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Abstract A

In the rapidly expanding fields of cellular and molecular biology, fluorescence illumination and observation is becoming
one of the techniques of choice to study the localization and dynamics of proteins, organelles, and other cellular compartments,
as well as a tracer of intracellular protein trafficking. The automatic analysis of these images and signals in medicine, biotech-
nology, and chemistry is a challenging and demanding field. Signal-producing procedures by microscopes, spectrometers and
other sensors have found their way into wide fields of medicine, biotechnology, economy and environmental analysis. With
this arises the problem of the automatic mass analysis of signal information. Signal-interpreting systems which automatically
generate the desired target statements from the signals are therefore of compelling necessity. The continuation of mass analysis
on the basis of the classical procedures leads to investments of proportions that are not feasible. New procedures and system
architectures are therefore required. We will present, based on our flexible image analysis and interpretation system Cell In-
terpret, new intelligent and automatic image analysis and interpretation procedures. We will demonstrate it in the application

of the HEp-2 cell pattern analysis.
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Introduction

In the rapidly expanding fields of cellular and molecular
biology, fluorescence illumination and observation is becoming
one of the techniques of choice to study the localization and
dynamics of proteins, organelles, and other cellular compartments,
as well as a tracer of intracellular protein trafficking. Quantitative
imaging of fluorescent proteins and patterns is accomplished
with a variety of techniques, including wide-field, confocal and
multiphoton microscopy, ultrafast low-light level digital cameras
and multitasking laser control systems. These microscopic images
can be of 2-dimensional or 3-dimensional nature, or even videos
recording the life cycle of a cell. Currently the interpretation of the
resulting pattern in these digital images is usually done manually.
However, the huge amount of data created and the growing use
of these techniques in industry for pharmacological aspects

or diagnostic purposes in medicine require automatic image
interpretation procedures. These image interpretation procedures
should allow to interpret these images automatically, and also
to detect automatically new knowledge to study the cellular and
molecular processes. The continuation of mass image analyses
on the basis of the classical procedures leads to investments of
proportions that are not feasible. New procedures based on image
mining and case-based reasoning are therefore required.

We are developing methods that allow the automatic analysis
of these images for the discovery of patterns, new knowledge and
relations. The present work is applied to 2-dimensional microscopic
fluorescent images, but will be continued with 3-d-image and video
analysis. The aim of our work is to provide the system with image-
analysis, feature-extraction and knowledge-discovery functions
that are suited for mining a set of microscopic cell images for the
automatic detection of image-interpretation knowledge and then
applying this knowledge within the same system for automatic
image interpretation of the HEp-2 cell images. At the end the system
can work on-line in a pharmaceutical drug discovery process or in a
medical laboratory process and automatically interpret the patterns
on the cells in the image and calculate quantitative information

Volume 2019; Issue 01



Citation: Perner P (2019) Flexible High-Content Image Analysis System for the Automatic Image Analysis and Interpretation of Cell Images-Comput-
erized Methods in System Biology. Adv Proteomics Bioinform 3: 114. DOI:10.29011/APBI-114.100014

about the cell pattern. The developed processing functions should
make the system flexible enough to deal with different kinds of
cell-images and different image qualities and require a minimal
number of interactions with the user for knowledge mining. The
image-interpretation process is running fully automatically, based
on the image-analysis and feature-extraction procedures developed
for this kind of image analysis and the learned interpretation
knowledge by the developed knowledge-mining procedures.

Challenges and Requirements to the Systems

Application-oriented systems that can only solve one specific
task are very costly and it takes time to develop them. The success
of automatic image-interpretation systems can only be guaranteed
when the development effort is as low as possible and when they
can be adapted quickly to different needs and tasks. It is preferable
that the automatic system not only calculates image features
from the images but also maps the measurements to the desired
information the user wants to obtain with his experiment. This
views High-Content Image Analysis as a pattern recognition and
image interpretation problem rather than as an image measurement
problem where all possible image features are extracted from the
images for further analysis. The pattern or the final information,
such as e.g. “do the bacteria co-localize with the lysosomes”, is the
central focus of the image analysis and the system should provide
all functions that are necessary to achieve this result.

