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Abstract
In this paper, multi frequency SAR images from ALOS/PALSAR, ENVISAT/ASAR, and Cosmo-SkyMed sensors have 

been studied for highlighting forest features in a test area in Central Italy (San Rossore), where detailed in-situ measurements 
were available. A preliminary discrimination of the main land cover classes and forest types was carried out by exploiting the 
synergy among various frequencies (L, C and X bands). After a pre-processing of the available SAR images by applying a 
multilook approach, SAR data were used for discriminating forest from non-forest land covers and separating broadleaved from 
coniferous forest types by using RGB compositions of multi-temporal and multi-frequency images. The mean backscattering 
coefficient (σ°) was computed for each sensor and available polarization from the pixels associated to coniferous and broadleaf 
obtained from the reference classification map. The classification has then been performed by applying to the SAR images, in 
different configurations of polarizations and frequencies, a new method based on a quadratic Bayesian classifier, which is able 
to overcome the limits of ground-truth classes that contain not homogenous targets (i.e. non-forest class). The obtained results 
indicated that the different surface types were best identified by the joint use of X and L bands (the correct classification show 
80.13%, 83.03% and 75.07% for coniferous, broadleaf forests and non-forest respectively). The best overall accuracy is also 
obtained by considering the joint use of L and X bands (80.06%).
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Introduction

Forest monitoring is commonly recognized as a vital task 
due to the role played by forests in carbon cycle evolution, which 
act as the main terrestrial carbon sinks [1]. Since maps of forest 
status and their temporal evolution are increasingly required, the 
combined use of in-situ and remote sensing data is desirable, 
especially in regions with scarce accessibility and limited ground 
data availability [2]. Optical sensors have been for a long time 
widely used, although these sensors have the limitation of 
operating in clear-sky conditions and are sensitive to the upper 
layer of the canopy only (e.g., [3,4]). This makes the investigation 

of equatorial, boreal, and mountain areas rather difficult, due to the 
frequent and consistent cloud cover over these regions.

Microwave frequencies have the advantage to be independent 
of cloud cover and solar radiation and can significantly penetrate 
into vegetation cover, and both emission and backscatter 
are considerably influenced by moisture content and by the 
geometrical features of plant constituents, according to frequency 
and polarization. A very suitable sensor for forest investigations 
is the Synthetic Aperture Radar (SAR), which is carried onboard 
historical satellites, such as ALOS1, RADARSAT1, and ENVISAT 
(the latter active until April 2012), and recently launched satellites 
(e.g. Cosmo-SkyMed, TerraSARX, ALOS2, RS2, Sentinel-1), 
the latter being able to obtain images at high spatial resolution 
and frequent revisit time. The total backscatter from a forest is a 
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combination of contributions from ground, vegetation components 
and their interactions. Each of these components affects the total 
scattering depending on the microwave wavelength: at wavelengths 
shorter than 10 cm, i.e. C (6 cm) and X (3 cm) bands, the backscatter 
is mainly due to leaves or needles and twigs of the upper crowns, 
thus making it possible to obtain information on the first layer 
of vegetation cover, and therefore allowing the identification of 
forest/non-forest areas, forest thermal state (frozen/thawed), and 
the estimate of some forest parameters as well, e.g. tree density, tree 
height and above ground biomass [5-12]. At longer wavelengths, 
i.e. L (21 cm) and P bands (60 cm), due to the higher penetration 
power, information on thicker layers of vegetation and of soil 
under vegetation cover can be retrieved, due to the interactions 
with major branches, trunks and ground [13-16]. Experimental and 
theoretical investigations carried out for many years mainly focused 
on the boreal forests of North America and Eurasia, in view of their 
influence on climate changes [17,18], and on tropical regions due 
to the frequent cloud cover that hampers the use of optical sensor 
[14,19,20]. Interesting recent works have been carried out by 
Deutcher et al. [21] and Perko et al. [22] on Tropical rainforests but 
also on European forest sites by using high-resolution (Spotlight) 
X band data for estimating the tree height by using interferometric 
methods. A few research works have also been focused on the 
investigation of Mediterranean forests, although with the specific 
aim of studying forest fire events and the successive re-growth of 
biomass (e.g. [23,24]). The aim of this research is to investigate 
the sensitivity of multi-frequency, multi-polarization SAR data 
to forest characteristics and to identify the role of each frequency 
in the assessment of forest classification. This study, which can 
be considered as a preparatory step in evaluating the image 
information content in view of the estimate of growing stock 
volume, deals with the exploitation of SAR backscatter capabilities 
for classifying forest types in Mediterranean areas, which is a non-
trivial task, due to the high spatial fragmentation and heterogeneity 
typical of these forests [25]. A forest area, which is a coastal plain 
mostly covered by evergreen conifers located in Central Italy (San 
Rossore), has been examined. In this area, a forest classification 
map was available together with ground measurements of forest 
parameters. SAR images were acquired from ALOS/PALSAR (L 
band), ENVISAT/ASAR (C band), and Cosmo-Sky Med (X band). 
SAR data were used for discriminating forest from non-forest land 
covers and separating broadleaved from coniferous forest types by 
using compositions of multi-temporal and multi-frequency images. 
The mean backscattering coefficient (σ°) was computed from the 
pixels associated to coniferous and broadleaf obtained from the 
in-situ classification map. Analysis of SAR image compositions by 
using various frequencies and polarizations, pointed out a notable 
capability of higher frequencies (C and X band) in identifying 
broad-leaf and coniferous forests, whereas L band is mostly able 
to separate forest from non-forest areas. The classification was 

