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/Abstract

~

Introduction: The objective of this paper is to construct a Bayesian model for re-analyzing the results of several published meta-
analyses concerning the impact of Bone Marrow Cell Therapy (BMC) on Left Ventricular Ejection Fraction (LVEF) in adult
patients with heart diseases.

Method: The pooled mean difference in LVEF between BMC and the control group is the outcome of interest. With the help of
the Gibbs sampler, the proposed Bayesian model combined the data from 6 cohort studies (prior) with the results collated from
54 well-cited randomized controlled trials published from 2004 to 2013 (likelihood) for generating the posterior distribution for
meta-analysis.

Results: The conventional model showed that BMC could bring modest but statistically significant effect to patients with heart
diseases. The pooled effect of mean difference in LVEF was +3.12% (95% C.1.: 2.20-4.03) in favour of BMC, according to the
objective Bayesian model. Sensitivity analyses showed that the priors had little influence on the posterior results.

Discussion/Conclusion: More RCTs are needed before further conclusion can be made about the impact of BMC on LVEF. The
Bayesian model has provided more insights to the problem and the nature of data selected for meta-analysis.
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Introduction

Although the results of Bone Marrow Cell Therapy (BMC)
are fairly inconsistent [1], several meta-analyses of pooled data
from clinical trials [2-8] have shown that it could bring beneficial
impact on cardiac function in adult patients with Acute Myocardial
Infarction (AMI) and Ischemic Heart Disease (IHD). All but one
of the above-mentioned meta-analyses was performed with the
conventional statistical method involving random effects. The
aim of this paper is to present a prototype Bayesian model as an

alternative approach for re-analyzing the published results. This
could be of interest to cardiologists as it helps to further evaluate
the potential therapeutic benefits of BMC for cardiac repair with a
more comprehensive approach. Moreover, Bayesian statistics has
gained much attention in cardiovascular research in recent years
[9] and a fruitful discussion can be found in references [9,10].

Following the rationale of conventional statistical theory, the
pooled effect of a meta-analysis is an unknown but fixed quantity
[11] that can be estimated from combining the individual weighted
study effects obtained from systematic reviews. However, a ver-
satile model should reflect how we think and how we make de-
cisions with available information and existing knowledge. We
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often approach a problem and find its solution based on some pre-
understanding before we “revise” our judgement with newly-col-
lected information. As such, we often have some ideas about the
pooled effect even before a meta-analysis is conducted. Building
such knowledge into analysis could produce a more complete and
meaningful paradigm. According to the Bayesian framework, this
evidence is termed as “prior” as they are “known” before an analy-
sis is performed. When the prior knowledge is combined with the
collected data (likelihood) we revise our understanding and the
resultant paradigm is called the posterior, which serves as the basis
for inference and decision making.

The proposed Bayesian framework and model is discussed
next. The pooled effect considered in this paper is the mean dif-
ference in Left Ventricular Ejection Fraction (LVEF) between pa-
tients treated with BMC and their controls enrolled in Randomized
Controlled Trials (RCT). Reported in nearly all clinical trials of
BMC therapy, LVEF reflects the overall contractile function LV
[12] and has been presented as the primary endpoint of the above-
mentioned meta-analyses [2-8].

A common concern among scientists is that the prior and
posterior advocated by Bayesian statistics represent subjective
states of knowledge [13]. This paper may help to illustrate that
this is far from true as a Bayesian model could be constructed with
objective prior.

Method

There are three key quantities to be considered in the pro-
posed Bayesian model, namely a) the pooled effect, b) the trial-
specific effect and c) the between-trial precision. The pooled effect
(0) refers to the overall weighted mean difference in LVEF between
BMC and the control arm, to be estimated with the k individual ob-
served trial effects (y) weighted with observed within-study preci-
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, y,)' is the vector of observed effects (mean difference) and I'(*) is a gamma function. Unfortunately, the

sion (@,), which is defined as the reciprocal of the standard error
of y. The higher the reported standard error, the lower the trial’s
(i=1, 2, ...,k) precision. The two observed quantities, y and ¢, are
to be presented with likelihood functions, according to statistical
theory.