That requires developing systems that can run on a class of
applications such as microscopic fluorescent images. Such systems
should have functions that are able to:

= Automatically detect single cells in the image regardless of the
image quality with high accuracy, robustness and flexibility;

=  Automatically describe the properties of the cell nucleus and
the cytoplasm by image features (numerical and symbolical);

=  Automatically interpret the images into cell patterns or other
decisions (prediction);

= Automatically detect new knowledge from image data and
apply it to automatic interpretation;

The challenges are:

= New strategies are necessary that are able to adapt the system
to changing environmental conditions during image capture,
user needs and process requirements;

= Introduction of Case-Based-Reasoning (CBR) strategies
and Data-Mining strategies [1] into image-interpretation
systems on both the low-level and high-level to satisfy these
requirements.

The Architecture

Our answer to this problem is a system architecture [2] named
Cell Interpret (Figure 1) that is comprised of two main parts:

= The on-line part that is comprised of the image analysis and
the image interpretation part;

= The off-line part that is comprised of the database and the data
mining and knowledge discovery part;

These two units communicate over a database of image
descriptions, which is created in the frame of the image-processing
unit. This database is the basis for the image-mining unit.
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Figure 1: Architecture of Cell Interpret.

The on-line part can automatically detect objects, extract
image features from the objects and classify the recognized objects
into the respective classes based on the prior stored decision rules.
The interface between the off-line and the on-line part is the
database where images and calculated image features are stored.
The off-line part can mine the images for a prediction model or
discover new groups of objects, features or relations. These similar
groups can be used for learning the classification model or just
for understanding the domain. In the later case the discovered
information is displayed on the terminal of the system to the
user. Once a new prediction model has been learnt the rules are
inputted into the image interpretation part for further automatic
interpretation after approval of the user. Besides that, there is an
archiving and management part that controls the whole system and
stores information for long-term archiving.

Images can be processed automatically or semi-automatically.
In the first case, a set of images specified by the expert is
automatically segmented into background and objects of interest
and the feature extraction procedures installed in the image analysis
system are used for each object to automatically calculate all
features. All features are extracted regardless of their applicability
for the specific application. This requires executing feature subset
selection methods later on. For semi-automatic processing, an
image from the image archive is selected by the expert and then is
it displayed on the monitor. To perform image processing an expert
communicates with a computer. In this mode he has the option to
calculate features based on the feature extraction procedures and/
or record symbolic features based on his expert knowledge. This
procedure ensures that also complicated image features, which are
difficult to name, articulate or develop automatic feature extraction
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procedures, can also be taken into account and further evaluated by
image mining. After the feature has been established by evaluating
the acquired data base, the proper automatic feature extraction
procedure can be developed and included into the system and
made available for High-Content Analysis. The intelligence of the
system will therefore incrementally improve.

Case-Based Image Segmentation

Image segmentation is a process of dividing an image into a
number of different regions such that each region is homogeneous
with respect to a given property, but the union of any two adjacent
regions is not. Image thresholding is a well-known technique for
image segmentation. Because of its wide applicability to many
areas of digital image processing, a large number of thresholding
methods have been proposed over the years [3-5]. Image
thresholding has low computational complexity, which makes it an
attractive method, but does not take into account spatial information
and is mostly suitable for images where the gray-levels constitute
well defined peaks, separated by not too broad and flat valleys.
Another common approach to image segmentation is based on
feature space clustering, which has sometimes been regarded as
the multidimensional extension of the concept of thresholding.
Clustering schemes using different kinds of features (multi-
spectral information, mean/variation of gray-level, texture, color)
have been suggested [6-8]. This approach can be successfully used
if each perceived region of the image constitutes an individual
cluster in the feature space. This requires a careful selection of the
proper features, which depends on image domain.

Segmentation can also be accomplished by using region-
based methods, or edge-detection-based methods, or methods
based on a combination of those two approaches [9-11]. Region-
based methods imply the selection of suitable seeds from which to
perform a growing process. In general, region-merging and region
splitting are accomplished to obtain a meaningful number of
homogeneous regions. Seed selection and homogeneity criterion
play a critical role for the quality of the obtained results. Edge-
detection-based methods follow the way in which human observers
perceive objects, as they take into account the difference in contrast
between adjacent regions. Edge detection does not work well if the
image is not well contrasted, or in the presence of ill-defined or too
many edges.

