Journal of Community Medicine & Public Health

Cuomo P, et al. ] Community Med Public Health 8: 424
www.doi.org/10.29011/2577-2228.100424
www.gavinpublishers.com

Review Article

Gut Microbiota Coordinates with the Host
Immunity against Bacterial Infections

Paola Cuomo!,
Capparelli*’, Domenico Iannelli’

Chiara Medaglia’, Antonio Gentile',

Rosanna

'Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy

Functional Genomics Research Center, Fondazione Human Technopole, Milan, Italy

3Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy

"Corresponding author: Rosanna Capparelli, Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy

Citation: Cuomo P, Medaglia C, Gentile A, Capparelli R, lannelli D (2024) Gut Microbiota Coordinates with the Host Immunity
against Bacterial Infections. J] Community Med Public Health 8: 424. DOI: https://doi.org/10.29011/2577-2228.100424

Received Date: 20 March, 2024; Accepted Date: 29 March, 2024; Published Date: 02 April, 2024

Abstract

infections.

The coexistence of mammals and gut microbiota is essential for the host health. In this context, microbial metabolites
play a critical role. This review describes the intricate interplay between the gut microbiota and the host immune system, in
order to provide further insights into alternative therapies, based on the host metabolism modulation, to counteract bacterial

Keywords: Gut Microbial Metabolites; Host Immunity;
Pathogens; Immunometabolism

Introduction

Human body is a complex ecosystem of human and
microbial cells. Each person carries trillions of symbiotic
microbes (bacteria, virus, fungi, archaea and protozoa) [1],
which collectively constitute the microbiota [2]. This community
is extremely variable among individuals [3] and this variability
starts in utero (vertical or maternal transmission) and continues
during and post-partum [4,5]. Natural or caesarean delivery, as
well as microbe colonization in the first days of life (horizontal
transmission), are critical for the establishment and development
of mature microbiota.

Microbiota, especially gut microbiota, is often considered
as an independent organ and a second genome, providing the
host with 100-fold more genes [6,7]. These genes are involved
in processing indigestible dietary polysaccharides and producing
primary metabolites [8,9].

The interaction between microbial and human metabolites is
particularly relevant in the context of the immune system regulation
[10]. This crosstalk is indispensable for energy metabolism and

inflammatory response [8,11], highlighting the essential role of
microbiota in human health [12].

Given the importance of microbiota, it is not surprising that
its dysregulation (dysbiosis) - due to environmental factors such
as diet and drug consumption - can affect the host homeostasis
promoting serious diseases (Obesity, Malnutrition, Chronic
Inflammatory Diseases and Cancer) [13]. In addition, dysbiosis
of gut microbiota has also been correlated with an imbalanced
immune regulation against self and non-self-bacteria.

The host has developed mechanisms of tolerance and
resistance that enable symbiotic bacteria to support the immune
system without causing tissue damage. However, in specific
scenarios, such as opportunistic invasion by commensal bacteria
into non-native tissues, this delicate equilibrium can be disrupted,
leading to systemic infections [10,14].

Infectious diseases are - at the moment - one of the most
important challenges for the global public health. The inappropriate
use of antibiotics in humans and animals have significantly
contributed to this concern, generating Drug-Resistant Pathogens
(DRPs) [15]. It is estimated that in 2050, DRPs will cause more
than 10 million of deaths every year, surpassing cancer in the
list of the major causes of death [16]. In this perspective, novel
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therapeutical interventions are imperative.

Developing strategies targeting metabolic pathways of the
host immune cells, through modulation of microbial metabolites,
could represent a promising approach.

This review aims at providing a lesson on the reciprocal
dynamics between the gut microbiota and the host immune
system, elucidating the role of microbial metabolites in fostering
host immune cells, in an attempt to exploit these knowledges to
improve human health and control infectious diseases.

