
J Dig Dis Hepatol, an open access journal
ISSN: 2574-3511

1 Volume 9; Issue 2

Review Article

Impact of Natural Functional Foods on Oxidative 
Stress in HIV-Infected Individuals: Implications 

for MAFLD
Dachuan Jin1*, Shunqin Jin2, Peng Gao3, Guangming Li3

1Translational Medicine Research Center, Zhengzhou Sixth People’s Hospital, Zhengzhou, Henan Province, 450015, PR China
2Department of Radiology, Hebei Medical University, PR China
3Department of Liver Disease, Zhengzhou Sixth People’s Hospital, PR China

Corresponding author: Dachuan Jin, Translational Medicine Research Center, Zhengzhou Sixth People’s Hospital, Zhengzhou, Henan 
Province, 450015, PR China

Citation: Jin D, Jin S, Gao P, Li G (2024) Impact of Natural Functional Foods on Oxidative Stress in HIV-Infected Individuals: 
Implications for MAFLD. J Dig Dis Hepatol 9: 219. DOI: 10.29011/2574-3511.100219

Received Date: 18 December 2024; Accepted Date: 26 December 2024; Published Date: 30 December 2024.

Journal of Digestive Diseases and Hepatology
Jin D, et al. J Dig Dis Hepatol 9: 219.
www.doi.org/10.29011/2574-3511.100219
www.gavinpublishers.com

Abstract
This review explores the impact of natural functional foods on oxidative stress in individuals infected with the human immunodeficiency 
virus (HIV), with a specific focus on their implications for metabolic-associated fatty liver disease (MAFLD). The global prevalence 
of HIV continues to pose significant public health challenges, with chronic liver disease, particularly MAFLD, being a common cause 
of mortality among HIV patients. The pathogenesis of MAFLD involves multiple hits, including insulin resistance, lipid accumulation, 
oxidative stress, and mitochondrial dysfunction. Oxidative stress, in particular, disrupts normal cellular metabolism, leading to 
inflammation, fibrosis, and hepatocellular carcinoma. Antioxidants, found in various functional foods such as fish, pitaya, and certain 
plant-based and microbial sources, have shown potential in reducing oxidative stress and improving liver health. However, the 
mechanisms of action and the specific therapeutic effects of these functional foods require further investigation. Despite the promising 
potential of antioxidant-active functional foods in managing MAFLD among people living with HIV (PLWH), current research 
remains limited, and more in-depth studies are necessary to validate their efficacy and understand their underlying mechanisms.
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TNF:   Tumor Necrosis Factor

Vpr:    Viral Protein

VTP:   Vine Tea Polyphenol

WGHP: Walnut Green Husk Polysaccharide

WHO:  World Health Organization

Introduction
First identified in 1981, human immunodeficiency virus (HIV) 
continues to represent one of the most significant global public 
health challenges, with approximately 39.9 million individuals 
living with the virus by the end of 2023, according to the World 
Health Organization (WHO) [1,2]. In addition to immunological 
decline, HIV infection predisposes individuals to a wide range 
of comorbidities, including chronic liver diseases. Among these, 
metabolic-associated fatty liver disease (MAFLD), a newly defined 
entity replacing the traditional concept of non-alcoholic fatty liver 
disease (NAFLD), has gained attention due to its high prevalence 
and associated risks in people living with HIV(PLWH) [3]. Unlike 
NAFLD, which excludes other etiologies of liver disease, MAFLD 
is diagnosed based on positive criteria that emphasize metabolic 
dysfunction, including obesity, type 2 diabetes, and metabolic 
dysregulation [4-6]. This shift toward a more inclusive definition 
reflects the complex pathophysiology underlying MAFLD and 
facilitates a more comprehensive understanding of its etiology, 
particularly in high-risk populations such as PLWH [7,8].

Oxidative stress, characterized by an imbalance between reactive 
oxygen species (ROS) production and antioxidant defenses, is a 
critical factor in the pathogenesis of MAFLD [9,10]. It contributes 
to lipid peroxidation, mitochondrial dysfunction, inflammation, 
and hepatic fibrosis, forming a vicious cycle that exacerbation liver 
damage [11-13]. In HIV-infected individuals, oxidative stress is 
further amplified due to viral proteins, chronic immune activation, 
and antiretroviral therapy, leading to an increased prevalence of 
MAFLD compared to the general population [14]. Consequently, 
addressing oxidative stress offers a promising therapeutic target 
for managing MAFLD in PLWH [15]. 

Functional foods, defined as foods that provide health benefits 
beyond basic nutrition, have emerged as a potential intervention 
[16-20]. These foods, which include plant-based products, 
animal-derived components, and microbial sources, are rich in 
bioactive compounds, such as polyphenols, omega-3 fatty acids, 
and carotenoids. Preliminary studies suggest these compounds 
can modulate oxidative stress, improve hepatic metabolism, 
and alleviate MAFLD-related liver damage [21,22]. However, 
the therapeutic potential of functional foods in PLWH remains 
underexplored, and their mechanisms of action are not fully 
understood. 

This review aims to critically evaluate the current evidence on 
the role of functional foods in mitigating oxidative stress and 
improving MAFLD in HIV-infected populations. By synthesizing 
findings from experimental and clinical studies, this paper seeks to 
identify research gaps and propose future directions for developing 
effective dietary strategies to address this growing public health 
concern. 

HIV and Oxidative stress

Studies have found that HIV infection significantly increases 
oxidative stress within the body and decreases antioxidant 
capacity, which leads to oxidative damage to proteins, lipids, 
and DNA, contributing to the pathogenesis of HIV-related 
comorbidities, including metabolic-associated fatty liver disease 
[14]. The envelope protein Gp120 and viral protein R (Vpr) have 
been implicated in the increased ROS production in HIV infected 
individuals. These viral components induce oxidative stress 
by activating NADPH oxidase and mitochondiral dysfunction, 
resulting in excessive ROS generation [23-26]. ROS, including 
superoxide anions, hydrogen peroxide, and hydroxyl radicals, are 
highly reactive intermediates that disrupt cellular homeostasis and 
amplify inflammatory pathways [27-30]. 

The oxidative stress in HIV infection is further compounded by 
the chronic immune activation and inflammation associated with 
the disease. Pro-inflammatory cytokines, such as tumor necrosis 
factor-alpha (TNFα) and interleukin-1 beta (IL-1β), are elevated 
in HIV-infected individuals, stimulating further ROS production 
through the activation of NFκB and other signaling pathways [31-
34]. Studies have shown a positive correlation between oxidative 
stress markers and immune dysregulation, as evidenced by elevated 
malondialdehyde (MDA) levels and reduced antioxidant capacity 
in HIV patients [14,35]. However, conflicting findings, such 
as those reported by Halickoval et al., who found no significant 
difference in oxidative stress markers between HIV-infected 
individuals and healthy controls, highlight the complexity of this 
relationship and the need for further investigation [36]. 
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Oxidative stress also impacts HIV-associated neurological 
dysfunctions, such as HIV-associated dementia. Lipid 
peroxidation products, including 4-hydroxynonenal (4-HNE), 
have been found at elevated levels in the brain tissues of affected 
individuals, contributing to neuronal apoptosis and mitochondrial 
dysfunction [37,38]. Some studies have used antioxidants to treat 
HIV-associated dementia, finding that antioxidant therapy can 
halt the progression of the disease. However, potential statistical 
significance was not observed between the experimental and 
control groups likely due to insufficient sample sizes [39]. Another 
study found that Selegiline may exert neuroprotective effects by 
reducing ROS production and thereby reducing neuronal apoptosis 
[40].

