upregulate PPARa, CPT-1, and
cajan L) stigmasterol),linoleic acid hypolipidemic, hypoglycemic CYP7A1 [221]
i e e[ O i CYB2EL N 5K, | 22222,
POy - g ; - IMPIOVIng & activate AMPK and SIRT1 [206]
acid intolerance
anti-inflammatory, antioxidant,
. . . immunomodulation, inhibit SREBP-1c, downregulate
Chestnut tannin, ellagic acid, scoparone hypolipidemic, inhibiting hepatic | FAS, ACC [224]
steatosis
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anti-inflammatory, antioxidant,
immunomodulation,
Poria cocos Poria cocos polysaccharides hypolipidemic, balancing gut inhibit NLRP3 [225]
microbiota, reducing hepatic fat
accumulation
Triterpenoids(lucidenic acids zﬁgoézg::rt’ :Sttll -Iljlzii;e;;ili’ increase the activity of ACC and
Ganoderma mushroom Tpet AN ’ ) L oo AMPK, inhibit SREBP1, upregulate | [79]
ganoderic acids) hypertensive, anti-diabetic, CPT-1
improving hepatic steatosis
Cinnamon Cinnamy] alcohol anti-inflammatory, antioxidant downregulate SREBP-1c and ACC1 | [226]
Lycii (Goji berry, LFP-al(Lycii fructus antioxidant, immunomodulation, | inhibit the expression of Bax and
. . . [227]
wolfberry) polysaccharides) anti-aging, anti-cancer C-Myc
Humulus japonicas luteolin 7-O-B-D-glucoside(LU) antl-l'nﬂ.ammator'y, ant10x1.d ant, up regulate PPAR« apq SODI, [228]
alleviating hepatic steatosis increase catalase activity
upregulate PPAR-a,
antioxidant, CPT-1,CYP7A1, AMPK,
anti-HIV, inhibiting and ACC, inhibit
Korean Red Ginseng Red ginseng extract [76,229]
hepatic fat C/EBPa,SREBP-Ic,
accumulation PPAR-y, FAS, ACAT2,
HMGCR, and ApoB
downregulate TNFa and IL-
. . 1B, downregulate SREBP-1c,
. 6-gingerol, 6-shogaol, , . . L ACC1, DGAT-2, and CYP2E1,
Ginger alpinetin,citral, zingerone antl-dlabetllc, redqc1ng 11Y€I‘ fat inhibit NF«kB, activate Nrf2, LKB1/ [230-237]
accumulation, anti-HIV, immune- . . .
enhancin AMPK signaling pathway, activate
& SIRT3, and Akt, upregulate CPT1a,
PPARo/y, PGCla
Garlic-derived
S-allylmercaptoccysteine, N-trans- | anti-inflammatory, antioxidant, downregulate CYP2E1
. . . coumaroyloctopamine, N-trans- immunomodulation, , P38MAPK, downregulate }
Garlic (Allium sativum) feruloyloctopamine, allicin ajoene, | hypolipidemic, improving insulin | TGF-B1 and a-SMA, activate [238-241]
diallyl disulfide, SAC sulfoxide, resistance, anti-HIV MEK/ERK, inhibit AP-1,NFxB
S-methylcysteine sulfoxide, allicin
. . . L anti-inflammatory, antioxidant,
black rice (Oryza sativa | anthocyanin (Cyanidin-3- hypolipidemic. hypoglycemic upregulate AMPK, PPAR-aq, [242]
L) glucoside, C3G) nypolp - WYPOBIYCEMIC, 1 cpT1A, ACO, and CYP4A10
improving fatty liver
. ' phenolic 2'101ds. (trans-fer.ullc, trans- antl-lr.lﬂammat(')ry,' a'nt10x1dant, upregulate SCFAS, regulate FXR
Sintanur brown rice p-coumaric acid), vitamin B3( reducing hepatic lipid . . [243]
e . and reduce hepatic lipogenesis
niacin) accumulation
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phenolic extract, anthocyanins,
proanthocyanidins, protocatechuic

anti-inflammatory, antioxidant,

downregulate NF«kB, Bax
Bcl-2 ratio, iNOS, p47PHOX,
ATGL, CD36, LXRo, SREBP-1c,

angularis)