Host-Microbiota Co-Evolution: Immune Tolerance

The mammalian immune system has evolved to protect
the host from pathogens, while nurturing tolerance towards
beneficial symbiotic microbes. This intricate process, named
immune tolerance, relies on the difficult interplay between innate
and adaptive immune responses, which coordinate their activities
against pathogens, while preserving self-components [17].

Mucosae are the primary site for innate and adaptive immune
regulation. They coordinate the host immune defense through a
pool of lymphoid tissues and cells, which collectively constitute
the Mucosa-Associated Lymphoid Tissue (MALT) [18].

The Gut-Associated Lymphoid Tissue (GALT) is the largest
reservoir of mucosa-associated immune cells, including B and T
cells, macrophages, plasma cells and Dendritic Cells (DCs) [19].
These cells serve to set up a barrier against harmful antigens and
mount a fine-tuned immune response, which protects the host
without altering the gut microbial ecosystem [20].

To initiate the mucosal immune response, GALT utilizes
specialized non-immune cells named Microfold (M) cells, which
represent 10% of Follicle-Associated Epithelial (FAE) cells
found in Peyer’s Patches (PPs), vermiform appendix and Isolated
Lymphoid Follicles (ILFs) [21,22]. M cells play an essential role
in transporting gut lumen antigens to intestinal Dendritic Cells
(DCs), through transcytosis, phagocytosis or forming pores in
inter-epithelial tight junctions [23]. Microbial transcytosis has
been proven to stimulate Lipopolysaccharide (LPS)-mediated IL-1
release - and consequently - proliferation of T and B lymphocytes
and IgA production [20,24]. IgA antibodies are critical in mounting
an effective mucosal immune response against pathogens [25].
Further, they also limit mucosal penetration by commensal
microorganisms, ensuring a tolerogenic response [25,26].

Similar to pathogenic bacteria, commensal microbes are
recognized by innate immune receptors [27]. However, unlike
their pathogenic counterparts, commensal microorganisms do
not provoke an inflammatory response [26]. In opposition, they
stimulate the release of anti-inflammatory mediators such as
IL-10 and TGF-B1, which help preserve the integrity of the
intestinal epithelial cell barrier and maintain a stable intestinal
microbial community, contributing to overall gut health [27].
Growing evidences also demonstrate the role of RORyt+ FoxP3+
peripherally derived T regulatory cells (pTregs) in tolerogenic
response due to IL-10 production [28], suggesting IL-10 as a critical
immunoregulator mediator (Figure 1). Lack of IL-10, in fact, has
been documented to increase the risk for chronic enterocolitis [29].
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Figure 1: The role of IL-10 in immune tolerance and bacterial infection resistance. Commensal microbiota stimulates Lipopolysaccharide-
(LPS) or Short Chain Fatty Acid- (SCFAs) mediated IL-10 production in the intestinal lamina propria. IL-10 is primarily produced by
dendritic cells, macrophages and FoxP3+ T regulatory cells (Tregs). Upon release, IL-10 initiates cellular response by interacting with
the heterotetrametric IL-10 Receptor (IL-10R) complex, which is characterized by two IL-10RA and IL-10RB subunits. The interaction
between IL-10 and IL-10RA triggers a signalling cascade involving Jak1, Tyrosine kinase 2 (Tyk2) and the activator of transcription
3 (STAT-3). In detail, following IL-10 binding, both Jakl and Tyk2 are phosphorylated, thus stimulating STAT3 recruitment and
phosphorylation and allowing its translocation into the nucleus. Here, STAT-3 induces the SOCS-3 (suppressor of cytokine signalling
3), which, in turn, inhibits the NF-kB nuclear transcription and the pro-inflammatory gene expression [30].

In conclusion, whereas gut microbiota stimulates the
immune system and induces immunogenic responses to harmful
antigens, immune system inhibits unnecessary inflammatory
response against innocuous gut microorganisms, suggesting a
reciprocal balance between gut microbiota and immune system,
which is critical for maintaining the host health.