Watershed-based segmentation [12] exploits both region-
based and edge-detection-based methods. The basic idea of
watershed-based segmentation is to identify in the gray-level image
a suitable set of seeds from which to perform a growing process.
If the main feature taken into account is gray-level distribution,
the seeds are mostly detected as the sets of pixels with locally
minimal gray-level (called regional minima). The growing process

groups each seed with all pixels that are closer to that seed than
to any other seed, provided that a certain homogeneity in gray-
level is satisfied. Thus, watershed-based segmentation limits the
drawbacks of region-based and edge-detection-based methods.

To overcome the drawbacks of the algorithms mentioned above,
learning methods are applied to image segmentation. These
learning methods are applied to learn the mapping between image
features and semantically meaningful parts, to learn the parameters
of the segmentation algorithm or to learn the mapping between
rank performance of the segmentation algorithm and the image
features. There are statistical learning methods, machine learning
methods, neural-net-based learning methods, and learning methods
using a combination of different techniques. The main drawbacks
of these methods are:

1. The need of a sufficiently large training set, and

2. The need of training again the whole model, when new data
come in.

Therefore, it seems to be useful to use Case-based Reasoning
(CBR) for a flexible image segmentation system, since CBR can be
used as a reasoning approach as well as an incremental knowledge-
acquisition approach. We propose a novel image-segmentation
scheme based on case-based reasoning. We use CBR for meta-
learning of the segmentation parameters (see Section 4.1) and for
case-based object recognition (see Section 4.2).

CBR Meta Learning for Image Segmentation

The case-based reasoning unit for meta learning of
image segmentation parameters [13] consists of a case base in
which formerly processed cases are stored. A case is comprised
of image information, non-image information (e.g. image-
acquisition parameters, object characteristics and so on), and
image-segmentation parameters. The task is now to find the best
segmentation for the current image by looking up the case base for
similar cases. Similarity determination is done based on non-image
information and image information. The evaluation unit will take
the case with the highest similarity score for further processing. In
case there are two or more cases with the same similarity score,
the case appearing first will be taken. After the closest case has
been chosen, the image-segmentation parameters associated with
the selected case will be given to the image-segmentation unit and
the current image will be segmented (Figure 2). It is assumed that
images having similar image characteristics will show similar good
segmentation results when the same segmentation parameters are
applied to these images. The image segmentation algorithm is in
our case a histogram-based image-segmentation algorithm [13]
and a watershed-based image-segmentation algorithm [14].
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Figure 2: CBR Image Segmentation Unit.

The result of the segmentation process can be observed by
the user or an automatic evaluation procedure. When the evaluation
is done by the user, he compares the original image with the
labeled image on display. If he detects deviations of the marked
areas in the segmented image from the object area in the original
image, which should be labeled, then he will evaluate the result as
incorrect and case-base management will start. This will also be
done if no similar case is available in the case-base. The proposed
method is close to the critique-modify framework described by
Grimnes, et al. [15]. The evaluation procedure can also be done
automatically. However, the drawback is that there is no general
procedure available. It can only be done in a domain-dependent
fashion. Once the chosen evaluation procedure observes a bad
result, the respective case is tagged as bad case. The tag describes
the critique in more detail.

In an off-line phase, the best segmentation parameters for
the image are determined by an optimization procedure and the
attributes, which are necessary for similarity determination, are
calculated from the image. Both, the segmentation parameters and
the attributes calculated from the image, are stored into the case-
base as a new case. In addition to that the non-image information
is extracted from the file header and stored together with the other
information in the case-base. During storage, case generalization
will be done to ensure that the case base will not become too
large.

Case-based Object Recognition

We propose our case-based object recognition method to
recognize objects by their shape. In contrast to traditional object
recognition methods [16] our method is comprised of a case
mining part and the object recognition part [17]. The case mining
part can learn the desired contour of the object and the number of
contours necessary for recognizing a particular class of objects.
The learnt contours make up the case base and are the basis for the
case-based object-recognition method. The objects in the image

may be occluded, touching, or overlapping. It can also happen that
only part of the object appears in the image.

A case-based object-recognition method uses cases that generalize
the original objects and matches them against the objects in the
image, see Figure 3. During this procedure a score is calculated that
describes the quality of the fit between the object and the case. The
case can be an object model which describes the inner appearance
of the object as well as its contour. In our case the appearance of
the whole object can be very diverse. The shape seems to be the
feature that generalizes the objects. Therefore, we decided to use
contour models. We do not use the gray values of the model, but
instead use the object’s edges. For the score of the match between
the contour of the object and the case we use a similarity measure
based on the scalar product. It measures the average angle between
the vectors of the template and the object.
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Figure 3: Principle of case-based object-recognition architecture.