As reported in the abovementioned meta-analyses there was
a significant degree of heterogeneity among the individual studies
[2-8] owing to the fact that vastly different cell numbers were in-
jected via different routes and at various time points in dissimilar
patient populations [14]. It is expected that there are variability
between the reported studies in terms of their effects and precision,
thus calling for the inclusion of unobserved random effects in the
proposed Bayesian model. The observed individual trial effects (y)
could vary around their unobserved trial-specific effect (¢,), which
in turn belong to a distribution characterized by the pooled effect
(0). Both 0 and the between-trial precision (t) are random vari-
ables, and prior distributions must be considered. They quantify
the analysts’ pre-understanding about 6 and t.

In most meta-analyses, normal distribution is appropriate for the
observed effects (y). If normal distribution is not immediately ap-
propriate, one may perform logarithmic transform on y. The prior
distributions of 6 and t are chosen within the related conjugate
family such that 0 belongs to a normal distribution with parameters
u (location) and v (scale), while T belongs to a gamma distribution
characterized by quantities A (shape) and 1 (scale). The concept of
conjugacy ensures that the posterior distribution is mathematically
tractable. Once the posterior is generated the pooled effect 0 can
be determined with ease.

Collecting all the terms and based on the celebrated Bayes’ Theo-
rem [15], the full posterior of the proposed model for pooling the
reported effects of k individual trials is expressed as:

x
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complicated form of the full posterior (1) makes computation extremely difficult and one may have to resort to efficient simulation tech-
niques such as the Markov Chain Monte Carlo (MCMC) for generating the posterior [16,17]. Via the Gibbs sampler algorithm [17], the
technique works directly with the following conditional posterior distributions instead of the full posterior (1):
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Where ¢, represents the vector of all other trial-specific effects in studies other than i. The full posterior which contains the three
quantities (0, ¢, t,) could be separated as three conditional posteriors with each featuring a quantity of concern explicitly. The advantage
of performing éomputation on the conditional posteriors is that they have simpler structures. There is also no loss of information with
the simplified forms as they are derived directly from the full posterior (1).

The rationale of Gibbs sampler is to cycle through the three conditional posteriors (2) for generating the estimates for the three
desired quantities (6, ¢, 7,):

k n
1. with initializing values (pi(o) =y,, 00= Z ¢, /kand t i(o) =k/ z (o, — 9)2
il. draw each ¢, randomly using its condifional posterior and the current values of 6 and ©
1ii. draw 0 randomly using its conditional posterior and the current values of ¢ and t
v. draw 1 randomly using its conditional posterior and the current values of ¢ and 6
V. record the current values of ¢, 6 and t
vi. repeat steps ii. to v. for a sufficiently large number of times, say 500 to 1,000
vil. the quantities generated represent a sample from the full posterior (1)
viil. summarize 6 from the generated sample of posteriors by computing its mean, standard deviation and credible interval

By drawing a large number of values from these conditional posteriors (2), one is guaranteed that the full posterior (1) of the
pooled effect could be obtained [18]. Since the above-mentioned Gibb sampling is iterative in nature, the generation of the estimated
quantities depends on the initializing values. Under the suspicion that they are not representative of the full posterior (1), one should
discard the beginning set of runs (burn-ins) before the updated posterior analysis is performed.

Upon completion the posterior distribution of the pooled effect () could be summarized by means of a 95% credible interval. In
conventional statistics, the random variables in a Confidence Interval (C.1.) are the limits and not the pooled effect (8). With a 95% C.I.
constructed, one may claim that the unknown pooled effect (0) is contained in 95% of all possible intervals obtained with the same sam-
pling method. In the case of Bayesian analysis, the C.I. provides a more natural and intuitive interpretation as 6 may be stated to have a
0.95 probability of being within the interval.

A Stata 14.0 (Stata Corporation, Texas, USA.) programme was written for facilitating the Gibbs sampling. The programme allows
users to read the data, enter the prior quantities and to specify the number of burn-ins and updates, with options for a graphical display
of the iterative Gibbs sampling history. The graph provides a quick but reliable visual inspection on the convergence of the generated
Markov chain.

The above formulation (1-2) illustrates the most important difference between the Bayesian and the conventional models. No
prior distribution of 0 is allowed in the conventional approach and the analysis is solely based on the likelihood functions. On the other
hand, Bayesian analysis treats the unknown quantities (including the pooled effectd) as random variables and their priors have to be
fixed. A typical question is raised with this difference in approach, that is, how Bayesian analysis cope if there are no prior knowledge of
the quantities at all. The advice is to specify a non-informative distribution for the priors so that they have virtually no influence on the
posterior. Not surprisingly, the posterior is then dominated by the likelihood and the result will be identical to the conventional analysis.
However, the interpretation is philosophically different.