In addition to its direct effects on tissues, oxidative stress 
contributes to the suppression of the immune system in HIV 
infected individuals. It depletes key nutrients, such as tryptophan, 
which are critical for maintaining antiviral responses and enhances 
viral replications [41-46]. Antioxidant-rich interventions, including 
dietary supplements and functional foods, have shown promise in 
preclinical studies for mitigating these effects [47-50]. However, 
the clinical efficacy of such approaches in improving oxidative 
stress-related outcomes in HIV remains an area requiring robust 
investigation [51].

Oxidative Stress and MAFLD

Oxidative stress plays a central role in the development and 
progression of metabolic -associated fatty liver disease, particularly 
in high-risk populations, such as individuals living with HIV 
[52]. The pathogenesis of MAFLD involves the interplay of 
multiple factors, including insulin resistance, lipid accumulation, 
inflammation, and mitochondrial dysfunction. Among these, 
oxidative stress has emerged as a primary driver, contributing to 
hepatocellular injury, steatosis, and fibrosis [53]. 

ROS, produced during normal metabolic processes, are tightly 
regulated by antioxidant defense mechanisms, such as superoxide 
dismutase (SOD), catalase, and glutathione peroxidase [3]. 
However, when ROS production exceeds the capacity of these 
defenses, oxidative damage occurs, triggering lipid peroxidation 
and protein oxidation. In hepatocytes, excessive ROS activates 
signaling pathways, such as NFκB and MAPKs, leading to the 
production of pro-inflammatory cytokines, including TNFα, IL-
6, and IL-1β [54]. This inflammatory response exacerbates liver 
injury and promotes fibrosis through the activation of hepatic 
stellate cells [55,56]. 

The Nrf2 pathway, a key regulator of cellular redox homeostasis, 
plays a protective role by inducing the expression of antioxidant 
enzymes [57]. However, chronic oxidative stress can impair 
the Nrf2 pathway, further tipping the balance between ROS 
accumulation [58]. Conversely, the NFκB pathway, which is 

activated by oxidative stress, perpetuates the inflammatory cycle 
by promoting the expression of pro-inflammatory genes [59]. The 
interplay between Nrf2 and NFκB signaling creates a feedback 
loop, amplifying oxidative damage and inflammation in MAFLD. 

In individuals living with HIV, oxidative stress is further amplified 
by the combined effects of chronic viral infection, antiretroviral 
therapy (ART), and metabolic disturbances [60]. These factors 
synergistically exacerbate hepatic oxidative stress, creating a 
permissive environment for the onset and progression of MAFLD. 
Evidence suggests that the prevalence of MAFLD in people living 
with HIV ranges from 20% to 63% significantly higher than in 
the general population [61]. This underscores the need for targeted 
interventions to address oxidative stress as a therapeutic strategy 
for managing MAFLD in this vulnerable group. 

Correcting oxidative stress has shown promise in improving 
liver health and mitigating MAFLD [9]. Preclinical studies have 
demonstrated that antioxidant compounds can reduce hepatic 
lipid accumulation, inhibit inflammation signaling, and restore 
mitochondrial function [62-64]. Functional foods rich in bioactive 
compounds, such as polyphenols, anthocyanins, and omega-3 
fatty acids, represent a promising dietary approach for managing 
oxidative stress-related liver injury [9, 65-67]. However, more 
rigorous clinical studies are needed to validate their efficacy and 
establish standardized guidelines for their use.

Functional foods with anti-HIV activity

The concept of functional foods was first proposed by Japan in 
1984 and subsequently recognized by countries around the world 
[68,69]. Over the past decade, research on functional foods has 
gained widespread attention. Functional foods offer additional 
health benefits beyond basic nutrition, providing an attractive 
new option for the prevention and treatment of certain diseases, 
which has led to their increasing popularity [69]. Functional 
foods exhibit a wide array of health benefits due to their diverse 
bioactive components, which commonly include anthocyanins, 
astaxanthin, lycopene, resveratrol, curcumin, and others [70-74]. 
These distinct bioactive compounds endow functional foods with 
varied health-promoting properties, such as reducing blood lipid 
levels, lowering blood pressure, protecting the heart, combating 
cancer, exhibiting anti-inflammatory and anti-diabetic effects [75]. 
Recent studies on HIV have found that certain functional foods 
possess anti-HIV effects. For instance, a longitudinal analysis of 
data from over 60 months of follow-up by Sung et al. revealed that 
long-term consumption of Korean red ginseng helped maintain 
CD4+ T-cell counts in HIV patients and delayed the development 
of drug resistance, thereby improving HIV treatment outcomes 
and prognosis [76]. 

Another study indicated that ajoene in garlic can inhibit HIV 
from attaching to host cells, thus exerting antiviral effects [77]. 
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Furthermore, other antioxidant-rich foods, such as green tea 
and ganoderma lucidum (Reishi mushroom), have also been 
recognized for their potential to enhance immunity and combat 
HIV [78-81]. The anti-HIV effect of ganoderma lucidum is 
primarily achieved through the inhibition of HIV protease by its 
constituents, ganoderma B and ganoderic acid B, indicating the 
potential for use in the development of antiretroviral drugs [82-
84]. Green tea, containing epigallocatechin gallate (EGCG), can 
block HIV-1 from adhering to CD4 molecules through the gp120 
protein, significantly reducing the infectivity of HIV-1[85].

Additionally, certain functional foods possess immunomodulatory 
properties; for instance, sesamin, a polyphenolic compound 
derived from sesame, can regulate levels of immune cytokines 
such as IL-4, IL-5, IL-13, and inhibit the NFκB signaling pathway 
[86]. NFκB is a crucial molecule regulating HIV replication and is 
currently a significant potential target in HIV-1 chemotherapeutic 
research. One major research direction in targeting NFκB for HIV 
treatment involves the use of antioxidants, such as N-acetyl-L-
cysteine (NAC) [87]. Consequently, it is plausible that moderate 
intake of antioxidant-functional foods could aid in the treatment 
of HIV.

Antioxidant Functional Foods with and MAFLD

The onset and progression of MAFLD are closely related to 
oxidative stress. Therefore, functional foods rich in antioxidant-
active compounds may play an important role in the prevention 
and treatment of MAFLD. It has been confirmed that some 
functional foods can neutralize free radicals and reduce oxidative 

stress-induced liver damage, thereby inhibiting hepatic steatosis 
by providing a variety of active compounds, such as polyphenols 
and anthocyanins [88]. Based on their origin, these functional 
foods can be categorized into three major groups: plant-based, 
animal-based, and microorganism and algae-based, with most 
currently discovered functional foods being plant-derived [75]. 
The following section will elaborate on functional foods with 
antioxidant properties and protective effects against fatty liver 
disease, classified by their source.

Plant-based Functional Foods

Plant-based foods are rich in bioactive compounds such as 
polyphenols, flavonoids, and phytosterols, among others. Previous 
studies have also shown that certain phenolic compounds found 
in plants can prevent and treat hepatic steatosis by inhibiting 
lipogenesis and promoting fat breakdown [89]. These plant 
compounds not only protect the liver but also improve insulin 
resistance and inflammation [90]. A summary of plant-based 
functional foods that can antagonize oxidative stress is provided in 
Table 1. Since the classification of many plant foods is ambiguous, 
for example, bitter melon and avocado are considered both 
vegetables and fruits---have not been subdivided plant-based 
foods in the table. It should be noted that some of the research 
findings listed in the table are controversial. For instance, while 
some studies suggest that green tea can improve fatty liver disease, 
others have found that green tea may exacerbate it, whereas black 
tea effectively prevents and treats the condition [91, 92]. In such 
cases, we have marked the entries with a symbol (†). The specific 
details are summarized in (Table 1).