then performed by supervised Bayesian prediction to the multi-
polarization or multi-temporal features. The originality of the 
research relies on the application of multi-frequency SAR images 
to heterogeneous and mixed forests of Central Italy and on the use 
of a robust method based on a quadratic Bayesian classifier applied 
to the SAR images in different combinations of frequencies and 
polarizations. This specific classifier is able to overcome the limits 
of ground-truth classes that contain not homogenous targets (i.e. 
non-forest class). This peculiarity can be considered innovative 
with respect to conventional classification of multi-polarization/
multi-frequency SAR images. Moreover, the role of each frequency 
was better identified by integrating the different contributions. 

The paper is organized as follows. First, the test area and the 
experimental data are introduced, and then the processing methods 
applied to the SAR images are defined. The capability of SAR 
images at different bands (L, C, and X) in mapping the forest area 
and the main forest types is subsequently described in section 3, by 
identifying the role of each frequency in this task. A clear separation 
between non-forest and forest classes, the latter subdivided in 
broadleaf and coniferous, was subsequently achieved by applying 
a quadratic Bayesian classifier. A discussion on the achieved results 
and some conclusions are drawn in the final section.

Materials
The investigation was carried out in a forest area in Central 

Italy, where ground measurements, meteorological information 
and other ancillary data were available (see Figure 1). The natural 
park of San Rossore (43.72° N, 10.30° E) is a protected flat area 
of about 4800 ha located along the coast of Tuscany. The land 
is covered by forests, pastures and fields; forests are dominated 
by Mediterranean pines (Pinus pinaster Ait. and Pinus pinea L.), 
holm oak (Quercus ilex L.) and several broadleaved species. The 
ground truth is represented by the forest type map produced by 
‘Dimensione Ricerca Ecologia Ambiente’, DREAM (2003) [26]. 
The original classification map was provided at the 1:15000 scale 
and was derived from field observations collected in the whole 
Park. According to the definition used by the Tuscany Regional 
authority, forests correspond to areas having a minimum extension 
of 2000 m2 and length greater than 20 m; tree cover has to be 
greater than 20%. Unfortunately, evergreen broadleaf forests 
(Holm oak) cover only a marginal area (0.2%) of the whole Park, 
thus, it was not possible to separate them. Therefore, the identified 
classes correspond to coniferous and deciduous broadleaf forests. 
Logging activities have interested part of the forest area since 
2009; therefore, a preliminary check was done to exclude these 
areas from the training and the test phases. Felled areas were 
identified using a Landsat TM of 2009 and Google Earth images 
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of 2010.Additional conventional measurements were carried out on 72 forest stands covered by three forest types: Mediterranean pines, 
holm oak and deciduous trees, whose area ranged from 1 to 170 ha [27]. A series of SAR images, listed in Table 1, was collected at L 
(ALOS/PALSAR), C (ENVISAT/ASAR), and X (COSMO-SkyMed) bands in 2009 and 2010 in different seasons and different orbital 
configurations in terms of incidence angle, polarization, and mode.

Figure 1: Italian forest test area of San Rossore in Tuscany (from Google Earth).