Gut Microbe Metabolites: A Linking Point Between Microbiota
and The Host Immune System

For a long time, it was believed that the immune
system operates alone in identifying and eliminating harmful
pathogens. This conclusion has been largely surpassed by current
understanding of microbiota functions. Studies have demonstrated
that germ-free animals exhibit underdeveloped immune systems
characterized by absence of Thl7 cells, reduced populations of
afy and yd intraepithelial lymphocytes, and diminished levels of
IgA antibodies [31,32]. This compromises the immune system and
increases the susceptibility to infectious diseases, reducing life
expectancy [31]. Interestingly, transplantation of mice microbiota

into germ-free mice was found to restore immune functions. It
provides microbial species which increase the expression of T
cell markers genes (Cd4, Cd8a and Foxp3); CD8a+ intestinal
lymphocytes and induce Th17 cells [33], thus enhancing the
immune surveillance against pathogens.

To date, the precise mechanisms used by symbiotic
microbes to influence the host physiology are still unclear.
However, the emerging interest in high throughput technologies,
such as metabolomics, has facilitated the acquisition of detailed
information on how gut microbiota shape the host immune system
for host defense.

The sophisticated relationship between gut microbiota and
the host immune system depends on microbial metabolites. Gut
microbes can generate metabolites through different approaches:
i) de novo synthesis; ii) digestion of dietary components (Short
Chain Fatty Acids and indole derivatives) and iii) biochemical
modification of host metabolites (secondary bile acids) [11,34].
Collectively, these metabolites represent approximately 10%
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of blood mammalian metabolites and together with the host
metabolites contribute to the establishment of an immunological
barrier against infections.

Short Chain fatty Acids

Short-chain fatty acids (SCFAs; acetate, propionate and
butyrate) protects the host from pathogens, participating to the
intestinal energy metabolism. They are produced by gut microbes
through fermentation of dietary nondigestible fibres [11,35]. Thus,
the diet can affect SCFAs production. High-Fat Diets (HFDs)
decrease SCFAs production, compared to high-carbohydrate or
high-protein diets (HCDs and HPDs, respectively) [36,37]. In
particular, HPDs lead to production of Branched-Chain Fatty
Acids (BCFAs; isovalerate, isobutyrate and 2-methylbutyrate)
through fermentation of proteins rich in Branched-Chain Amino
Acids (BCAAs). In addition, fluctuations of the gut microbe
composition due to age-related changes also affect the levels
of SCFAs [38]. In the early stage of life, Bifidobacteria prevail
and increase acetate, lactate ad formate (two minors SCFAs)
production, resulting from Human Milk Oligosaccharides (HMO)
fermentation [39]. Upon breastfeeding interruption, Firmicutes
prevail and increase propionate production, resulting from sugar
fermentation [38]. Finally, in the late stage of life, there is an
increase in Proteobacteria and a decrease in Firmicutes and
Bacteroides, which, in turn, results in reduction of butyrate and
propionate production [38].

SCFAs exert their immunomodulatory function against
pathogens through different mechanisms. They can affect the
signalling transduction pathway of immune cells by: i) activating
specific extracellular G-protein coupled receptors, including
free fatty acid receptor 2 and 3 (FFAR2 or GPR43 and FFAR3
or GPR41, respectively) and hydroxycarboxylic acid receptor 2
(HCA2, GPR109A); ii) inhibiting histone deacetylases (HDACs)
and iii) promoting the activity of the histone acetyltransferase
(HAT) enzymes [37].