In the following analysis, the identified RCTs were first handled with the conventional random-effect model before they were re-
analyzed with the proposed objective Bayesian model. A sensitivity analysis was then carried out with subjective priors in order to ascer-
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tain the robustness of the objective Bayesian model. Statistical tests ]
were conducted at 5% level of significance and with 95% C.Ls. Nogueira 2009 4.90 -4.48-14.28
. " i 9 17—
Results Penicka 2007 5.10 9.17—-1.03
The required data for meta-analysis are depicted in Table 1. Perin 2011 230 -7.67-3.07
Altogether, 54 RCTs involving 2,780 subjects (1,567 treated with Perin 2012 (AHIJ) -2.00 -8.02-4.02
BMCs and 1,213 served as controls) were included for the pro- Perin 2012 (JAMAY* 570 0.36—5.04
posed meta-analysis. Detailed information on the search strategy, e ( ) . i i
eligibility criteria, quality assessment and data abstraction are re- Piepoli 2013 -3.00 -9.24-3.24
ported in references [2-8]. Plewka 2011 5.30 -5.09-15.69
- . Mean Difference
Clinical Trial & Year + 95% C.L Pokushalov 2010% 6.10 5.04-7.16
Ang 2008 1.46 -3.15-6.07 Quyyumi 2011 1.50 -4.42-7.42
Assmus 2006 (BMC)* 4.10 2.18-6.02 Ramshorst 2009* 4.00 1.49-6.51
Assmus 2006 (CPC) 0.80 -0.82-2.42 Roncalli 2011 -0.30 -2.90-2.30
Bartunek 2013* 6.80 3.25-10.35 Ruan 2005* 9.17 0.77-17.57
Cao 2009* 3.63 2.24-5.02 Schichinger 2006* 2.50 0.52—4.48
Chen 2004* 12.00 8.77-15.23 Silva 2009 5.02 -4.99-15.03
Colombo 2011 3.80 -2.05-9.65 Srimahachota 2011 -1.70 -7.41-4.01
Erbs 2005 7.20 -1.40-15.80 Suarez de Lezo 2007* 15.00 7.06-22.94
Gao 2013 0.80 1147274 Surder 2013 1.80 1.12-4.72
Ge 2006 6.70 -0.25-13.65
Traverse 2010 -3.20 -10.32-3.92
Grajek 2010 3.07 -1.54-7.68
Traverse 2011 -3.10 -7.28-1.08
Hendrikx 2006 2.50 -5.26-10.26 Traverse 2014 0.00 3.02-3.02
Hirsch 2011 -0.20 -2.44-2.04 Tse 2007 4.10 -1.58-9.78
Huang 2006* 2.90 127-4.53 Turan 2011* 6.00 2.49-9.51
Huikuri 2008* 5.40 0.62—-10.18 Turan 2012* 10.00 6.68—13.32
Janssens 2006 1.20 -2.39-4.79 Wohrle 2013 -3.70 -9.44-2.04
Jazi 2012 4.00 -0.24-8.24 Yao 2008 0.80 -0.71-2.31
Kang 2006 (AMI) 5.20 -0.89-11.29 Yao 2009* 6.80 4.94-8.66
Kang 2006 (OMI) -0.20 -8.35-7.95 Zhao 2008* 9.35 5.45-13.25
Lipiec 2009 -0.80 -4.80-3.20 Li 2006* 5.50 1.98-9.02
Lu2013* 5.40 1.30-9.50 + Mean difference>0: BMC was more effective in increasing LVEF
than control
Lunde 2006 1.10 -2.99-5.19 * Statistically significant
Maureira 2012 4.00 -3.63711.63 Table 1: Observed Mean Difference in LVEF (BMC versus Controls) in
Meluzin 2006 2.00 -0.53-4.53 selected RCTs.
Meyer 2006 2.80 -1.88-7.48 The majority of the studies showed that BMC might bring

beneficial effects to patients suffering from AMI and IHD (mean
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difference>0, Table 1). However, only 19 selected trials reported
significant results that favoured BMC.