Group Sensor Date Time (UTC) Pass Inc. Ang. Pol. Mode

1

PALSAR 28/02/2009 21:43:00 Asc 38 HH FBS

ASAR 26/02/2009 9:38:29 Desc 23 VV IMS

CSK2 6/3/2009 5:13:15 Asc 33 HH Himage

2

PALSAR 7/6/2009 21:03:08 Asc 22 HH/HV/VH/VV POL

ASAR 26/05/2009 20:59:38 Asc 23 VV IMS

CSK2 25/05/2009 5:12:24 Asc 33 HH Himage

3

PALSAR 29/06/2009 21:41:48 Asc 38 HH/HV FBD

ASAR 27/06/2009 9:35:57 Desc 23 VV IMS

CSK2 25/05/2009 5:12:24 Asc 33 HH Himage

4

PALSAR 16/07/2009 21:44:03 Asc 38 HH/HV FBD

ASAR 16/07/2009 9:38:31 Desc 23 VV IMS

CSK2 13/08/2009 5:11:29 Asc 33 HH Himage

5

PALSAR 29/09/2009 21:42:14 Asc 38 HH/HV FBD

ASAR 24/09/2009 9:38:26 Desc 23 VV IMS

CSK2 29/08/2009 5:11:29 Asc 33 HH Himage
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6

PALSAR 16/10/2009 21:44:25 Asc 38 HH/HV FBD

ASAR 13/10/2009 20:59:34 Asc 23 VV IMS

CSK *N/A * * *

7

PALSAR 30/12/2009 21:42:15 Asc 38 HH FBS

ASAR 22/12/2009 20:59:34 Asc 23 VV IMS

CSK3 20/12/2009 5:10:04 Asc 34 HH Himage

8

PALSAR 16/01/2010 21:44:22 Asc 38 HH FBS

ASAR 10/1/2010 21:02:24 Asc 23 VV IMS

CSK2 20/01/2010 5:09:38 Asc 33 HH Himage

9

PALSAR 14/02/2010 21:42:06 Asc 38 HH FBS

ASAR 11/2/2010 21:02:24 Desc 23 VV IMS

CSK2 21/02/2010 5:09:15 Asc 33 HH Himage

10

PALSAR 1/4/2010 21:41:07 Asc 38 HH FBS

ASAR 3/4/2010 9:35:32 Desc 23 VV IMS

CSK3 25/03/2010 5:08:25 Asc 33 HH Himage

11

PALSAR 18/04/2010 21:23:47 Asc 38 HH FBS

ASAR 22/04/2010 9:38:20 Desc 23 VV IMS

CSK *N/A * * * *

12

PALSAR 19/07/2010 21:42:52 Asc 38 HH/HV FBD

ASAR 20/07/2010 20:59:36 Asc 23 VV IMS

CSK3 1/8/2010 5:07:28 Asc 34 HH Himage

Table 1: SAR images available in the test area of San Rossore.

Methods
Preliminary Image Analysis

This investigation aimed at evaluating the use of the available 
SAR data for discriminating forest from non-forest land covers 
and separating broadleaved from coniferous forest types. Thus, a 
preliminary analysis oriented toward a better understanding of the 
role of each frequency in the assessment of forest features, was 
carried out in order to choose the optimal set of bands to be used in 
the classification process. First of all, all the available SAR images 
were pre-processed by using SARSCAPE©. The entire image 
dataset is in single-look complex slant range format, which does 
not include radiometric corrections; consequently, a significant 
radiometric bias is still present. The first step was therefore the 
radiometric calibration that was obtained by modifying the image 
pixel values through multiplication and division of calibration 
factors, as the antenna gain, the calibration constant and the 
Local Incidence Angle (LIA). These parameters are contained in 
the ancillary data of each SAR image, while LIA was computed 

through the Digital Elevation Model (DEM) of the observed area 
combined with the orbital parameters (i.e. satellite orbit state 
vector contained in the ancillary data). In this processing phase, 
orbital parameters and DEM were also used for generating layover 
and shadow maps, in order to exclude pixels that belong to areas 
affected by these phenomena. The radiometric correction provided 
imagery in which pixel values truly represent the radar backscatter 
of the reflecting surface. This step is necessary for the comparison 
of SAR images acquired with different sensors, or acquired from 
the same sensor but at different times and modes, or processed 
by different processors. The next step concerns the despeckling, 
obtained by using a multilook filter. As each SAR sensor has a 
different spatial resolution, the window filter size was selected 
according which SAR image had to be despeckled. In this case, the 
window sizes (in range and azimuth, respectively) were selected 
as follows: 1×2 pixels (PALSAR), 1×5 pixels (ASAR), 2×2 pixels 
(CSK). With respect to the low values of the despeckling window 
size, this choice allowed to do not lose spatial resolution inside the 
test area. Successively, since the SAR images were in the 2D raster 
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radar geometry (i.e. slant range view), a precise geolocation process was applied to the images by using orbit state vector information, 
radar timing annotations, the slant to ground range conversion parameters, and the reference DEM data. The resulting geocoded images 
have a pixel size of 10 m × 10 m and the same projection (UTM 32). Later on, the SAR images were co-registered by shifting each image 
in the stack file by using ENVI, in order to relate the same pixel to the same geocoded target and allowing a ‘pixel by pixel’ comparison 
among the various images.