By sensing FFAR2 on dendritic cells and neutrophils,
SCFAs can switch B-cells into plasma cells and stimulate
neutrophil recruitment to the inflammatory site, thus increasing
antibody and inflammatory responses against pathogens [40].
Acetate has been found to facilitate the immune response against
Citrobacter rodentium by recruiting neutrophils and Th17 cells
and increasing the expression of IL6, CXCL1 and CXCL2 genes,
as well as the production of IgA and IgG [40,41]. Of note, recent
studies have demonstrated that the activation of Formyl peptide
receptors by pro-inflammatory ligands strongly potentiates the
acetate FFAR2-mediated effects, increasing chemotaxis and ROS
production, for a successful antimicrobial response. However,
excessive and prolonged ROS production due to neutrophil
priming may exacerbate inflammatory response, leading to tissue

damage [42]. In such condition, acetate can interfere to mitigate
the inflammatory response by inducing regulatory T cell (Treg)
accumulation in a FFAR2-dependent manner [43]. In addition,
butyrate and propionate have also been found to suppress the
inflammatory response by directly inhibiting histone deacetylase
and encouraging Treg cell differentiation and IL-10 release (Figure
1) [43,44]. Overall, these findings indicate the key regulatory role
of SCFAs in mounting a defensive response against pathogens
and, concurrently, ensuring a balance between pro- and anti-
inflammatory responses.

Indole derivatives

Indole (In) and indole derivatives (InDs) provide competitive
advantages to gut microbes, supporting the host catabolism
of tryptophan [46]. As an essential amino acid, changes in diet
influence tryptophan abundance and, consequently, InD production.
In addition, similar to SCFAs, gut microbe composition also affects
InD production.

Clostridia are the major tryptophan-metabolizing microbial
strains, involved in producing indole (In), indole-3-acetic acid
(IAA), 3-indole acrylic acid (IA), Indole-3-Propionic Acid (IPA)
and tryptamine (Roager & Licht, 2018). Clostridium colonization
typically begins during childhood, specifically during the transition
from breastfeeding to solid food intake, emphasizing the crucial
role of diet in host homeostasis and infection susceptibility [46,47].

In Ds have been shown to inhibit the growth of different
pathogens, including Salmonella enterica, Staphylococcus
aureus, Lactobacillus plantarum and Penicillium strains [46].
Recent studies have also demonstrated that In- and InD-producing
bacteria protect the host from Cryptosporidium infections 48].
This protective effect has been mainly attributed to the capacity
of In in reverting the host mitochondrial reprogramming induced
by Cryptosporidium to grow and replicate within the host [48]. In
addition, the beneficial effects of In can also be attributed to the
activation of the Aryl Hydrocarbon Receptor (AhRs) signalling
pathway [49].

AhR belongs to the Periodic Circadian Protein (PER)-
AHR Nuclear Translocator (ARNT)-Single-Minded Protein
(SIM) superfamily of transcription factors, which can recognize
exogenous and endogenous ligands, including In and InDs, and
modulate both innate and adaptive immunity.

According to the ligand and the cytokine context, AhR
signalling pathway can stimulate Th17, Foxp3+ Treg or type 1
regulatory T (Trl) cell differentiation [50]. Th17 differentiation
is mediated by IL-6, TGF-Blor IL-21 cytokines and together
with IL-23 or IL-1pB-activated RORyt+ Innate Lymphoid Cells
(ILC) stimulate IL-22 release [49,51], inducing production of
antimicrobial peptides and pro-inflammatory molecules involved
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in host defense against pathogens. Recent studies revealed the
essential role of IL-22 in conferring protection against Helicobacter
pylori infection in immunized animals, likely due to the expression
of the antimicrobial peptide ReglIIp (regenerating islet-derived
protein IIIB) [52]. Trl differentiation instead, is mediated by IL-
27 and enhanced by IL-10, IL-21 and CD39, while Foxp3+ Treg
differentiation is initiated by TGF-f1 [50]. Furthermore, AhR
activation in dendritic cells also participates to T cell polarization,
favouring T, differentiation [49]. Both Trl and Foxp3+ Treg cells
exert immunosuppressive functions [53,54].

Together, these findings suggest the pleiotropic role of InDs
in mounting an effective immune response against pathogens,
establishing their importance in host-microbe interactions and
immune regulation.