The acquisition of the case is done semi-automatically.
Prototypical images are shown to an expert. The expert manually
traces the contour of the object with the help of the cursor of the
computer. Afterwards the number of contour points is reduced for
data-reduction purposes by interpolating the marked contour by
a first-order polynom. The marked object shapes are then aligned
by the Procrustes Algorithm [18]. From the sample points the
direction vector is calculated. From a set of shapes general groups
of shapes are learnt by conceptual clustering which is a hierarchical
incremental clustering method [19]. The prototype of each cluster
is calculated by estimating the mean shape [19] of the set of shapes
in the cluster and is taken as a case model.

Automatic and Symbolic Feature Extraction

The system can now, based on the feature-extraction filter
data base (Figure 4) installed in the system, calculate image
features for the labeled objects. These features are composed of
statistical gray-level features, the object contour, square, diameter,
shape [20] and a novel texture feature based on random sets [21]
that is flexible enough to describe different textures of cells.
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Figure 4: Feature Filter Data Base.

The novel texture-feature descriptor is flexible enough to describe
different textures inside the cells that reflect the appearance or
location of subcellular particle’s (vesicles, bacteria moving into
the cells, or chromosomes etc.). The texture descriptor is based
on Random Sets that were invented by Matheron [22]. An in-
depth description of the theory can be found in Stoyan, et al. [23].
The Boolean model allows to model and simulate a huge variety
of textures e.g. for crystals, leaves, etc. The texture model X is
obtained by taking various realizations of compact random sets,
implanting them in Poisson points in R”, and taking the supremum.
The functional moment @{E} of X, after Booleanization, is
calculated as:

P(B c X°) = Q(B) = exp (—6Mes(X@®E)) vB e k (1)

K where K is the set of the compact random set of R”, g the

density of the process and Wgs (X‘®X) is an average measure
that characterizes the geometric properties of the remaining set of
objects after dilation. Formula (1) is the fundamental formula of

the model. It completely characterizes the texture model. Q(E)
does not depend on the location of B, i.e., it is stationary. One can
also provide that it is ergodic so that we can peak the measure for
a specific portion of the space without referring to the particular
portion of the space.
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Formula 25 show us that the texture model depends on two
parameters:

= The density & of the process and

= 3 measure }{es{}{@ﬁj that characterizes the objects. In the
one-dimensional space, it is the average length of the lines

and in the two-dimensional space Mes(X@E) is the average
measure of the area and the perimeter of the objects under the
assumption of convex shapes.

We consider the two-dimensional case and develop a proper
texture descriptor. Suppose now that we have a texture image with
8 bit gray levels. Then we can consider the texture image as the
superposition of various Boolean models, each of them having
a different gray level value on the scale from 0 to 255 for the
objects within the bit plane. To reduce the dimensionality of the
resulting feature vector, the gray levels ranging from 0 to 255 are
now quantized into S intervals t. Each image f(x,y) is classified
according to the gray level into t classes, with t={0,1,2,..,S}. For
each class a binary image is calculated containing the value “1”
for pixels with a gray level value falling into the gray level interval
of class t and value “0” for all other pixels. The resulting bit plane
f (x,y,t) can now be considered as a realization of the Boolean

model. The quantization of the gray level into S intervals was done
at equal distances. In the following, we call the image f(x,y,t) a
class image. In the class image we can see a lot of different objects.
These objects get labeled with the contour-following method [20].
Afterwards, features from the bit-plane and from these objects are
calculated. Since it does not make sense to consider the features of
every single object due to the curse of dimensionality, we calculate
the mean and standard deviation for each feature that characterizes
the objects such as the area and the contour. In addition to that, we
calculate the number of objects and the areal density in the class
image.

The list of features and their calculation are shown in Table
1. The first one is the areal density of the class image ¢ which is
the number of pixels in the class image, labeled by “1”, divided by
the area of the image. If all pixels of an image are labeled by “1”,
then the density is one. If no pixel in an image is labeled, then the
density is zero. From the objects in the class image ¢, the area, a
simple shape factor, and the length of the contour are calculated.
Per the model, not a single feature of each object is taken for
classification due to the curse of dimensionality, but the mean and
the standard deviation of each feature are calculated over all the
objects in the class image t. We also calculate the frequency of the
object size in each class image ¢.