Figure 2: RGB image of San Rossore area on top right side, compared with a Google Earth image (a). PALSAR (L-band) 7/6/2009. R:HH, G:HV, 
B:VV. Bright green areas of RGB exactly correspond to forest areas in the Google image (b). 
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Afterwards, some RGB compositions, derived from the 
available SAR images of Table 1, were prepared for each area in 
order to check the classification capability of different frequencies. 
RGB images have been compared with the available ground 
truth. As an example, in Figure 2, a RGB visualization of ALOS/
PALSAR images collected on San Rossore area in June 7th 2009 
at three polarizations is shown (R: HH pol., G: HV pol., B: VV 
pol.), which allowed a preliminary but clear identification of 
forest areas with respect to other type of surfaces. In this figure, 
an optical image (gathered from Google Earth) is also shown as a 
visual comparison. Bright green areas of RGB exactly correspond 
to forest areas in the Google image, pointing out the role of HV 
polarization in identification of forest areas. Cross polarization at L 
band is, in fact, mainly sensitive to inclined cylinders of dimensions 
similar to the observation wavelength (about 20 cm) and therefore 
represented by thick branches and trunks. When inclined cylinders 
are observed, σ° shows a maximum whose position tends toward 
lower diameter values as the frequency increases [10,28]. For each 
frequency the range of diameters producing the maximum values 
of σ° is a fraction of the wavelength (1/10-1/20).

A more in-depth analysis was carried out on the entire SAR 
images dataset collected on the area, taking into account only the 
portion of the image covered by forests and considering the in-situ 
classification of the area produced by DREAM (2003) [26] and 
considered as a reference for validating the image classification 
methods (Figure 3).

The backscattering coefficient value (σ°) of each pixel 
contained in every image, for each SAR frequency and polarization, 
has been added to the corresponding co-registered pixel of the 
other available images of Table 1. σ° has then been normalized 
by the number of images, thus obtaining a single image, in order 
to maximize the signal intensity with respect to speckle and 
consequently to attain a better classification. The σ° averaging was 
also carried out for minimizing the seasonal effects (such as soil 
moisture variations, presence/absence of leaves, higher or lower 
tree water content) on the classification procedures. As a second 
step, the mean σ° was computed from the pixels associated to 
coniferous and broadleaf forests obtained from the classification 
map (red and green areas, respectively). These averaged values 
are represented in Table 2 for each SAR sensor (PALSAR, ASAR, 
and CSK) at different polarizations, along with their standard 
deviation values. We can generally note that σ° values are 
similar for coniferous and broadleaf at L-band (differences lower 
than 0.5 dB), while σ° at C and X band is higher on coniferous 

forests than on broadleaf, with differences of about 2 dB at both 
frequencies. Looking at this table, the different sensitivities at 
various frequencies to forest characteristics are well pointed out. 
At X and C bands, the observation wavelength (between 3 and 6 
centimeters, respectively) is comparable with the dimensions of 
needles and leaves, being therefore able to better identify these 
surface characteristics. On the other hand, at L band, the longer 
wavelength (about 20 cm) has a higher penetration power inside 
vegetation cover and is less influenced by crown characteristics.

Figure 3: Forest type map produced by DREAM (2003) [26]. Red: conif-
erous, Green: broadleaf, Blue: Non-forest, Black: unclassified.
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Sensor/Polarization Frequency/Band Coniferous Broadleaf Coniferous Broadleaf
  Mean so (dB) St. Dev. So (dB)

PALSAR HH 1.27 GHz/L -8.41 -8.14 1.31 1.37
PALSAR HV 1.27 GHz/L -13.49 -13.95 1.46 1.36

ASAR VV 5.3 GHz/C -9.8 -8.13 1.09 0.93
CSK HH  9.65 GHz/X  -12.67  -10.53 1.95 1.81

Table 2: Mean values of σ° obtained from PALSAR, ASAR and CSK images, for the two forest types (coniferous and broadleaf) classified in Figure 3.

Figures 4(a-d): σ° mean values computed over the San Rossore test site for each SAR sensor and polarization available from the dataset of Table 1. 
The red line identifies the contour of forest area, derived from the map produced by DREAM (2003) of figure 3. (a) PALSAR σ°  HH pol.; (b) PALSAR 
σ°  HV pol.; (c) ASAR σ°  VV pol.; (d) CSK σ° HH pol.