Secondary Bile Acids

Gut microbial communities significantly influence the composition
and dynamics of the bile acid pool [55,56]. Firmicutes, Bacteroides
and Actinobacteria express hydrolase genes that catabolize
approximately 5% of taurine or glycine-conjugated bile acids into
taurine or glycine and primary bile acids (PBAs) [56,57]. The
obtained amino acids are used for energy production, while PBAs
undergo further biotransformation by gut microbes to produce
secondary bile acids [SBAs; e.g., deoxycholic acid (DCA),
lithocholate (LCA) and Urodeoxycholic Acid (UDCA)] (Figure 2)
[58].

Figure 2: Primary Bile Acids (PBAs) biotransformation by gut microbes. Cholesterol is converted into PBAs [cholic acid (CA) and
chenodeoxycholic acid (CDCA)] in the liver by the neutral or acidic pathway. Both CA and CDCA are successively conjugated with
taurine or glycine to form bile salts, which are finally converted into secondary bile acids [SBAs; deoxycholic acid (DCA), Lithocholic

Acid (LCA) and urodeoxycholic acid (UDCA)] by gut microbiota.
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As ligands of the farnesoid-X-receptor (FXR), SBAs
play critical roles in regulating immune responses. They have
been shown to exert anti-inflammatory effects by suppressing
inflammation through different mechanisms. SBAs inhibit the
NF-kB-mediated pathway of TLR4 in macrophages, limiting the
release of IL-6, TNF-a and IL-1B cytokines [59]. Additionally,
they induce epigenetic changes and influence the transcription
of innate immune genes [60]. Notably, SBAs have also been
documented to inhibit Th17 cell differentiation, while stimulating
the differentiation of FOXP3+ regulatory T (Treg) cells [61]. The
capacity of SBAs to modulate both innate and adaptive immune
responses, make these molecules effective in providing protection
against opportunistic pathogens [62].

Recently, Burgess et al. demonstrated that the symbiotic
Clostridium scindens protects the host from Entamoeba histolytica
colonization and attributed this result to an increase in DCA
production [63]. They showed that DCA administration stimulates
granulocyte-monocyte progenitor expansion in vivo via epigenetic
modifications, including H3K27me3 decrease and H3K4me3
increase [63]. Furthermore, DCA, combined with LCA, was found
to protect the host against Clostridium difficile infections. This
result was attributed to their ability of inhibiting pathogen growth,
spore germination and toxin production [64].

In conclusion, these findings give reason for suggesting gut
microbiota-metabolized bile acids as additional elements helpful
in addressing the modern challenge of bacterial infections.

Gut Microbiota Dysbiosis and Host Resistance to
Pathogens

For several years, it was thought that genetic variation
in the host was the key determinant for microbial diversity.
Recent evidences clearly confuted this hypothesis, suggesting
environmental factors as main players involved in shaping
microbial composition [65]. Investigations on monozygotic (MZ)
and dizygotic (DZ) twins revealed that, even though MZ twins
share a higher degree of similarity in microbiome composition
compared to DZ twins [66,67], when living apart, MZ paired-
twins change their microbiome profile [68].

Lifestyle and most notably diet, strongly influence gut
microbial ecosystem by altering the relative abundance of some of
the most important bacterial taxa, including Bacteroides, Prevotella
and Bifidobacteroides [65,69]. These changes compromise the
physiological balance between host and gut microbiota, leading
to dysbiosis, key factor for the occurrence of inflammatory and
metabolic diseases [70,71]. In addition, dysbiosis may also
predispose to infectious diseases [72]. Malnutrition is the major
contributor to bacterial infections. It is widely recognized that
under- or overnutrition strongly imbalance density and ratio of gut

dominant bacterial taxa, which reflect an impaired production of
bioactive metabolites [73]. In other words, dysbiosis associated
with the nutritional status strongly influences the host resistance
to infections.