Foods Bioactive ingredients Primary Benefits Mechanisms of Action Ref.

SchisandraChinensis 
bee pollen Naringenin, rutin, chrysin

anti-inflammatory, antioxidant, 
hypoglycemic, , inhibiting hepatic 
lipid accumulation  

inhibit SREBP-1c, LXR-α, and 
FAS, balance gut microbiota [93]

Black tea (Camellia 
sinensis)

Black tea extract (Tea flavonoids, 
theaflavin, troxerutin[TXER])

antioxidan, anti-tumor, anti-
inflammatory, improving hepatic 
steatosis 

downregulate iNOS, eliminate NO 
production, inhibit oxygen free 
radicals production 

[91, 92, 94]

Coccinia grandis (ivy 
gourd) leaves

alkaloid, cardenolides, flavonoids, 
terpenoids, saponins, and 
polyprenols

antioxidant, anti-inflammatory, 
hypolipidemic, hypoglycemic, 
analgesic, antimicrobial, 
antipyretic, sedative, 
hepatoprotective, anticancer 

upregulate PPAR-α & PPAR-γ, 
downregulate NF-κB, iNOS, 
TNF-α, upregulate eNOS, inhibit 
bcl-2 expression

[95]

Bitter gourd
charantins, polypeptide-p, 
momordin, oleanolic acid 
3-o-monodesmoside

anti-inflammatory, antioxidant, 
anti-diabetic, blood 
hypolipidemic, improving insulin 
resistance, alleviating hepatic 
steatosis 

regulate mtochondrial activity, 
inhibit lipid accumulation  [96]
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Olive leaf Oleuropein
anti-inflammatory,anti-oxidant, 
hypoglycemic, hypolipidemic, 
anti-hypertensive, antiviral 

scavenging free radicals, inhibit 
chemical oxidation of LDL [97]

Broccoli

vitamin C, flavonoids, 
glucosinolates, sulforaphane, 
phenethyl isothiocyanate, 
isothiocyanates

antioxidant, hypolipidemic, 
reducing hepatic lipid deposition 

inhibit CYP2E1, cytochrome 
P450 1A, cytochrome P450 
3A，downregulate TNF, CD68

[98]

Broccoli sprouts Glucoraphanin improving insulin resistance, 
inhibiting oxidative stress 

induce Nrf2, protect mitochondria, 
inhibit the development of NASH [99]

Asian white 
radish(Raphanus sativus 
L.)

4-methylthio-3-butenyl 
isothiocyanate (MTBITC), 
anthocyanins, polysaccharides, 
glucosinolates

anti-inflammatory, anti-tumor, 
antioxidant, improving insulin 
resistance, hypolipidemic

reduce hepatic lipid accumulation [66]

Black radish (Raphanus 
sativus L. var. niger)

3-(E)-(methylthio)methylene-2-
pyrrolidinethione, polyphenols, 
MTBITC,  anthocyanins, 
polysaccharides, glucosinolates

antioxidant, liver protective, 
hypolipidemic

enhance Nrf2 expression, 

eliminate free radicals 
[100]

Tomato juice Lycopene

anti-inflammatory, anti-
proliferation, antioxidant, 
hypolipidemic, reducing hepatic 
lipid accumulation 

upregulate FXR and 
HNF4A，increase the abundance 
of intestinal lactobacilli, decrease 
acetate:propionate ratio 

[101]

Spinach
β-carotene, flavonoids, phenolic 
compounds, lutlein, lycopene, 
linolenic acid, thylakoids

hypoglycemic, hypolipidemic , 
anti-obesity, antioxidant, anti-
inflammatory 

scavenge ROS, induce antioxidant 
enzymes (catalase, SOD, GPx, and 
glutathione reductase), upregulate 
PPAR-γ, downregulate TNF-α and 
PTX-3

[102]

Orange carrot carotenoids anti-inflammatory, antioxidant, 
improving fatty liver 

upregulate PPAR-α, AMPK, and 
PGC-1α [103]

Corn Corn peptide
hypolipidemic, antioxidant, 
hepatoprotective, hypoglycemic, 
anti-hypertensive 

upregulate SIRT1/PPARα and Nrf2/
HO-1 [104]

Pueraria lobata Puerarin(4’,7-dihydroxy-8-β-D-
glucosylisoflavone)

antioxidant, 

improving insulin 

resistance, 

hypolipidemic, 

hepatoprotective 

activate JAK/STAT, upregulate 
Nrf2 and HO-1 [105]

Quinoa Quinoa polyphenol anti-oxidant, hypolipidemic, anti-
inflammatory 

upregulate AMPK，inhibit 
SREBP-1c activity, downregulate 
SREBP-2 , HMGCR, IL-1β, IL-6, 
and TNF-α

[106,107]
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Oat Beta-glucan

hypolipidemic, 

hypoglycemic,

antioxidant,

improving insulin 

resistance, 

immunomodulation,  

anti-infection, 

anti-tumor

inhibit NFκB, balance gut 
microbiota [108,109]

Djulis(Chenopodium 
formosanum Koidz)

rutin, Phytochemicals 
(Polyphenols and catechins)

antioxidant, hepatoprotective, 
hypolipidemic,hypoglycemic , 
anti-tumor

activate PPAR-γ, upregulate SIRT1, 
LXR, pAMPK, PPAR-α, p-ACChe 
CPT1B

[65]

Mango, anemarrhena Mangiferin (1,3,6,7-tetrahydroxy-
xanthone-C2-β-D-gluoside)

anti-inflammatory, anti-
tumor, anti-oxidative stress, 
hypolipidemic, anti-diabetic, anti-
aging, anti-viral, anti-microbial, 
hepatoprotective 

inhibit NFκB, enhance Nrf2 
expression, blockTGF-β/Smad 
pathway, downregulate NLRP3 
expression, activate AMPK

[110]

Sesame Sesame lignans(sesamin, 
sesamolin, and sesamol)

anti-inflammatory, antioxidant, 
hypoglycemic, hypolipidemic, 
improving insulin resistance, 
improving hepatic steatosis

downregulate  phospho-JNK1/2/3, 
phospho-NF-κB p65, phospho-IRS1 
and phospho-IKK α/β, upregulate 
XBP1, CPT-1A, LXRα, CYP7A1,  
reductions of TNF-α and IL-6 
levels, increasing GSH, 38 vitamin 
C and Nrf2 levels, decreasing MDA 
and NO levels, and enhancing SOD, 
CAT 39 and GSH-Px activities, 
activate AMPK and PPAR signaling 
pathways

[111-113]

Purple sweet potato anthocyanins
antoxidant, anti-cancer, improving 
insulin resistance, anti-diabetic, 
inhibiting liver fat accumulation

inhibit Src/ERK/C/EBPβ [114]

Purple corncob peonidin 3-O-glucoside (P3G)
anti-inflammatory, antioxidant, 
anti-hypertensive, anti-cancer, 
inhibiting liver fat accumulation 

upregulate the lysomal function 
mediated by transcription factor 
EB, activate PPARα

[115]

Onion anthocyanins, flavanols (quercetin 
and its derivatives)

antioxidant, immunomodulation, 
antibacterial, hypolipidemic, 
hypoglycemic, anti-inflammatory, 
reducing hepatic steatosis

downregulate NFκB, iNOS, TNFα, 
balance gut microbiota, upregulate 
Sirt1

[116]