This behavior is also visible looking at the SAR images of Figure 4a and Figure 4b, which represent the averaged images at L band 
in HH (a) and HV (b) polarizations. The different forest features can be weakly identified in HH polarization, whereas they are more 
visible in HV polarization, the latter being more influenced by inclined cylinders represented by branches and trunks. However, also 
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in this case, the discrimination between the two types of forest is 
not trivial. In Figures 4c and 4d the average σ° at C and X-band 
is represented, and we can note that the features inside the forest 
area are more evident, and σ° at these bands seems to be able to 
better identify coniferous and broad-leaf forests than L-band. In 
order to better check the sensitivity of C-band to forest features, 
a multi-temporal RGB image obtained at C band from ENVISAT/
ASAR data in 2009 is shown in Figure 5 (R: 26 Feb., G: 16 Jul., B: 
24 Sept.). At this frequency, as expected, the temporal variability 
is highest on agricultural surfaces and very low on urban areas 
(bright, white areas). On forests, the moderate variability is due to 
the presence/absence of leaves from winter to summer season in 
broadleaf forests.

The information of interferometric coherence [29], which 
was generated by using suitable couples of images for each SAR 
sensor (i.e. repeat-pass interferometry: images couples acquired 
from slightly different orbits at different times) was also added 
for improving the classification of the area. Figure 6a shows 
a composite RGB image obtained using PALSAR averaged 
data of σ° of 12 HH, (R), σ° of 6 HV (G), and interferometric 
coherence (B). The latter parameter was obtained from the 
couple of PALSAR images of 29 June - 29 September, 2009 
(with orthogonal baseline, Bort, ≈ 740 m) in HH polarization. 
Several combinations of polarizations and coherence have been 
preliminarily tested with ranges of Bort between 323 m and 2954 
m. However, all the considered image couples produced almost the 
same results: the coherence intensity prevails in agricultural and 
anthropic (i.e. non-forest) areas, while σ° in HH and mainly in HV 
polarization dominates in forested areas, due to volume scattering 
contribution. Figure 6b shows a multi-temporal RGB composite 
image from CSK data. In this case, RGB was applied to multi-
temporal images (August 13 and 29, 2009), since at X band only 
VV or HH polarizations were available. As in the previous case, 

Figure 5: RGB map of ENVISAT/ASAR data collected in 2009 on San 
Rossore area. (R: 26 February, G: 16 July, B: 24 September).

the coherence dominates in non-forest areas, while the intensity in 
co-polarized bands prevails in forest area. Differences inside the 
forest areas are visible and roughly correspond to the two types of 
forest. The same investigation, carried out by using interferometric 
coherence at C band, did not produce any significant result and it 
was therefore not reported in the paper.
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Figures 6(a-c): RGB composite images for (a) PALSAR - R: Mean σ° HH pol., G: Mean σ° HV pol., B: Coherence obtained by using the PALSAR 
images of 29 June - 29 September, 2009, in HH pol.; (b) CSK - R: 13 Aug. 2009, G: 29 Aug 2009, B: Coherence. The red line identifies the forested 
area. (c) Forest classification map produced by DREAM (2003). Legend: Red: coniferous, Green: broadleaf, Blue: Non-forest, Black: unclassified.

Image Classification
After evaluating the sensitivity of various frequencies to the 

different surface features and forest characteristics, a preliminary 
statistical analysis was carried out in order to obtain a correct clas-
sification map according to the available ground truth data.

The dataset considered for this task consists of six (P=6) coregis-
tered SAR images as follows:

 one PALSAR image that is the mean of 12 HH PALSAR 1.	
images; 

one PALSAR image that is the mean value of 6 HV available 2.	
image;

PALSAR coherence map obtained by the couple of 29 June - 3.	
29 September, 2009, HH pol.;

CSK image acquired on 13 August 2009;4.	

CSK image acquired on 29 August 2009;5.	

CSK coherence map generated by the CSK images 13, 29 Au-6.	
gust 2009.

The classification of SAR images is generally not trivial 
when the number of looks is low, as shown in the previous para-
graph. Because of this reason, the speckle was further reduced by 
applying the Kuan filter on a 7x7 sliding window. The use of kuan 
filter is used to improve classification results because it minimizes 

the variability due to speckle effect and consequently supports the 
classification task in identifying the various classes.

The histogram of the resulting class features was generated 
in order to find out, for each class, the kind of statistical distribu-
tion.