Dietary pattern and dysbiosis

In humans, both long-term and short-term dietary changes
(LTDCs and STDCs, respectively) significantly influence
microbial composition [8].

David LA, et al. [69] proved that STDCs promptly influence
both structure and activities of gut microbial communities,
with noticeable changes occurring as early as day 1 after the
diet modification. They observed that animal-based diet (ADt)
increases fat and protein intake while reducing fiber intake
compared to plant-based diet (PDt). Interestingly, ADt was
found to diminish the similarity in gut microbiome composition
between the analyzed samples. Specifically, ADt depleted bacteria
belonging to the genus Prevotella, which contribute to carbohydrate
degradation and Short-Chain Fatty Acid (SCFA) production, and
enriched bacteria exhibiting Bile Salt Hydrolase (BSH) activity
[74]. Consequently, ADt may predispose to enteric diseases by
enlarging the population of pathogenic Enterobacteriaceae and
increasing the production of secondary bile acids.

Growing evidences suggest that BSH and its derivatives,
including DCA and LCA, although proposed as potential
therapeutical targets for infectious and metabolic diseases (as
previously specified), may also participate to colorectal cancer
development and progression via activation of the Wnt/Beta-catenin
signalling pathway, induction of M2 macrophage polarization
and infiltration of Tregs in the tumor microenvironment [75,76].
In addition, alterations in gut microbiota-mediated bile acid
signalling associated with consumption of a high-fat diet have also
been correlated with obesity [77].

Mice fed a high-fat diet and prone to obesity showed
decreased abundance of Clostridium scindens and Clostridium
hylemonae and, accordingly, decreased levels of the non-12-
OH bile acids [ursodeoxycholate (UDCA), chenodeoxycholate
(CDCA) and lithocholate (LCA)], which modulate the
anorexogenic GLP-1 hormone [77,78] involved in insulin release
and appetite control [79,80]. Similarly, reduction of SCFA levels
due to high fat diet also impairs the insulin sensitivity and increase
body weight and fat mass [81,82]. In this regard, emerging studies
on mice and humans have demonstrated that fecal microbiota
transplantation (FMT) from lean donors to obese acceptors can
restore microbial metabolite dysregulation and improve insulin
sensitivity, controlling both mass fat and body weight [83,84].
However, appropriate diet regimen is required. Thus, taken
together these findings clearly indicate that gut microbiota rapidly
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responds to dietary changes and that gut microbiota manipulation
through probiotic supplementation or FMT, by reconstituting
a balanced gut microbiota, could represent a valid approach to
reduce dysbiosis and the related bacterial infection susceptibility
due to malnutrition or dietary pattern modifications.

Conclusion

Gut microbiota plays a critical role in regulating the
host homeostasis by providing beneficial metabolites, which
communicate with the host immune cells. Notably, gut microbiota
influences the host immunometabolism, through SCFAs
production, bile acid detoxification and tryptophan metabolism
[12].

The extensive plasticity of gut microbiota could compromise
the intracellular metabolism of host immune cells, leading to
pathological events, including bacterial infections. Understanding
how structural and functional perturbations in gut microbiota
facilitate pathogen colonization is a critical aspect for developing
valid strategies for disease control.

It is widely recognized that gut microbiota composition
strongly reflects the individual dietary choices [81]. This finding
paves the way to dietary interventions as an alternative therapy to
modulate the host resistance to bacterial infections. Personalized
dietary approaches emerge as promising strategies to regulate host-
microbiota metabolism and favor microbial species producing
helpful metabolites.

In conclusion, modulation of gut microbiota pathways might
aid the host immune system in inhibiting pathogen colonization,
representing a potential therapeutical intervention against bacterial
infections. Nevertheless, further studies enrolling larger sample
size are needed to deeper investigate the intricate relationship
gut microbiota-host immunometabolism and explore the way to
modulate microbiome metabolism for host benefit.
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