Red cabbage(Brassica 
oleracea L.)

anthocyanins, flavonoids, 
ascorbic acid, isothiocyanate 
(glucosinolates)

antioxidant, anti-inflammatory, 
hypolipidemic, hepatoprotective scavenging ROS [117,118]

Açaí (Euterpe oleracea 
Martius)

Anthocyanin(mainly polyphenols), 
polyunsaturated(PUFA) and 
monounsaturated (MUFA) fatty 
acids

antioxidant, improving hepatic 
steatosis 

increase the expression of Gpx1, 
Gpx4, Sod1 [119]
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tomatoes, watermelons, 
pink guavas, grapefruits, 
apricots, and papayas

Lycopene(lyco)

antioxidant, anti-inflammatory, 
anti-cancer, anti-hypertensive, 
hypolipidemic, anti-proliferation, 
inhibiting lilver fat accumulation

upregulate NR1H4 and 
HNF4A,activate SIRT1

[101, 120-
122]

Tomato Saponins (mainly Esculeoside A)
antioxidant, hypolipidemic, 
hypoglycemic, inhibiting liver fat 
accumulation

activate AMPK, upregulate Nrf2-
Keap1 [123]

Vine tea Vine tea polyphenol(VTP)
antioxidant, anti-inflammatory, 
improving insulin resistance, 
inhibiting liver fat accumulation 

upregulate Nrf2,activate AMPKα/
PPARα，inhibit the expression of 
SREBP-1 and FAS

[124]

Green tea† EGCG
anti-inflammatory, antioxidant, 
anti-HIV, improving hepatis 
steatosis

increase NADPH oxidase activity, 
inhibit TLR4/MyD88 mediated 
NFκB activation

[80, 81, 85, 
125-127]

kombuchas phenolic compounds, mainly 
catechins

anti-inflammatory, antioxidant, 
hypolipidemic, reversing hepatic 
steatosis, improving glucose 
tolerance 

downregulate SREBP1c and NLR, 
upregulate CPT-1 and adipo-R2 [128]

Sophora japonica Troxerutin(TXER)
anti-thrombotic, antioxidant, 
anti-inflammatory, anti-tumor, 
neuroprotective 

scavenging ROS, inhibit NFκB [94-129]

Gardenia jasminoides Geniposide
anti-inflammatory, antioxidant, 
lipid-lower, inhibiting liver fat 
accumulation 

upregulate Nrf2/HO-1 and AMPK 
signaling [130]

citrus flavonoids

antioxidant, hypolipidemic, 
anti-cancer, anti-cardiovascular 
disease, improving insulin 
resistance 

activate SIRT1/PGC-1α signaling 
pathway [131]

Pimpinella anisum L. 

trans-anethole, γ-himachalene, 
methyl chavicol, cis-isoeugenol, 
linalool, pseudo-iso-eugenyl-2-
methyl butyrate

antioxidant, lower blood lipid, 
anti-diabetic, hepatoprotective, 
reducing liver fat accumulation 

inhibit TLR-4, decrease TNF-α, 
IL-6 [132]

Qu Zhi Qiao (Fruit 
of Citrus Paradisicv. 
Changshanhuyou)

total Flavonoids (TFCH) anti-inflammatory, antioxidant, 
improving hepatic steatosis 

upregulate Nrf2-ARE signaling 
pathway [133]

Haw (Crataegus aronia)

total flavone of haw leaves 
(TFHL), polyphenolic 
antioxidants, flavonoids(luteolin-7 
glucoside, hyperoside and rutin

antioxidant, hypolipidemic, 
improving hepatic steatosis upregulate Nrf2 [134,135]

Vitis coignetiae Pulliat 
leaves Polyphenols and anthocyanins antioxidant, reducing liver fat 

deposition inhibit CYP2E1 [136]
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Crataegus oxyacantha L flavonoids and triterpene acids

anti-nflammatory, 

hypolipidemic,, 

reducing 

hepatic fat 

accumulattion

increase the activity of GSH and 
FRAP [137]

Dragon fruit (Red 
Pitaya) betacyanins

antioxidant, anti-inflammatory, 
hypolipidemic, hypoglycemic, 
improving insulin resistance, 
reducing hepatic steatosis

scavenging ROS, downregulate 
TNF-α, IL-1β, IL-6, upregulate IL-
10, balance gut microbiota

[138]

Grape seed extract proanthocyanidins， resveratrol
anti-inflammatory, antioxidant, 
anti-cancer, improving hepatic 
steatosis

upregulate PPARβ/δ, SOD, GPx, 
inhibit MAPK [139,140]

Grape fruit resveratrol,ellagic acid, 
pterostibene

antioxidant, anti-inflammatory, 
anti-cancer, improving hepatic 
steatosis

inhibit NFκB, upregulate 
Gstp1,FABP1,Gpx4, Gpx8, Gss, 
Gps7, Sod1, Nrf2, PPARα, HO-1, 
downregulate mTORC1, SREBP-1c

[141,143]

Vitis vinifera L. skin anthocyanidins
anti-inflammatory, antioxidant, 
improving insulin resistance, 
improving hepatic steatosis 

downregulate  lipogenic factor 
sterol regulatory-element binding 
protein-1c, upregulate lipolytic 
pathway (phosphorylated liver 
kinase B1/phosphorylated 
adenosine-monophosphate-
activated protein kinase

[144]

Black soybean Isoflavones antixodiant, improving insulin 
resistance, hypolipidemic

downregulate SREBP2, HMG-CoA 
reductase, upregulate PPARα/γ, 
ABCA1,pAMPK，

[145]

Pea Pea albumin

antioxidant, hypolipidemic, anti-
inflammatory, improving insulin 
resistance, reducing liver fat 
accumulation 

activate AMPKα and ACC, 
downregulate SREBF1 and FASN, 
upregulate ATGL and  PPARα/γ

[146]

Loquat fruit Polyphenols
anti-inflammatory, antioxidant, 
anti-cancer, anti-hypertensive, 
anti-diabetic

activate PI3K/Akt/GLUT-4, 
SREBP-1c, ChREBP, Nrf-2, inhibit 
TLR4/MyD88/TRIF pathway

[147]

Eriobotrya japonica 
seed

Polyphenols (caffeic and 
chlorogenic acids)

blood hypolipidemic, antioxidant, 
inhibiting liver fat accumulation scavenging ROS [148]

Eriobotrya japonica hot water extract of Eriobotrya 
japonica(EJW) 

antioxidant, reducing hepatic lipid 
accumulation upregulate AMPK, CPT-1, PPARα [149]

Loquat leaf

Sesquiterpene glycoside 3(SG3), 
total sesquiterpene glycosides， 
total flavonoids (quercetin and 
kaemferol)

anti-inflammatory, antioxidant, 
improving insulin resistance, 
hypolipidemic 

downregulate CYP2E1, p-JNK and 
NLRP3，upregulate IRs-1and Akt 
phosphorylation

[151-152]
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Coconut oil polyphenols (ferulic acid, caffeic 
acid, coumaric acid)

antioxidant, hypolipidemic, 
improving hepatic steatosis upregulate Nrf2 [153]

Olive oil

polyphenols, nitro-fatty 
acids (NO2-FA),oleic acid, 
monounsaturated fatty acid, 
tyrosol

anti-inflammatory, antioxidant, 
improving insulin sensivity, 
hypolipidemic, improving hepatic 
steatosis 

upregulate Nrf2, AMPK, and 
PPARs, inhibit the activation of 
JNK, promote the expression of 
Bcl2 and Bax, activate CBS and 
CSE mediated H2S synthesis