Figure 7: Histogram of the despeckled HH polarized CSK amplitude val-
ues.
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As an example, in Figure 7 the histogram of despeckled HH 
polarized CSK amplitude values is shown for all classes. It can 
be observed that coniferous and broad-leaf features are well 
represented by Gaussian distributions, as expected for despeckled 
amplitude values. The class ‘non-forest’ does not perfectly fit 
the Gaussian distribution, although this fact can be attributed to 
the heterogeneity of this class, where different surface features 
as marine environment, agricultural fields and small anthropic 
settlements are contained. The classification of the test site is 
then accomplished by applying a Bayesian quadratic discriminant 
analysis [30] according to which both means and covariances of 
each class can vary according to an image probabilistic model, 
by assuming a Gaussian mixture class distribution. Other types of 
discriminant functions could be applied in order to maximize the 
discriminatory power and separate the available classes effectively 
[31,32] as, e.g., nearest neighbor, decision trees, linear functions, 
nonlinear functions, and so on. The main problem of these classic 
supervised classifiers is their sensitivity to the Hughes effect [30] 
which is critical for this specific classification problem. In fact, 
the dimension of the selected training set (1% of the ground truth 
samples are randomly selected, i.e. 34472 samples) is very high 
with respect to the number of features, which is 6, when both 
CSK and PALSAR data are processed. As a consequence, non-
linear strategies such as Quadratic Discriminant Analysis (QDA) 
are more suitable in this case and the proposed classifier based 
on the Bayesian quadratic discriminant analysis provides the best 
performance when data can be modeled with a Gaussian mixture 
distribution. Looking at the diagram of Figure 7, the classification 
accuracy of coniferous and broad-leaf classes is therefore expected 
to be very high, while the non-forest class would need further 
processing step. Since the non-forest class is not homogeneous, an 
unsupervised kmeans [30] classification algorithm was applied to 
separate two sub-classes inside this class (i.e. NFa and NFb). The 
number of subclasses was suggested by the shape of the histogram 
of the non-forest class, which looks like a bimodal distribution. 
The classifier used in this paper is better described in the following. 
Let  denote the N-pixel multiband image to be 
classified. In case of the classification of CSK data,  contains 

features, where  is the number of bands of the dataset stack. 
Three configurations of the considered dataset were selected: i) 
only PALSAR data ( ), ii) only CSK data ( ) and iii) 
combined PALSAR with CSK datasets ( ). In the CSK case, 
we selected the coherence image acquired on August 13, 2009, and 
the two HH polarized CSK amplitude images, acquired on August 
13 and 29, 2009, respectively. Therefore pixel  can be represented 
by a column vector in a -dimensional space. The supervised 
classification of into  classes , 
namely coniferous, broadleaf, and non-forest (the latter split in two 
subclasses), is performed according to the following procedure. In 

the training phase, a small percentage of the ground truth pixels, 
typically 5-10% of each class, is randomly selected as training 
samples. The sample mean of each class is then computed as an 
estimate of the class mean:

                  (1)

where is the number of training pixels belonging to class .

Then the sample covariance is computed for each class by first 
subtracting the sample mean of each class from the observations 
of that class, and taking the empirical  covariance unbiased 
estimate:

      

A maximum a-posteriori criterion is finally applied to classify 
each pixel , which reduces to the maximum likelihood 
decision by assuming uniform prior class probabilities (Hastie et 
al., 2001):

                         

where, by hypothesis,

    

As it can be noted from equation (3), the Bayesian classifier 
was applied to the resulting four classes by applying the following 
cost matrix C, in which each element adjusts the relationships 
among the classes:

where: 

GTCO: Ground-Truth Coniferous class.

GTBL: Ground-Truth Broad-Leaf class.

GTNFa: Ground-Truth Non-forest subclass a.

GTNFb: Ground-Truth Non-forest subclass b.

CO: Coniferous class.



Citation: Pettinato S, Santi E, Paloscia S, Fontanelli G, Garzelli A (2018) Forest Classification in Mediterranean Areas Using a Quadratic Bayesian Classifier Method 
Applied to SAR Images. Curr Trends Forest Res: CTFR-117. DOI: 10.29011/ 2638-0013. 100017

11 Volume 2018; Issue 02

Curr Trends Forest Res, an open access journal

ISSN: 2638-0013

BL: Broad-Leaf class.

NFa: Non-forest subclass a.

NFb: Non-forest subclass b.

Each element of the C matrix affects the Bayesian classifier by 
forcing the classifier to promote or limit the migration of pixels 
from a class to another. More in depth, the selected cost matrix 
was the following:

This matrix forces the classifier to operate as follows: 

It does not penalize the transitions the pixels correctly -	
classified because each element of the diagonal is set to zero. 

It does not penalize transition of the pixels between the -	
subclass NFa and NFb because C43 and C34 are set to 0.