The conventional random-effect model shows that BMC
improved LVEF by about +3.06% (95% C.1.:2.11-4.01). The
results are reported in Table 2. Thus, there seems to be evidence
suggesting that patients on BMC did enjoy modest improvement in
LVEF when compared with their controls. The choice of a random-
effect model is justified with the test for heterogeneity (p<0.01).
There was considerable heterogeneity as 12=75.32%. Moreover,
there was also evidence of publication bias according to the funnel
plot (Figure 1).
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Figure 1: Funnel Plot.

The proposed Bayesian model was built next. The prior for
0 was based on the conventional meta-analysis of 6 well-cited co-
hort studies published from 2002 to 2006 (Table 3) [3]. The pooled
effect was +3.83% with a precision of 0.55. There was no strong
evidence of heterogeneity (p:0.500). While not widely regarded as
confirmative as RCTs, cohort studies do provide useful evidence
concerning treatment effects. As such, they are proposed as the
source of evidence for constructing objective priors in this paper
and meta-analysis involving RCTs at large. The prior for between-
trial precision (t), however, was standardized with a gamma dis-
tribution (A=n=0.01). The choice of this distribution reflected the
lack of prior evidence regarding between-trial precision. Also, the
number of burn-ins was set a priori at 500 and the Markov chain
would thereafter be run another 1,000 times before the final analy-
sis was generated.

Pooled Mean Dif-
ference in LVEF

95% CI*

Conventional Random-Effect
Model

3.06

2.11-4.01

Bayesian Random-Effect
Models:
a) Objective Prior (in
favour of BMC)
Prior Effect: +3.83
Prior Precision of Effect: 0.55

2.20-4.03

b) Neutral Prior (not in
favour of BMC or control)
Prior Effect: 0.00

Prior Precision of Effect: 0.55

2.60

1.67-3.54

Pessimistic Prior (in
favour of control)
Prior Effect: -2.00
Prior Precision of Effect: 0.55

©)

2.32

1.35-3.29

d) Over-Optimistic Prior
(in favour of BMC)
Prior Effect: +10.00

Prior Precision of Effect: 0.55

3.98

2.99-4.97

* C.I. refers to credible interval for the Bayesian models

Table 2: Results of Conventional and Bayesian Meta-Analyses.

Cohort Study& Year | Mean Difference 95% C.I.
Bartunek 2005 2.80 -6.08-11.88
Katritsis 2005 0.33 -5.57-6.23

Mocini 2006 4.00 -1.29-9.29
Perin 2004 * 8.10 0.46-15.74
Strauer 2002 1.00 -6.10-8.10
Strauer 2005 * 7.00 1.07-12.93

Table 3: Observed Mean Difference in LVEF (BMC versus Control) in

Cobhort Studies.

The pooled effect of the objective Bayesian model turned out
to be +3.12% (Table 2). Since the 95% C.I. of 2.20-4.03does not
contain zero, BMC is declared to be beneficial, although the effect
was marginal. Thus, the objective Bayesian model confirmed the
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superiority of BMC in improving LVEF. The normality assump-
tion concerning the observed mean difference in LVEF was found
to be reasonably valid (Figure 2). The objective Bayesian result
was slightly more optimistic and precise than that of the conven-
tional random-effect model in numerical sense, as the 95% C.1. of
the pooled mean difference in LVEF was narrower. As depicted in
Figure 3a, the Markov chain converged as the values fluctuated
around 3.12%.

15 20 25
1 1

Pamart

10

T T T T
-5100 0.00 10.00 15.00

5.00
WMD

Figure 2: Histogram of Mean Difference in LVEF of selected RCTs.

It is helpful to consider various options of the Bayesian mod-
el and check if the results still hold under different circumstances.
As the Bayesian model was based on the prior and likelihood one
needs to know which component had a stronger influence on the
posterior. The sensitivity analysis for ascertaining the influence of
the prior on the posterior could also help to validate the robustness
of the objective Bayesian model.

In the first attempt, a neutral subjective prior was applied.
It was assumed that there was no difference in mean difference
between BMC and control (i.e., 6=0), while all other parameters
remain unchanged. The pooled mean difference in LVEF was re-
duced to +2.60% (95% C.1.: 1.37-3.54; Table 2). In terms of mag-
nitude, this was not a substantial reduction when compared with
the previous analyses. It suggests that the prior had little impact
on the posterior and the likelihood which contained all the RCT
results dominated the analysis.