[154-162]

Pine nut Pinolenic acid anti-inflammatory, antioxidant, 
hypolipidemic

downregulate SREBP1c, FASN, 
SCD1, upregulate AMPK/SIRT1 
signaling pathway

[163]

Avocado oil oleic acid, linolenic acid antioxidant, hypolipidemic improve mitochondrial ETC 
function, upregulate  PPAR-δ [164]

Flaxseed oil Alpha-lipoic acid antioxidant, reducing hepatic lipid 
accumulation 

activate PPARα, inhibit FAS and 
SREBP1 [165-167]

Berberis vulgaris Berberine

antioxidant, blood hypolipidemic, 
improving glucose tolerance, 
reducing hepatic lipid 
accumulation

downregulate SREBP-1c, pERK, 
TNF-α, JNK [168]

Sesame oil sesamol, sesamolin, and sesamin anti-inflammatory, antioxidant, 
reducing liver fat accumulation 

downregulate TNF-α,TGF-β and 
leptin, inhibit the activation of 
NFκB

[169]

Rapeseeds oil

phenolic compounds(sinapic, 
salicylic, protocatechuic, 
phydroxybenzoic, gentisic, 
ferulic, p-coumaric, cinnamic, 
caffeic, syringic acids), 
tocopherol,phytosterols

antioxidant, inhibiting 

lipogenesis
inhibit FAS, ACC, SREBP1 and 
SREBP, upregulate PPAR-α/γ [165,170]

Coffee Caffeic acid, caffeine anti-inflammatory, antioxidant, 
alleviating hepatic steatosis 

activate Nrf2, PPARα and CPT1, 
inhibit FAS and ACC [171,172]

Dark chocolate Polyphenolsv(catechin, 
epicatechin)

antioxidant, slowing the 
progression of hepatic steatosis downregulate Nox2 [173-175]

blackberry
anthocyanins(cyanidin-3-
glucoside, total alkaloids), 
flavonoids， ellagic acid

anti-inflammatory, antioxidant, 
improving insulin resistance, 
and reducing hepatic lipid 
accumulation 

inhibit NFκB, downregulate FAS, 
SREBP-1c and ACC, upregulate 
CPT-1, improve gut microbiota 
balance, increase SCFA levels 

[176]

Coffeeberry
caffeine, chlorogenic acid, 
condensed proanthocyanidins, 
quinic acid, ferulic acid

anti-inflammatory, antioxidant, 
improving  hepatic steatosis 

activate CaMKII/CREB/BDNF 
pathway, upregulate Sirt1, inhibit 
NFκB,iNOS, COX-2，PARP-1, 
PI3K/Akt/mTOP/p70S6K signaling

[177]
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Orange
quercetin, phytosterols, dietary 
fibers, mono and poly-unsaturated 
fatty acids, phenolic compounds

anti-inflammatory, antioxidant downregulate TGF-
β,CTGF,collagen-1α, inhibit NFκB [178]

Citrus reticulate blanco 
peel polymethoxyfalvones (PMFs)

antioxidant, anti-inflammatory, 
anti-cancer, improving hepatic 
steatosis, hypolipidemic, 
improving insulin resistance 

activate Nrf2，upregulate CPT1α, 
ACOX1, PPARα, downregulate IL-
6, TNF-α, IL-1β

[34]

Pu-erh tea theabrownin anti-inflammatory, antioxidant, 
improving insulin resistance 

upregulate adenylate cyclase 
activity, increase cAMP levels, 
activate PKA/AMPK, upregulate 
PPARs, inhibit NFκB/JNK

[179-180]

Fuzhuan brick tea† theabrownin, caffeine

anti-inflammatory, anti-
oxidant, blood hypolipidemic, 
hypoglycemic, improving hepatic 
steatosis 

upreguate PPARs, promote gut 
microbiota baance, lower ERK 
phosphorylation, downregulate 
TGFβ, α-SMA, Col1A1, Col3A1

[181-182]

Que Zui tea 6-O’-caffeoylarbutin
anti-inflammatory, antioxidant, 
hypolipidemic, hypoglycemic, 
reducing liver fat accumulating 

upregulate Nrf2, adiponectin and 
adipoR2, activate AMPK/PPAR-α 
signaling pathway

[183]

Red wine flavonoids, resveratrol anti-inflammatory, antioxidant inhibit NFκB, activate Nrf2, AP-1 [21-184]

Lycium barbarum Lycium barbarum polysaccharides anti-inflammatory, antioxidant, 
immunomodulation downregulate NLRP3/6, NFκB [185]

Phyllanthus emblica L 
fruit†

polyphenols(tannins, lignans, 
flavonoids, alkaloids, mucic acid, 
gallic acid, ellagic acid, quercetin, 
geraniin, chebulagic acid, 
corilagin, phyllanthin)

anti-inflammatory, antioxidant, 
hypolipidemic, hypoglycemic, 
anti-cancer, anti-bacterial, 
hepatoprotective 

downregulate SREBP-1c, LXRα, 
upregulate PPARα and adiponectin [186]

Mulberry
flavonoids, polyphenol 
compounds, 1-deoxynojirimycin 
(DNJ)

hypoglycemic, 

increasing insulin 

secretion 

upregulate PPARs, inhibit FAS and 
HMGCoA reductase [187-188]

Cherry anthocyanins(cyanidin-3-
rutinoside), flavones

anti-inflammatory, antioxidant, 
hypoglycemic, hypolipidemic 

inhibit NFKB, upregulate PPAR-γ, 
Nrf2 [189]

Ginkgo biloba Ginkgolide B(GB)
anti-inflammatory, antioxidant, 
inhibiting hepatic fat 
accumulation 

upregulate Nrf2 [190]

Cranberry (Vaccinium 
oxycoccos L.)

Vit E, Vit C, phenolic polyphenols 
(proanthocyanidins, anthocyanins, 
resveratrol) 

antioxidant, anti-inflammatory, 
hypolipidemic, inhibiting hepatic 
fat accumulation 

inhibit SREBP-1c, TLR4/NFκB, 
downregulate TNFα and IL-6 [191-192]
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Blueberry leaf

anthocyanins, flavonoids(D-
catechin, L-epicatechink, rutin, 
isoquercitrin, iridin and quercetin), 
phenolic acid(chlorogenic acid), 
last anthocyanin(cyanidin-3-O-
glucoside)， catechol

anti-inflammatory, antioxidant, 
inhibiting hepatic fat 
accumulation 

induce the expression of 

AMPK/PGC-1α/SIRT3,

upregulate ERRα, Nrf1, 

Nrf2

[193]

blueberry Flavonoids, polyphenols 
(anthocyanins), pterostibene 

anti-inflammatory, antioxidant, 
anti-cancer, improving hepatic 
steatosis

activate SIRT1/PGC-1α, inhibit 
SREBP-1c and nTORC1, 
upregulate PPAR-α, Nrf2, HO-1

[143, 194, 
195]

Mulberry leaf extracts chorogenic acid derivative, 
flavonoid, rutin, quercetin

anti-inflammatory, antioxidant, 
anti-diabetic, hypolipidemic, 
reducing liver fat deposition 

upregulate PPARα, inhibit FAS, 
HMGCoA reductase [109,188]

Bayberry juice
phenolic acids (caffeic, ferulic, 
sinapic, salicylic acids), 
anthocyanins, vitamin C

anti-inflammatory, antioxidant downregulate TNF-α, IL-8 [196]