It strongly hampers the transition of pixels from -	 CO and BL 
classes, since C12 and C21 are set to one.

It penalizes the transition of pixels belonging to -	 CO and BL 
towards NFa and NFb because C13, C23, C14 and C24 are set 
to 1.

It lightly penalizes the transitions of pixels from -	 NFa and 
NFb towards CO and BL C31, C32, C41 and C42 are set to 0.2.

This specific setting of the cost matrix C enables the 
classifier to overcome the limits of ground-truth classes that 
contain not homogenous targets (i.e. non-forest class in this case). 
This peculiarity can be considered innovative with respect to 
conventional classification of multi-polarization/multi-frequency 
SAR images. 

Results
In order to quantitatively assess the performance of the 

classification method, the two non-forest subclasses (namely NFa 
and NFb) were merged into a single non-forest class. This step 

was performed simply relabeling NFa and NFb as a unique label 
NF, which means to join the classified pixels in NFa together with 
NFb. The classification maps, obtained from both X and L band, 
are presented in Figure 8, while a quantitative result, expressed 
as confusion matrices, is shown in Table 3. As stated above, 
non-forest areas correspond to agricultural surfaces, anthropic/
urban areas and marine environment. Figure 8a presents the 
classification results obtained by using PALSAR data shown in 
Figure 6a, i.e. PALSAR averaged backscatter image in HH and 
HV polarization in addition to the interferometric coherence from 
PALSAR image couple of 29 June - 29 September, 2009 (Bort ≈ 
740 m), in HH polarization. In this case, the identification between 
coniferous and broad leaf is scarce, whereas the non-forest areas 
are almost correctly identified as blue areas (see ground truth map 
of Figure 8d). Conversely, the classification map (see Figure 8b) 
obtained from CSK data only is really close to the in-situ map 
(i.e. Figure 8d), with a better discrimination between coniferous 
(red areas) and broadleaf (green) forests. Figure 8c shows a further 
classification result combining L and X band image (i.e. the entire 
stack considered at the beginning of this paragraph, P=6). In 
this case, C band data have been omitted since from preliminary 
classification tests they did not add any significant improvement of 
the classification results. The quantitative results shown in Table 
3, confirmed that X band (CSK) is the more suitable frequency for 
identifying different types of forest: in fact, the overall classification 
accuracy at X band ranges from 75.21% (coniferous) to 80.49% 
(broadleaves); at L band (PALSAR) the average percentage of 
correctly identified pixels denotes nevertheless a lower accuracy 
for coniferous and broadleaf class. However, the L band σ° is able 
to identify the non-forest areas with 67.31% of accuracy, better 
than X band (55.63%). The confusion matrix, represented in the 
last columns of Table 3, shows a better classification accuracy for 
all the three classes (80.13%, 83.03% and 75.07% for coniferous, 
broadleaf, and non-forest, respectively). The joint use of L and X 
band allowed obtaining better classification results in comparison 
with L band or X band dataset only. Finally, considering the 
overall accuracy, the best result was obtained, once again, with the 
joint use of PALSAR and CSK data (see Table 3), with an overall 
accuracy of 80.06%.
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Figures 8(a-d): Classification maps of San Rossore test site obtained by applying the Bayesian quadratic discriminant analysis by using (a) PALSAR, 
(b) CSK, (c) PALSAR and CSK; in (d) Reference forest classification map produced by DREAM (2003) [22]. Legend: Red: coniferous, Green: 
broadleaf, Blue: Non-forest, White: unclassified.
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Confusion Matrix

           
 PALSAR             CSK         PALSAR+CSK

Ground Truth (%) Ground Truth (%) Ground Truth (%)

Coniferous 54.14 26.13 11.46 75.21 11.28 32.93 80.13 11.02 8.76

Broadleaf 43.92 66.09 21.23 15.18 80.49 11.44 16.71 83.03 16.16

Non-forest areas 1.94 7.78 67.31 9.61 8.23 55.63 3.16 5.95 75.07

Total 100 100 100 100 100 100 100 100 100

Overall accuracy 58.55 75.34 80.06

Table 3: Confusion matrices at X and L bands for three classes: coniferous, broadleaf and non-forest areas.