Next, a pessimistic prior was fitted (i.e., 6=-2.00). One again
the posterior was dominated by the likelihood with the pooled mean
difference in LVEF estimated to be +2.32% (95% C.1.: 1.35-3.29;
Table 2). As readily seen the result was pretty much similar to that
of the objective prior and the estimated BMC effect was modest.

Last but not least, an overwhelming optimistic prior (i.e.,
6=+10.00) also had little impact on the posterior result (Table 2).
The pooled mean difference in LVEF went up marginally to 3.98

(95% C.1.: 2.99-4.97; Table 3) owing to the pull effect of the over-
optimistic prior. However, this was no significant change in the
statistical sense as the 95% C.I.s overlap. In passing, note that the
resultant posteriors based on the 4 different sets of priors (1 objec-
tive and 3 subjective) were normal and the Markov chains exhib-
ited no obvious pattern of divergence after the burn-in values had
been discarded (Figure 3a and d).

a. Objective Prior b.

Neutral Prior

Mean D e %
Wean DiTerence %

E £ ED £ 1000
tersmnsneroun-hs erailns SRerbum-he.

c Pessimistic Prior d. Over-Optimistic Prior

Mean DikeIce %
Mear o g ace

1obo 100
RO ST RerEons e oun-ng

Figure 3(a-d): Iterative History of Bayesian Models after 500 Burn-Ins.

Discussion and Conclusion

The Bayesian model developed in this paper differs from
the conventional approach in various aspects. First, it allows prior
information-in the form of published evidence-to be incorporated
into analysis. From the methodological point of view, it is costly
to ignore such prior information if available. An objective
Bayesian model could thus be built with priors based on published
evidence. Unlike the conventional approach, Bayesian analysis is
performed on the posterior distribution that summarizes both the
prior- and data-based evidence, which the analysts have about the
unknown pooled effect. Next, the Bayesian model is a random-
effect technique designed for situations where there is substantial
heterogeneity among selected studies for meta-analysis, as it allows
the observed effects (data) to vary around their individual study-
specific effects, which in turn belong to a distribution characterized
by the pooled effect (0). This makes sense given that there are
inherent differences in the selected studies [14]. In addition, the
model is hierarchical because more than one level of priors and
likelihoods is specified. This sequence of priors and parameters
constitute a model with an extended or hierarchical data structure.

By offering an alternative perspective in meta-analysis, the

proposed Bayesian model provides more insights and relevant so-
lutions to existing biomedical problems. In fact, one may view the
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conventional model as a special case within the broader frame-
work of Bayesian methodology.

In future Bayesian meta-analysis the various endpoints may
be analyzed jointly in a consolidated framework. For example,
both the LVEF and the infarct size could be considered in a single
Bayesian Structural Equation Model (SEM) which is one of the
most popular areas of statistical research in recent years [19,20].
It is an advanced model constructed with the covariance matrix,
thus allowing multiple correlated effects to be analyzed jointly in
meaningful manner.

The above Bayesian meta-analyses show that the posteriors
were not very much dominated by their respective priors. As such,
the results generated by the proposed objective Bayesian model
were reliable and credible. However, one needs to exercise care in
citing the results as there was some evidence of publication bias,
an issue not explicitly highlighted in references [2-8].

A more fundamental problem was surfaced in recent years.
Despite making rapid progress in the field of cardiac cell therapy
[1], there have been calls for improved quality in trials. While
cardiac cell therapy has been reported to substantially increase
cardiac function, the reported trials have differed in the effect
sizes for some unknown reasons [19]. Moreover, there were over
600 discrepancies-reported facts that cannot be held valid owing
to their logical incompatibility-discovered in 49 trials [19]. These
include issues concerning the designs, methods and reported
results. It was also pointed out that the number of discrepancies
could be significantly associated with the reported effect size. This
casts further doubts on the efficacy of BMC [19]. As such, one
needs to exercise care when interpreting the results of individual
RCTs and their meta-analyses despite a strong evidential support
for BMC efficacy in statistical terms.This paper echoes the call
for more large-scale RCTs to be conducted with a standard design
before one could validate, verify and conclude the effectiveness of
BMC as a reliable therapy option [2].
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