Depending on the number of slices S we get a feature set of
42(S=6), 84(S=12), 112(S=16) features.

Description Name Type Formula
A _ Iﬁr‘eat = Area, +1 ifflx.y.t) =1
Area in class image ¢ Area t num Aredr = Area, = Area, ifflxy.t)+ 0
Dens — IDenst = Dens, + 1 ifflx.y.t) =1
s = Dens, = Dens, if f{x, v, t) + 0
with
Density in class image ¢ Dens ¢ num z
A= Z Area;
t=1
Number of objects Count_¢ num n(t)
nit)
N 1
Mean area of objects in class image ¢ Area Mean_¢ num Alt) = n(t) Z A (t)
i=1
| nity
Standard deviation of the contour 5E = |— Z w:E — ATENE
length of objects in class image ¢ Cont Std Dev_t um ® «J n{t) = 1.{ ' ()
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The contour length of a single objectis u = [ + V2 - mwith / being the number of contour pixels having odd chain coding numbers and m being
the number of contour pixels having even chain coding numbers.

length of objects in class image ¢

nio
. . —_ 1 -
Mean contour length of objects in Cont Mean ¢ um u(t) = E u;(£)
class image ¢ - i=1
1 nit
Standard deviation of the contour Cont Std Dev_ num 50 = -J EZ (u; (t) —u(t))?
i=1

Table 1: Texture Features based on Random Set.

The system evaluates or calculates image features and stores
their values in a database of image features. Each entry in the
database presents features of the object of interest. These features
can be numerical (calculated on the image) and symbolical
(determined by the expert as a result of image reading by the
expert). In the latter case the expert evaluates object features
according to the attribute list, which has to be specified in advance
for object description or is based on a visual ontology available for
visual content description. Then the user feeds these values into
the database. When the expert has evaluated a sufficient number of
images, the resulting database can be used for the image-mining
process.

Image Mining and Knowledge Discovery

The image mining part should allow extracting knowledge
or making observations from different perspectives. Therefore,
we have included methods for predictions and methods for
knowledge discovery [1]. Knowledge discovery methods allow us
to summarize data into groups and patterns or observe relations
among groups. Usually they are prior to prediction. We prefer
conceptual clustering [1] for this task since the discovery process

is incremental and therefore fits perfectly to case-based reasoning
and decision tree induction as prediction methods.

Decision Tree Induction

Decision tree induction allows one to learn from a set of data
samples a set of rules and basic features necessary for decision-
making in a specified diagnostic task, see Figure 5. The induction
process does not only act as a knowledge discovery process, it
also works as a feature selector, discovering a subset of features
that is the most relevant to the problem solution. Decision trees
partition decision space recursively into sub-regions based on the
sample set. In this way the decision trees recursively break down
the complexity of the decision space. The outcome has a format
which naturally presents a cognitive strategy that can be used for
the human decision-making process. For any tree all paths lead to a
terminal node, corresponding to a decision rule that is a conjunction
(AND) of various tests. If there are multiple paths for a given class,
then the paths represent disjunctions (ORs). The developed tool
allows choosing different kinds of methods for feature selection,
feature discretization, pruning of the decision tree and evaluation
of the error rate. It provides an entropy-based measure, a gini-
index, gain-ratio and chi square method for feature selection [1].
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Figure 5: Basic Principle of Decision Tree Induction.

The following methods for feature discretization are
provided: cut-point strategy, chi-merge discretization, minimum
description length, principal based discretization method and lvg-
based method [1]. These methods allow one to make discretization
of the feature values into two and more intervals during the process
of decision-tree building. Depending on the chosen method for
attribute discretization, the result will be a binary or n-ary tree,
which will lead to more accurate and compact trees. The tool allows
one to choose between cost-complexity pruning, error-reduction-
based methods and pruning by confidence-interval prediction. The
tool also provides functions for outlier detections. To evaluate the
obtained error rate one can choose test-and-train and n-fold cross
validation. Missed values can be handled by different strategies

[1].