White wine tyrosol anti-inflammatory, antioxidant, 
hepatoprotective

activate CBS and CSE mediated 
H2S biosynthesis [162]

curcuma longa curcumin
anti-inflammatory, antioxidant, 
anti-tumor, hypolipidemic, 
hepatoprotective 

induce Nrf-2-FXR-LXR signaling 
pathway

[168, 197-
200]

Lemon balm Rosmarinic acid
anti-inflammatory, antioxidant, 
improving insulin resistance, 
reducing liver fat accumulation

upregulate Nrf2, AMPK, PGC-1α, 
PPARα and downregulate SREBP-
1c

[201]

Maoberry(antidesma 
bunius)

polyphenol(anthocyanin， 
cyanidin, peonidin, ascorbic acid, 
gallic acid, (-)-epicatechin(+)-
catechin, cyanidin-3-O-glucoside

anti-inflammatory, antioxidant, 
hypolipidemic, improving hepatic 
steatosis

downregulate ACC and  GPAT-1, 
TNFα, and IL-6 [202]

Satsuma mandarin β-Cryptoxanthin

anti-inflammatory, antioxidant, 
improving insulin resistance, 
hypolipidemic, reducing liver fat 
accumulation

inhibit JNK, p38 MAPK, and 
NFκB, upregulate PPARs [203,204]

Beet (Beta vulgaris) Betaine
anti-inflammatory, antioxidant, 
hypolipidemic, reducing hepatic 
steatosis 

activate beclin 1, Atg4 and Atg5, 
induce autophagy, upregulate  Akt/
mTOR signaling

[205]

raspberry Ellagic Acid, raspberry ketone, 
resveratrol

anti-inflammatory, antioxidant, 
reducing hepatic steatosis

downregulate p47phox, and 
HIF-α, activate Nrf2, and Akt, 
downregulate TNFα and IL-6, 
inhibit TLR4/NFκB

[7, 142, 
192, 206]

Pomegranate 
Polyphenols, anthocyanidins, 
tannic acid, gallic acid, and ellagic 
acid

anti-inflammatory, antioxidant 

reduce the expression of 

TNFα, IL-1β, IL-6, and 

IL10

[207,208]
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Thymbra spicata L. Rosmarinic acid, carvacrol
anti-inflammatory, antioxidant, 
improving hepatic steatosis, 
hypolipidemic 

reducing oxidative/nitrosative stress 
pathay, reducing the contents of 
intracellular NO and ROS, inhibit 
NFκB

[209]

Carob pod polyphenols
anti-inflammatory, antioxidant, 
anti-diabetic, reducing liver fat 
accumulation 

upregulate SIRT1, PCG-1α,CTP-1a [210]

Soybean
Polyenylphosphatidylcholine 
(PPC), phytic acid, pinitol, soy 
protein

anti-inflammatory, antioxidant, 
hypolipidemic, improving insulin 
resistance 

balance the gut microbiota, 
reducing TNFα, upregulate Cyp7b1, 
FXR, and FGFR4

[211-214]

Black bean

polyphenols (delphinidin 
3-glucoside, petunidin 
3-glucoside, and malvidin 
3-glucoside), flavonoids 
(anthocyanins)

antioxidant, hypolipidemic, 
increasing insulin secretion, 
reducing hepatic lipid 
concentration 

downregulate SREBP-2, Cyp7A1 [215]

Green coffee bean chlorogenic acid hypolipidemic, reducing hepatic 
fat accumulation

activate AMPK, upregulate CPT-1, 
GLUT4 and PPARγ, inhibit ACC [216]

Chickpea (Cicer 
arietinum) biochanin A(Bio-A)

hypolipidemic, hypoglycemic, 
anti-inflammatory, inhibiting 
hepatic steatosis

activate Sirt3/AMPK/ULK-1 
signaling [217]

Mung bean (Vigna 
radiata L.) phenolic acids

hypocholesterolemic, anti-
inflammatory, antioxidant, 
hepatoprotective, inhibiting 
hepatic steatosis

increase fecal excretion of 
cholesterol, upregulate CPT1, 
Bcl2a1a, downregulate SREBP-1, 
HMG-CoA reductase

[218]

White kidney bean 
(Phaseolus vulgaris L.)

phaseolin, polyphenols, resistant 
starch, oligosaccharides 

antioxidant, anti-inflammatory, 
anti-cancer, anti-obesity, 
cardioprotective, hypolipidemic, 
hypoglycemic, improve insulin 
resistance, reducing hepatic fat 
accumulation

balance gut microbiota, inhibiting 
α-amylase [219,220]

Pigeon pea (Cajanus 
cajan L)

stilbenes,phytosterol(β-sitosterol, 
stigmasterol),linoleic acid hypolipidemic, hypoglycemic upregulate PPARα, CPT-1, and 

CYP7A1 [221]

Walnut
Walnut green husk 
polysaccharide(WGHP), ellagic 
acid

anti-inflammatory, antioxidant, 
anti-bacterial, improving glucose 
intolerance 

inhibit CYP2E1, JNK, and p38K, 
activate AMPK and SIRT1

[222, 223], 
[206]

Chestnut tannin, ellagic acid, scoparone

anti-inflammatory, antioxidant, 
immunomodulation, 
hypolipidemic, inhibiting hepatic 
steatosis 

inhibit SREBP-1c, downregulate 
FAS, ACC [224]
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Poria cocos Poria cocos polysaccharides

anti-inflammatory, antioxidant, 
immunomodulation, 
hypolipidemic, balancing gut 
microbiota, reducing hepatic fat 
accumulation 

inhibit NLRP3 [225]

Ganoderma mushroom Triterpenoids(lucidenic acids, 
ganoderic acids)

antioxidant, anti-bacterial, 
anti-cancer, anti-HIV, anti-
hypertensive, anti-diabetic, 
improving hepatic steatosis 

increase the activity of ACC and 
AMPK, inhibit SREBP1, upregulate 
CPT-1

[79]

Cinnamon Cinnamyl alcohol anti-inflammatory, antioxidant downregulate SREBP-1c and ACC1 [226]

Lycii (Goji berry, 
wolfberry)

LFP-a1(Lycii fructus 
polysaccharides)

antioxidant, immunomodulation, 
anti-aging, anti-cancer 

inhibit the expression of Bax and 
C-Myc [227]

Humulus japonicas luteolin 7-O-β-D-glucoside(LU) anti-inflammatory, antioxidant, 
alleviating hepatic steatosis 

upregulate PPARα and  SOD1, 
increase catalase activity [228]

Korean Red Ginseng Red ginseng extract

antioxidant, 

anti-HIV, inhibiting 

hepatic fat

accumulation 

upregulate PPAR-α,

CPT-1,CYP7A1, AMPK,

and ACC, inhibit 

C/EBPα,SREBP-1c, 

PPAR-γ, FAS, ACAT2, 

HMGCR, and ApoB

[76,229]

Ginger 6-gingerol, 6-shogao1, , 
alpinetin,citral, zingerone

anti-inflammatory, antioxidant, 
hypolipidemic, anti-cancer, 
anti-diabetic, reducing liver fat 
accumulation, anti-HIV, immune-
enhancing

downregulate TNFα and IL-
1β, downregulate SREBP-1c, 
SREBP-2, FAS, SCD1, LXR, 
ACC1, DGAT-2, and CYP2E1, 
inhibit NFκB, activate Nrf2, LKB1/ 
AMPK signaling pathway, activate 
SIRT3, and Akt, upregulate CPT1α, 
PPARα/γ, PGC1α