Discussion
The use of SAR images for the estimation of forest features 

presents particular complexities in Mediterranean areas, where the 
vegetation cover is spatially fragmented and heterogeneous due 
to the long-term effect of human activities. The variable aridity 
conditions typical of the Mediterranean climate represent an 
additional challenge, since they irregularly limit foliage density, 
creating incomplete and discontinuous plant canopies that are 
difficult to characterize from remote sensing observations. Similar 
investigations were performed in [33] by applying Support Vector 
Machine (SVM) to the test site of the entire Tasmania. Here, the 
kind of forest and the age of the plantations was quite diversified in 
comparison with San Rossore test site, while the classifier algorithm 
was implemented to retrieve two discriminated features, i.e. forest 
and non-forest classes. The best results obtained with L-band, 
obtaining and overall accuracy of 92.1%. However, it has to be 
remarked that the nature of the forest in Tasmania is substantially 
different than the one is present in the Mediterranean areas and the 
proposed approach considered only two output classes, while here, 
the output classes consider coniferous and broadleaf classification 
also.

The current study addressed this issue by performing a multi-
step data analysis in a forest area of Central Italy (San Rossore) 
representative of Mediterranean conditions. The investigation was 
performed using a consistent dataset of SAR images at L, C and 
X bands collected by ALOS/PALSAR, ENVISAT/ASAR, and 
Cosmo-SkyMed satellites. These images characterized by different 
frequencies and polarizations, were used to verify the capability of 

SAR in mapping forest areas and for discriminating main forest 
types (coniferous vs. broadleaved). The information retrieved from 
interferometric coherence images has also been added.

The results obtained by applying a Bayesian quadratic 
discriminant analysis confirmed that also in Mediterranean areas 
the backscattering coefficient (σ°) at L band is generally able to 
better identify forest areas than other frequencies, and to separate 
them for other land covers (with an overall accuracy of 67.31%). 
On the other hand, σ° at X band, in HH polarization, proved to be 
sensitive to forest type and capable in separating broadleaved from 
coniferous (accuracy of about 75-80%, resulting from the mean 
value between coniferous and broadleaf true-positive). The use 
of coherence maps added information to the classifier algorithm, 
allowing obtaining the results showed in table 3. Moreover, the 
joint use of L and X band shows that the classification task is 
more performing not only in terms of forest and non-forest areas 
discrimination (75%), but also in terms of coniferous and broadleaf 
classification inside forested areas, reaching an overall accuracy 
equal to 80%. 

This behavior can be explained by the different penetration 
powers of these frequencies: at X-band the short wavelength (3 
cm) interacts with only the first layers of the observed surfaces 
and with the scattering elements of similar dimensions, such as 
leaves (for broad-leaf) and needles (for coniferous) from the forest 
canopy. Due to the different response of these scattering elements, 
the backscattered radar signal varies according to the geometries 
of leaves, enabling the discrimination between coniferous and 
broadleaved dominated forest types. On the other hand, due to 
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the scarce penetration, the difference between forest and crop 
leaves is almost negligible and therefore at this frequency it is 
tough to separate forest from agricultural areas. L band signal 
(21 cm) instead has a great penetration power inside the surfaces 
and therefore is less sensitive to the differences in leaf geometry 
and more related to the amount of biomass over soil making the 
separation between forest and non-forest easier. C band backscatter, 
due to the intermediate penetration inside forest canopy, is more 
related to the conditions of crowns and to the absence/presence of 
leaves, and did not therefore provided significant contribution to 
the classification purposes.

Conclusions
The analysis performed in this study allowed drawing the 

following conclusions. First of all, the originality of the research 
consists of the application of multi-frequency SAR images to 
heterogeneous Mediterranean forests, which have not been so 
far extensively investigated by using microwave remote sensing 
methods. The role of L and X bands in land classification was 
analyzed, by applying the proposed classification method to 
each SAR frequency and also considering the integration of the 
different frequencies. On the basis of the available SAR data 
set, the joint use of multi-frequency SAR images increases the 
ability in correctly classifying heterogeneous forests, allowing 
the separation of forest areas from non-forest class, as well as the 
identification of broad-leaf and coniferous classes inside the forest 
class. The overall accuracy reaches 80% by integrating both L and 
X band contributions, whereas by considering separately L and 
X band the reached accuracies are lower (58.55% and 75.34%, 
respectively).

Another asset of this study is the particular setting of the 
cost matrix inside the quadratic Bayesian classifier method. The 
application of this method, according the procedure presented here, 
allowed overcoming the limits of ground-truth classes that contain 
not homogenous targets (i.e. non-forest class). This peculiarity can 
be considered innovative with respect to conventional classification 
methods used for multi-polarization/multi-frequency SAR 
images. This research can be also interesting in view of OptiSAR 
Constellation mission, devoted to the Earth surface observation by 
means of spaceborne optical, L and X band SAR sensors, with 
the aim of developing consistent applications in environmental, 
hazard and safety monitoring.

Further test and validation of the presented methodology 
should be advisable by extending the investigation to other datasets 
and test areas.
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