The user selects the preferred method for each step of the
decision tree induction process. After that the induction experiment
can start on the acquired database. A resulting decision tree will be
displayed to the user. He/she can evaluate the tree by checking
the features used in each node of the tree and comparing them
with his/her domain knowledge. Once the diagnosis knowledge
has been learnt, the rules are provided either in txt-format or XML
format for further use in the image interpretation part or the expert
can use the diagnosis component of the tool for interactive work.
It has a user-friendly interface and is set up in such a way that non-
computer specialists can handle it very easily.

Case-based Reasoning for Image Interpretation

It is difficult to apply decision trees in domains where

generalized knowledge is lacking. But often there is a need for
a prediction system, even though there is not enough generalized
knowledge. Such a system should

a) Solve problems using the already stored knowledge and

b) Capture new knowledge, making it immediately available to
solve the next problem.

To accomplish these tasks case-based reasoning is useful. Case-
based reasoning explicitly uses past cases from the domain
expert’s successful or failing experience. Therefore, case-based
reasoning can be seen as a method for problem-solving as well
as a method to capture new experience in an incremental fashion
and make it immediately available for problem-solving. It can be
seen as a learning and knowledge-discovery approach, since it can
capture from new experience some general knowledge such as
case classes, prototypes and some higher-level concepts. We find
these methods especially applicable for inspection and diagnosis
tasks. In the case of these applications people store prototypical
images into a digital image catalogue rather than a large set of
different images [22].

We have developed a unit for Cell Interpret that can
perform similarity determination between cases, as well
as prototype selection [23] and feature weighting [24]. We
call x, €{xy,%5,..,%,}a nearest-neighbor to x if
mind (x;,x) = dixy.x), where i= LZ,...n.= 12 ...n. The
instance x is classified into category C,,, if x, is the nearest neighbor
to x and x,, belongs to class Cy. In the case of the k-nearest neighbor
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we require k-samples of the same class to fulfill the decision rule.
As a distance measure we use the Euclidean distance. Prototype
Selection from a set of samples is done by Chang's Algorithm
[23]. Suppose a training set T is given as T = {t*,....t™}. The
idea of the algorithm is as follows: We start with every point in

T as a prototype. We then successively merge any two closest
prototypes p'and p? of the same class by a new prototype p, if the
merging will not downgrade the classification of its patterns in T
. The new prototype p may simply be the average vector of p' and
p?. We continue the merging process until the number of incorrect
classifications of the patterns in T starts to increase.

The wrapper approach is used for selecting a feature subset
from the whole set of features. This approach conducts a search
for a good feature subset by using the &-NN classifier itself as an
evaluation function. The 1-fold cross-validation method is used
for estimating the classification accuracy and the best-first search
strategy is used for the search over the state space of possible
feature combination. The algorithm terminates if we have not
found an improved accuracy over the last k search states. The
feature combination that gave the best classification accuracy is
the remaining feature subset. After we have found the best feature
subset for our problem, we try to further improve our classifier by
applying a feature-weighting technique.

The weights of each feature Wiare changed by a constant

value &: w;:= w; T 8. If the new weight causes an improvement of
the classification accuracy, the weight will be updated accordingly;
if not, the weight will remain as it is. After the last weight has been

tested the constant & will be divided into half and the procedure
repeats. The procedure terminates if the difference between the
classification accuracy of two iterations is less than a predefined
threshold.

Conceptual Clustering

The intention of clustering as another image mining function
is to find groups of similar cases among the data according to the
observation. This can be done based on one feature or a feature
combination. The resulting groups give an idea how data fit
together and how they can be classified into interesting categories.
Classical clustering methods only create clusters but do not explain
why a cluster has been established. Conceptual clustering methods
build clusters and explain why a set of objects confirm a cluster.
Thus, conceptual clustering is a type of learning by observation
and it is a way of summarizing data in an understandable manner
[1]. In contrast to hierarchical clustering methods, conceptual
clustering methods build the classification hierarchy not only
based on merging two groups. The algorithmic properties are
flexible enough to dynamically fit the hierarchy to the data.
This allows incremental incorporation of new instances into the
existing hierarchy and updating this hierarchy according to the
new instance.