[230-237]

Garlic (Allium sativum)

Garlic-derived 
S-allylmercaptoccysteine, N-trans-
coumaroyloctopamine, N-trans-
feruloyloctopamine, allicin ajoene, 
diallyl disulfide, SAC sulfoxide, 
S-methylcysteine sulfoxide, allicin

anti-inflammatory, antioxidant, 
immunomodulation, 
hypolipidemic, improving insulin 
resistance, anti-HIV 

downregulate CYP2E1
，p38MAPK, downregulate 
TGF-β1 and α-SMA, activate 
MEK/ERK, inhibit AP-1,NFκB

[238-241]

black rice (Oryza sativa 
L.)

anthocyanin (Cyanidin-3-
glucoside, C3G)

anti-inflammatory, antioxidant, 
hypolipidemic, hypoglycemic, 
improving fatty liver 

upregulate AMPK, PPAR-α, 
CPT1A, ACO, and CYP4A10 [242]

Sintanur brown rice
phenolic acids (trans-ferulic, trans-
p-coumaric acid), vitamin B3( 
niacin)

anti-inflammatory, antioxidant, 
reducing hepatic lipid 
accumulation 

upregulate SCFAs, regulate FXR 
and reduce hepatic lipogenesis [243]
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Red rice

phenolic extract, anthocyanins, 
proanthocyanidins, protocatechuic 
acid,oryzanol, vitamin 
E,coenzyme Q10

anti-inflammatory, antioxidant, 
anti-diabetic, hypolipidemic, 
reducing hepatic steatosis 

downregulate NFκB, Bax/
Bcl-2 ratio, iNOS, p47PHOX, 
ATGL, CD36, LXRα, SREBP-1c, 
SREBP-2, HMGCR, and hepatic 
lipase (HL), upregulate ApoA-1, 
LPL, and CPT1A

[244]

Brown sorghum 
(Sorghum bicolor L.)

phenolic acids, 
3-deoxyanthocyanidins(3-DXA), 
proanthocyanidins(tannins)

antioxidant, anti-inflammatory, 
anti-diabetic, anti-cancer, anti-
obesity, improving insulin 
resistance, improving hepatic 
steatosis

block lipogenic enzymes, increase 
β-oxidation, upregulate PPARα,  
downregulate SREBP-1c, increase 
adipo R2 sensitivity

[245]

whole wheat leucine-arginine-proline(LRP), 
leucine-glutamine-proline(LQP) antioxidant, improving fatty liver upregulate AMPK, ACC [246]

Buckwheat (Fagopyrum 
esculentum Moench)

fagopyrin polyphenols 
(flavonoids)

anti-inflammatory, antioxidant, 
hypolipidemic

upregulate ACOX1, PPARα, 
ACAT2, FXR, SCFAs, 
downregulate CEBPα,CD36, 
ACC1, SREBP-1c,

[247]

Tartary buckwheat 
(Fagopyrum tataricum 
(L.) Gaertn.)

flavone
anti-inflammatory, antioxidant, 
hypolipidemic, anti-hypertensive, 
hypoglycemic 

inhibit iNOS, COX2, IL-6, 
IL-1β, TNF-α, downregulate 
SREBP1, acetyl-COA carboxylase 
protein levels, activate AMPK, 
downregulate MAPK and NFκB, 
balance gut microbiota 

[248]

Khorasan bean polyphenols, carotenoid, 
coumarin, and ferulic acid isomer

anti-inflammatory, antioxidant, 
improving hepatic steatosis, 
improving insulin resistance 

downregulate NFκB,  TNF-α and 
IL-1α [249]

Purslane seeds 
(Portulaca oleraceae L.)

Omega-3, α-tocopherol, ascorbic 
acid, β-carotene,glutathione, 
phenolic and flavonoids 
compounds

anti-inflammatory, antioxidant, 
hepatotective, anti-diabetic 

scavenging ROS, 

increase intracellular 

glutathione concentration 

[67]

Garden cress seeds 
(Lepidium sativum 
Linn.)

phenolic compounds, alkaloids, 
falvonoids, ascorbic acid, 
tocopherol, polyunsaturated fatty 
acids

anti-inflammatory, antioxidant, 
hypolipidemic, hepatotective , 
anti-diabetic 

scavenging ROS, 

increaseintracellular 

glutathione concentration 

[67]

Adzuki bean (Phaseolus 
angularis)

anthocyanin, catechin, and 
adzukisaponin

anti-inflammatory, antioxidant, 
hypolipidemic 

upregulate adiponectin, AMPKα, 
CPT-1, PPARα, downregulate 
SREBP-1c, FAS, TNFα and NFκB

[250]

Table 1: Functional Foods from Plants.
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Animal-based Functional Foods

Although the number of animal-based functional foods discovered to have antioxidant activity is relatively limited, some have been 
proven to improve MAFLD significantly. These functional foods mainly include fish, krill, shellfish, dairy products, and honey products, 
among others. A detailed summary is provided in (Table 2).

Foods Bioactive ingredients Primary Benefits Mechanisms of Action Ref.

Salmon Astaxanthin

anti-inflammatory, 

antioxidant, anti-

cancer,immunomodulation, 

hypolipidemic, anti-

diabetic 

Block TGF-β/Smad3 
signaling, inhibit MAPK 
and NFκB

[251,252]

Fish oil† eicosapentaenoic(EPA), 
docosahexaenoic(DHA)

anti-inflammatory, antioxidant, 
improving hepatic steatosis activate PPARs  [21,253,257]

Bluefin tuna Selenoneine anti-inflammatory, antioxidant, 
hepatoprotective 

downregulate Gpx1, 
selenop [258]

Menhaden Menhaden oil(C20-22(n-3)
PUFA)

anti-inflammatory, hypolipidemic, 
hepatoprotective

inhibit SREBP1, ACC1, 
Fasn, NFκB, inhibit hepatic 
lipogenesis

[259]

Antarctic 
Krill(Euphausia 
superba)

phospholipid-protein 
complex,carotenoid fucoxanthin, 
astaxanthin

antioxidant, hypolipidemic
downregulat SREBP1c 
inhibit the expression of 
IL-1β, IL-6, TNFα

[260]

Freshwater 
clam (corbicula 
fluminea)

Campesterol, stigmasterol, 
unsaturated fatty acids

anti-inflammatory, antioxidant, 
improving hepatic steatosis 

inhibit NLRP3,  
downregulate CYP3A [261]

Silkworm pupae Silkworm pupae peptides,α-
linolenic acids antioxidant, improving fatty liver upregulate PPARα, CPT-1 [262]

Yogurt

lactic acid, conjugated 
linoleic acid, folate, S. 
thermophiles, fructosan, galacto-
oligosaccharides, galactose

ant-inflammatory, antioxidant, 
improving insulin resistance 

inhibit NFκB, 
downregulate the 
expresson of TNFα and 
FGF21

[263]

Camel milk α-Lactalbumin, L-carnitine

antioxidant, anti-inflammatory, 
antibacterial, immunomodulation, 
hypolipidemic, alleviating hepatic 
steatosis 

scavenging ROS, inhibit 
lipid absorption, upregulate 
PPARα/SREBP1 ratio

[264,265]

Table 2: Functional Foods from Animals.
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Microbial and Algal-based Functional Foods

Microbial-based functional foods with antioxidant properties and effects on improving fatty liver disease primarily include probiotics 
that regulate gut microbiota balance, postbiotics, and fungi used in the production of specific foods. Postbiotics are beneficial 
substances produced by microbial metabolism or structural components of microorganisms, such as short-chain fatty acids (SCFAs), 
polysaccharides, peptides, and phospholipids, among others [266]. These substances exert their antioxidant effects and improve fatty 
liver through various mechanisms. Similarly, algal-based functional foods also demonstrate significant antioxidant properties and can 
improve fatty liver disease. Common algal functional foods include Spirulina, brown algae, Chlorella, and astaxanthin-rich microalgae, 
such as Haematomatococcus pluvialis is rich in anthocyanins, which are potent natural antioxidants that protect liver cells from damage 
caused by free radicals. (Table 3) provides a summary of microbial and algal-based functional foods with antioxidant functions.