adzukisaponin

hypolipidemic

SREBP-1c, FAS, TNFa and NFkB

Red rice acid,oryzanol, vitamin ?:;;Silsbi;c’a?z:piggsgsi?lc’ SREBP-2, HMGCR, and hepatic [244]
E,coenzyme Q10 g fiep lipase (HL), upregulate ApoA-1,
LPL, and CPT1A
antioxidant, anti-inflammatory, . . .
L . . . : block lipogenic enzymes, increase
phenolic acids, anti-diabetic, anti-cancer, anti- o
Brown sorghum o o .. . B-oxidation, upregulate PPARa,
. 3-deoxyanthocyanidins(3-DXA), | obesity, improving insulin . [245]
(Sorghum bicolor L.) L7 . . - . . downregulate SREBP-1c, increase
proanthocyanidins(tannins) resistance, improving hepatic . e
steatosis adipo R2 sensitivity
leucine-arginine-proline(LRP), . . . .
whole wheat Jeucine-glutamine-proline(LQP) antioxidant, improving fatty liver |upregulate AMPK, ACC [246]
upregulate ACOX1, PPARa,
Buckwheat (Fagopyrum | fagopyrin polyphenols anti-inflammatory, antioxidant, ACAT2, FXR, SCFAs, [247]
esculentum Moench) (flavonoids) hypolipidemic downregulate CEBPa,CD36,
ACCI1, SREBP-Ic,
inhibit INOS, COX2, IL-6,
Tartary buckwheat anti-inflammatory, antioxidant, ISII{;:% I;FIN:(;gg (liocw gf%ﬁﬁf lase
Fagopyrum tataricum | flavone hypolipidemic, anti-hypertensive, . Y- Xy 248
gopy: ypolip yp
(L) Gaertn.) hvpoelveemic protein levels, activate AMPK,
' ) YPOELy downregulate MAPK and NF«B,
balance gut microbiota
polyphenols, carotenoid, gntl-mﬂ.ammator'y, ant10x1.dant, downregulate NFkB, TNF-o and
Khorasan bean . L. improving hepatic steatosis, [249]
coumarin, and ferulic acid isomer | . .2 . . IL-1a
improving insulin resistance
Omega-3, a-tocopherol, ascorbic scavenging ROS,
Purslane seeds acid, B-carotene,glutathione, anti-inflammatory, antioxidant, increase intracellular [67]
(Portulaca oleraceae L.) | phenolic and flavonoids hepatotective, anti-diabetic
compounds glutathione concentration
i i o o scavenging ROS,
Garden cress seeds P henoh(.: comp oun'ds, a.l kaloids, anti-inflammatory, antioxidant,
. . falvonoids, ascorbic acid, .. . . . .
(Lepidium sativum hypolipidemic, hepatotective , increaseintracellular [67]
. tocopherol, polyunsaturated fatty . .
Linn.) . anti-diabetic
acids glutathione concentration
. . . . L. upregulate adiponectin, AMPKa,
Adzuki bean (Phaseolus | anthocyanin, catechin, and anti-inflammatory, antioxidant, CPT-1, PPARG, downregulate [250]

Table 1:

Functional Foods from Plants.
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Animal-based Functional Foods

Although the number of animal-based functional foods discovered to have antioxidant activity is relatively limited, some have been
proven to improve MAFLD significantly. These functional foods mainly include fish, krill, shellfish, dairy products, and honey products,
among others. A detailed summary is provided in (Table 2).

Foods Bioactive ingredients Primary Benefits Mechanisms of Action Ref.
anti-inflammatory,
antioxidant, anti-
Block TGF-f/Smad3
Salmon Astaxanthin cancer,immunomodulation, signaling, inhibit MAPK [251,252]
) and NF«B
hypolipidemic, anti-
diabetic
. . eicosapentaenoic(EPA), anti-inflammatory, antioxidant, .
Fish oilt docosahexaenoic(DHA) improving hepatic steatosis activate PPARs [21,253,257]
Bluefin tuna Selenoneine ant1-1nﬂammgtory, antioxidant, downregulate Gpx1, [258]
hepatoprotective selenop
. .. " . inhibit SREBP1, ACC]1,
Menhaden Menhaden 0il(C20-22(n-3) antl-lnﬂamma.tory, hypolipidemic, Fasn, NF«B, inhibit hepatic | [259]
PUFA) hepatoprotective . .
lipogenesis
Antarctic phospholipid-protein downregulat SREBP1c
Krill(Euphausia complex,carotenoid fucoxanthin, | antioxidant, hypolipidemic inhibit the expression of [260]
superba) astaxanthin IL-1B, IL-6, TNFa
Freshwater. Campesterol, stigmasterol, anti-inflammatory, antioxidant, inhibit NLRP3,
clam (corbicula . . . h . [261]
. unsaturated fatty acids improving hepatic steatosis downregulate CYP3A
fluminea)
Silkworm pupae Silkworm pupac peptides, - antioxidant, improving fatty liver upregulate PPARa, CPT-1 [262]
pup linolenic acids - 1mp &ttty preg ?
lactic acid, conjugated inhibit NFxB,
Yoourt linoleic acid, folate, S. ant-inflammatory, antioxidant, downregulate the [263]
& thermophiles, fructosan, galacto- | improving insulin resistance expresson of TNFo and
oligosaccharides, galactose FGF21
ntbactertl immunomodulaon, | S62Veneing ROS, inhibi
Camel milk a-Lactalbumin, L-carnitine hvpolioi dem’ic alleviating he atic’: lipid absorption, upregulate | [264,265]
YPOUP ’ P PPARW/SREBPI ratio
steatosis
Table 2: Functional Foods from Animals.
15 Volume 9; Issue 2