A concept hierarchy is a directed graph in which the root
node represents the set of all input instances and the terminal nodes
represent individual instances. Internal nodes stand for sets of
instances attached to the nodes and represent a super-concept. The
super-concept can be represented by a generalized representation
of this set of instances such as the prototype, the medium or a
user selected instance. Therefore a concept C, called a class, in the
concept hierarchy is represented by an abstract concept description
and a list of pointers to each child concept M(C):{C], c,..C, ..,
C }, where C.is the child concept, called subclass of concept C.

Our conceptual clustering algorithm presented here is based
on similarities, because we do not consider logical but numerical
concepts [19]. The output of our algorithm for applying eight
exemplary shape cases of fungal strain Ulocladium Botrytis is
shown in (Figure 6). On top level the root node is shown which
comprises the set of all input cases. Successively the tree is
partitioned into nodes until each input case forms its own cluster.
The main advantage of our conceptual clustering algorithm is
that it brings along a concept description. Thus, in comparison to
agglomerative clustering methods, it is easy to understand why
a set of cases forms a cluster. During the clustering process the
representative case, and also the variances and maximum distances
in relation to this representative case, are calculated, since they are
part of the concept description. The algorithm is of incremental
fashion, because it is possible to incorporate new cases into the
existing learnt hierarchy.
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Figure 6: Output of the Conceptual Clustering Algorithm for 2-D
Shapes obtained from Fungal Spores.

Results

The kinds of cells that are considered in this application are
HEp-2 cells, which are used for the identification of Antinuclear
Autoantibodies (ANA). ANA testing for the assessment of
systemic and organ-specific autoimmune diseases has increased
progressively since immunofluorescence techniques were first
used to demonstrate antinuclear antibodies in 1957. HEp-2
cells allow for recognition of over 30 different nuclear and
cytoplasmic patterns, which are given by upwards of 100 different
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autoantibodies. The identification of the patterns has up to now been
done manually by a human inspecting the slides with the help of a
microscope. The lacking automation of this technique has resulted
in the development of alternative techniques based on chemical
reactions, which do not have the discrimination power of the ANA
testing. An automatic system would pave the way for a wider use
of ANA testing. Prototypical images of HEp-2 cell patterns for six
different classes are shown in Figure 7. The images were taken by
an image-acquisition unit consisting of a microscope AXIOSKOP
from Carl Zeiss Jena, coupled with a video camera.

In a knowledge-acquisition process [25] with a human
operator, using an interview technique and a repertory grid method,
we acquired the knowledge of this operator, while classifying the
different cell types. Some of this knowledge is shown in Table
2. The symbolic terms show that a mixture of different image
information is necessary for classification. The operator uses the
intensity as well as some texture information. In addition, the
appearances of the cell parts within the cells are of importance,
like “dark nuclei”, which also requires spatial information.

Class 1 Class 2

Class 4 Class 5 Class 6
Figure 7: Prototypical Images of Six Classes.
Class Class Name Description
Smooth and uniform
Homogeneous fluorescence of the nuclei.
mog Class_1 Nuclei appear sometimes dark.
nuclei fluorescence -
The chromosome fluorescence
is from weak to very intense
Fine speckled nuclei Dense fine speckled
Class 2
fluorescence - fluorescence
Nuclei are weakly homogenous
. or fine-grained and can
Nuclei fluorescence Class 9 hardly be discerned from the
background

Table 2: Some knowledge about the class description given by a
human operator.

Each image is processed by the image-analysis procedure
described in the previous section. The color image is transformed
into a gray-level image. The image is normalized to the mean and
standard gray level calculated from all images to avoid invariance
caused by the inter-slice staining variations. Automatic thresholding
has been performed by the algorithm described in Section 4.1. For
the objects in each slice, features based on the texture descriptor
described in Section 5 are calculated for classification [26]. The first
one is a simple Boolean feature which expresses the occurrence or
non-occurrence of objects in the slice image. Then the number of
objects in the slice image is calculated. From the objects, the area, a
shape factor, and the length of the contour are calculated. The mean
value for each feature is calculated over all the objects in the slice
image. This is done in order to reduce the dimension of the feature
vector. Since the quantization of the gray level was done in equal
steps and without considering the real nature, we also calculated
for each class the mean value of the gray level and the variance of
the gray level. A total of 192 features were calculated that make up
a very intelligent structure and texture descriptor for cells [26]. The
data base created from 7-10 images per class which made up 30
cells per class is given to our decision tree unit. This unit learns the
classification knowledge based on decision tree induction. Finally,
the system was evaluated based on cross validation. The final result
is shown in Table 2. The overall classification accuracy is 92.73%.
The class specific classification accuracy [1] is shown for each
class in Table 3 on the right side of the table and the classification
quality for each class in the bottom line of the table. In most of the
classes we achieved good classification accuracy. There are only
few classes where the classification accuracy is not as good as the
other ones. It is interesting to note that in case of class_5 four cases
got misclassified as class_14 “U1-RNP” but when checking with
the expert it tended out that the classifier put these samples in the
right class. The case was that the expert mislabeled the cases as
class_5 while the automatic system recognized that these samples
belong not to class_5 but to class_14. This example shows nicely
that an automatic system can lead to standardization of cell image
classification. It provides objective results, it works constantly
without getting tired and the results are reproducible.