Foods Primary Benefits Classification Mechanisms of Action Ref.

Bifidobacteria Antioxidant,improving hepatic steatosis Probiotic upregulate SIRT1 and PPARα, 
downregulate SREBP1c [194]

Lactobacillus casei 
strain Shirota(LCS)

Anti-inflammatory, anti-oxidant, 
immunomodulation Probiotic downregulate TLR singaling pathway, 

inhibit SREBP1c and FAS [267,268]

Lactobacillus 
coryniformis subsp. 
Torquens T3 (T3L)

Anti-inflammatory, anti-oxidant, 
hypolipidemic, inhibiting liver fat 
accumulation

Probiotic

upregulate NRF2-NQO-1 pathway, 
upregulate SCFAs concentration, 
inhibit the expression of TNF-α and 
IL-6

[269]

Lactobacillus casei Anti-inflammatory, anti-oxidant, reducing 
hepatic steatosis Probiotic

balance gut microbiota, downregulate 
NGAL and KIM-1, activate FOXO1/
pAMPK

[270]

Saccharomyces 
cerevisiae probiotic 
yeast

Anti-inflammatory, antioxidant, anti-
diabetic(improving insuln sensitivity), 
inhibting fatty degeneration of liver 

Probiotic increase SCFAs concentration, 
immunemodulation, promote lipolysis [271]

Sugary Kefir Strain 
Lactobacillus mali APS1

Anti-oxidant, reducing liver

fat accumulation 
Probiotic

activate AMPK, SIRT-1, PGC-1α and 
PPAR-γ, inhibit SREBP-1, upregulate 
Nrf-2/HO-1

[272]

Sodium butyrate 
anti-inflammatory, antioxidant, 
hypolipidemic, improving hepatis 
steatosis 

Postbiotic
upregulate miR-150, inhibit 
CXCR4，activate LKB1-AMPK-
Insig，upregulate GLP-1

[273,274]

Monascus

anti-inflammatory, anti-oxidant, 
anti-diabetic, anti-hypertensive, 
immunomodulation, anti-tumor, 
hypolipidemic 

Probiotic

activate PPAR-γ/Nrf-2, upregulate 
FXR, PGC1α and PPAR-α, 
downregulate TNFα and IL-6, 
enhance NO synthesis, inhibit JNK, 
ERK p38 kinase , NPC1L1, HR-
LPL, C/EBPβ, and RAGE signalng 
pathways

[275]

Wakame 
anti-inflammatory, antioxidant, 
hypolipidemic, hypoglycemic, reduing 
hepatic steatosis 

Phaeophyta upregulate CTP-1 and PPAR-α, 
downregulate SREBF-1 [210]

Sargassum serratifolium anti-inflammatory, antioxidant Brown algae
activate Nrf2, AMPK, PPARα, 
upregulate NQO1, HO-1, GST, and 
CPT-1, inhibit SREBP1c and C/EBPβ

[276,277]

Ulva prolifera

anti-inflammatory, antioxidant, 
hypolipidemic, improving insulin 
resistance, alleviating hepatic fat 
accumulation

green macroalgae upregulate CPT-1a, ACOX1, and  
Acadm, inhibit DGAT1 and DGAT2 [278]
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Brown seaweeds
anti-inflammatory, antioxidant, 
anti-cancer, reducing hepatic lipid 
accumulation 

phaeophyta
activate PPARα/γ and Nrf2, 
downregulate TNFα,IL-1β, IL-6 and 
MCP-1

[279]

Spirulina
anti-inflammatory, antioxidant, 
immunomodulation, anti-cancer, anti-
diabetic, hypolipidemic 

blue-green algae
inhibit NFκB, downregulate 
TNFα, IL-6, and iNOS, upregulate 
adiponectin

[280-282]

Haematococcus pluvialis 
anti-inflammatory, antioxidant, 
anti-cancer, immunomodulation, 
hypolipidemic, anti-diabetic 

green microalga block TGF-β/Smad3 signaling, inhibit 
MAPK and NFκB [251]

Chlorella vulgaris 
anti-inflammatory, antioxidant, 
hypolipidemic, immunomodulation, 
improve hepatic steatosis

microalgae downregulate NGAL and KIM-1, 
activate FOXO1/pAMPK [270]

Conclusion
In the absence of universally effective pharmacological treatments 
for MAFLD, functional foods have emerged as a promising, 
non-toxic alternative for managing this condition, particularly in 
HIV-infected populations. Functional foods rich in antioxidants 
offer multiple health benefits, including reducing oxidative stress, 
mitigating inflammation, and improving hepatic lipid metabolism. 
These advantages make them attractive as a dietary intervention 
for managing MAFLD. The findings summarized in this review 
highlight the therapeutic potential of functional foods, such as 
plant-based polyphenols, animal-derived omega-3 fatty acids, 
and probiotics. These bioactive compounds act through diverse 
molecular pathways, including the activation of Nrf2, suppression 
of NFκB, and modulation of lipid metabolism, to improve liver 
health. Notably, certain functional foods, such as EGCG, allicin, 
and ganoderma lucidum, have demonstrated dual benefits by both 
mitigating MAFLD and exhibiting anti-HIV activity [78,81,241]. 
For example, green tea’s EGCG not only reduces hepatic steatosis 
but also inhibits HIV reverse transcriptase, providing a novel 
approach to addressing comorbidities in PLWH [81]. 

Despite these promising findings, the current evidence is limited by 
several factors. Most studies are preclinical or observational, with 
a paucity of high-quality randomized controlled trials validating 
the efficacy and safety of functional foods in clinical settings. 
Moreover, inconsistent results, as seen in studies on green tea and 
fish oil, suggest that individual variability, dosage differences, and 
complex metabolic interactions may influence outcomes. Further 
research is needed to clarify these discrepancies and establish 
standardized protocols for incorporating functional foods into 
dietary recommendations for MAFLD. Looking forward, the 
integration of functional foods into clinical practice for MAFLD 
management among PLWH requires a multidisciplinary approach. 
Collaboration among nutritionists, clinicians, and researchers is 
essential to design robust clinical trials that account for patient-
specific factors, such as HIV status, antiretroviral therapy 
regimens, and coexisting metabolic disorders. Moreover, advances 

in nutrigenomics and metabolomics offer exciting opportunities to 
personalize dietary interventions based on individual genetic and 
metabolic profiles. 

In conclusion, antioxidant-rich functional foods hold significant 
promise for addressing the dual challenges of oxidative stress 
and metabolic dysfunction in MAFLD among HIV-infected 
individuals. By bridging the gap between basic research and 
clinical application, these interventions could offer a sustainable 
and effective strategy for improving liver health and overall quality 
of life in this high-risk population. However, a concerted effort is 
needed to overcome current limitations, validate their benefits, and 
unlock their full therapeutic potential.
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