J Dig Dis Hepatol, an open access journal

ISSN: 2574-3511



Citation: Jin D, Jin S, Gao P, Li G (2024) Impact of Natural Functional Foods on Oxidative Stress in HIV-Infected Individuals: Implications for MAFLD. J Dig
Dis Hepatol 9: 219. DOI: 10.29011/2574-3511.100219

Microbial and Algal-based Functional Foods

Microbial-based functional foods with antioxidant properties and effects on improving fatty liver disease primarily include probiotics
that regulate gut microbiota balance, postbiotics, and fungi used in the production of specific foods. Postbiotics are beneficial
substances produced by microbial metabolism or structural components of microorganisms, such as short-chain fatty acids (SCFAs),
polysaccharides, peptides, and phospholipids, among others [266]. These substances exert their antioxidant effects and improve fatty
liver through various mechanisms. Similarly, algal-based functional foods also demonstrate significant antioxidant properties and can
improve fatty liver disease. Common algal functional foods include Spirulina, brown algae, Chlorella, and astaxanthin-rich microalgae,
such as Haematomatococcus pluvialis is rich in anthocyanins, which are potent natural antioxidants that protect liver cells from damage
caused by free radicals. (Table 3) provides a summary of microbial and algal-based functional foods with antioxidant functions.

resistance, alleviating hepatic fat
accumulation

Acadm, inhibit DGAT1 and DGAT2

Foods Primary Benefits Classification Mechanisms of Action Ref.

. . .. . . . . . upregulate SIRT1 and PPARa,
Bifidobacteria Antioxidant,improving hepatic steatosis Probiotic downregulate SREBP1c [194]
Lactobacillus casei Anti-inflammatory, anti-oxidant, Probiofic downregulate TLR singaling pathway, [267.268]
strain Shirota(LCS) immunomodulation inhibit SREBP1c and FAS ’
Lactobacillus Anti-inflammatory, anti-oxidant, upregulate NRF2-NQO-1 pathway,

. . . A . upregulate SCFAs concentration,
coryniformis subsp. hypolipidemic, inhibiting liver fat Probiotic L . [269]
Torquens T3 (T3L) accumulation inhibit the expression of TNF-a and

IL-6
Anti-inflammatory, anti-oxidant, reducin balance gut microbiota, downregulate
Lactobacillus casei hepatic steatosis Y ’ € | Probiotic NGAL and KIM-1, activate FOXO1/ [270]
P pAMPK
Saccharomyces Anti-inflammatory, antioxidant, anti- . .

.. .. . .. L0 . . increase SCFAs concentration,
cerevisiae probiotic diabetic(improving insuln sensitivity), Probiotic immunemodulation. promote linolvsis [271]
yeast inhibting fatty degeneration of liver P poly

. Anti_oxidant’ reducing liver activate AMPK, SIRT—I, PGC-1a and
iug?rg Kif“ Strall.n S Probiotic PPAR-y, inhibit SREBP-1, upregulate | [272]
actobaciilus mali fat accumulation Nrf-2/HO-1
anti-inflammatory, antioxidant, upregulate miR-150, inhibit
Sodium butyrate hypolipidemic, improving hepatis Postbiotic CXCR4, activate LKB1-AMPK- [273,274]
steatosis Insig, upregulate GLP-1
activate PPAR-y/Nrf-2, upregulate
.. . FXR, PGCla and PPAR-0,
anti-inflammatory, anti-oxidant,
anti-diabetic, anti-hypertensive downregulate TNFa and IL-6,
Monascus mmunomo d’ulation an ti-tumor’ Probiotic enhance NO synthesis, inhibit INK, [275]
hypolipidemic ’ ’ ERK p38 kinase , NPC1L1, HR-
ypolip LPL, C/EBPB, and RAGE signalng
pathways
anti-inflammatory, antioxidant,
- . . . upregulate CTP-1 and PPAR-a,
Wakame Iﬁzgilfﬁ::;z s%1ypoglycermc, reduing Phaeophyta downregulate SREBF-1 [210]
activate Nrf2, AMPK, PPARa,
Sargassum serratifolium | anti-inflammatory, antioxidant Brown algae upregulate NQO1, HO-1, GST, and [276,277]
CPT-1, inhibit SREBPIc and C/EBPJ
anti-inflammatory, antioxidant,
Ulva prolifera hypolipidemic, improving insulin areen macroalgae upregulate CPT-1a, ACOX1, and [278]
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anti-inflammatory, antioxidant, activate PPARo/y and Nrf2,
Brown seaweeds anti-cancer, reducing hepatic lipid phaeophyta downregulate TNFa,IL-1f, IL-6 and [279]
accumulation MCP-1
anti-inflammatory, antioxidant, inhibit NF«xB, downregulate
Spirulina immunomodulation, anti-cancer, anti- blue-green algae TNFa, IL-6, and iNOS, upregulate [280-282]
diabetic, hypolipidemic adiponectin
| anti-inflammatory, antioxidant, . block TGF-B/Smad3 signaling, inhibit
Haematococcus pluvialis | anti-cancer, immunomodulation, green microalga [251]
R AT MAPK and NF«B
hypolipidemic, anti-diabetic
Chlorella vulgaris ialntlg)llrilﬂiiilz:l::?ct Oirym’linggﬁllgzn;;tion microalgae downregulate NGAL and KIM-1, [270]
vue NYPOUP ; immunomoduiation, & activate FOXO1/pAMPK
improve hepatic steatosis

Conclusion

In the absence of universally effective pharmacological treatments
for MAFLD, functional foods have emerged as a promising,
non-toxic alternative for managing this condition, particularly in
HIV-infected populations. Functional foods rich in antioxidants
offer multiple health benefits, including reducing oxidative stress,
mitigating inflammation, and improving hepatic lipid metabolism.
These advantages make them attractive as a dietary intervention
for managing MAFLD. The findings summarized in this review
highlight the therapeutic potential of functional foods, such as
plant-based polyphenols, animal-derived omega-3 fatty acids,
and probiotics. These bioactive compounds act through diverse
molecular pathways, including the activation of Nrf2, suppression
of NF«B, and modulation of lipid metabolism, to improve liver
health. Notably, certain functional foods, such as EGCG, allicin,
and ganoderma lucidum, have demonstrated dual benefits by both
mitigating MAFLD and exhibiting anti-HIV activity [78,81,241].
For example, green tea’s EGCG not only reduces hepatic steatosis
but also inhibits HIV reverse transcriptase, providing a novel
approach to addressing comorbidities in PLWH [81].

Despite these promising findings, the current evidence is limited by
several factors. Most studies are preclinical or observational, with
a paucity of high-quality randomized controlled trials validating
the efficacy and safety of functional foods in clinical settings.
Moreover, inconsistent results, as seen in studies on green tea and
fish oil, suggest that individual variability, dosage differences, and
complex metabolic interactions may influence outcomes. Further
research is needed to clarify these discrepancies and establish
standardized protocols for incorporating functional foods into
dietary recommendations for MAFLD. Looking forward, the
integration of functional foods into clinical practice for MAFLD
management among PLWH requires a multidisciplinary approach.
Collaboration among nutritionists, clinicians, and researchers is
essential to design robust clinical trials that account for patient-
specific factors, such as HIV status, antiretroviral therapy
regimens, and coexisting metabolic disorders. Moreover, advances

in nutrigenomics and metabolomics offer exciting opportunities to
personalize dietary interventions based on individual genetic and
metabolic profiles.

In conclusion, antioxidant-rich functional foods hold significant
promise for addressing the dual challenges of oxidative stress
and metabolic dysfunction in MAFLD among HIV-infected
individuals. By bridging the gap between basic research and
clinical application, these interventions could offer a sustainable
and effective strategy for improving liver health and overall quality
of life in this high-risk population. However, a concerted effort is
needed to overcome current limitations, validate their benefits, and
unlock their full therapeutic potential.
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