The computation time of an image for the Hep-2 application
is 20 seconds by an image size of 1600x1200. This computation
time is fast enough for the considered application and for most
other applications. Users who like to have a faster computation
time can easily speed up the computation time by parallelization.
Parallelization can be done in the simplest case by using more than
one computer. In the hardest case, the whole algorithm can be set
up in parallel fashion.

The methods developed within the framework Cell Interpret
have been applied to many different applications of microscopic
cell images including Hep-2 cell, Hela-cells and Malaria diagnosis.
They showed to be flexible enough for different kind of cell
images diagnosis tasks and they efficiently enabled the mining of
the relevant knowledge for the development of an automatic image
interpretation system. The Hep-PAD version developed based
on Cell Interpret has been licensed to qualified industries and is
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meanwhile a commercial application in usage at different medical laboratories e.g. by Prof. Landenberg from the University Clinic in
Mainz/Germany. We are currently further developing the framework of Cell Interpret to video microscopy and developing more feature
extraction and image mining procedure that can further support the image mining process.

Example: Result LDS6 and DM4
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 Class Specific Quality
AmaCent | Actin | AMA Who | Centromer | CoarseSp | Homogen | Jo-1 | Nucleolaer | PMSCL | SCL70 | Speckled| SS-A SS-B_| U1-RNP | Vimentin | Sum csQ
AmaCent 6 6 100,00%
Actin 7 7 100,00%
AMA Who 7 7 100,00%
Centromer 7 7 100,00%
CoarseSp 5 2 7 71,43%
Homogen 8 8 100,00%
Jo-1 6 6 100,00%
Nucleolaer 7 7 100,00%
PMSCL 7 7 100,00%
SCL70 8 8 100,00%
Speckled 6 6 100,00%
SS-A 1 7 8 87,50%
SS-B 7 7 100,00%
U1-RNP 4 1 7 12 58,33%
Vimentin 7 7 100,00%
Sum 6 7 7 7 9 8 7 7 7 8 9 7 7 7 7 110
Cl. Qual. 100,00% | 100,00% | 100,00% | 100,00% | 5556% | 100,00% |85,71% | 100,00% | 100,00% | 100,00% | 66,67% | 100,00% | 100,00% | 100,00% | 100,00% 94,48%
Classification Quality
Total Number of
samples 110 110
Correct classied
samples 102 106
Correctness 92,73% 96,36%
Error rate 7.21% 3,64%

Table 3: Results for Hep-2 Pattern Analysis.

Expert Opinion

Recent developments are highly application oriented. Often
the system works only in a semi-automatic modus [27,28] that
puts a lot of work to the user using the system. Standard image
processing methods are applied to specific tasks combined with
a lot of heuristics [27-31] to make the methods more or less
automatically work on the specific images. One such method is
the Watershed-Transformation for image segmentation [31]. We
have developed a flexible and automatic Case-Based Watershed
Transformation method where the WT can be adapted to the image
characteristics of the image under consideration.

Standard texture feature extraction procedures are used as
well [32] but the random set approach as described here does
have the flexibility to describe the different particles appearing
in a cell and their randomness. Application-oriented systems that
can only solve one specific task are very costly and it takes time
to develop them. The success of automatic image-interpretation
systems can only be guaranteed when the development effort is as
low as possible and when they can be adapted quickly to different
needs and tasks. The proposed architecture of Cell Interpret will

help to overcome this problem. There are commercial High-
Content Analysis developments where data mining capabilities are
included in the system. However, a better understanding of when
and how to apply these methods and how to interpret the results
are necessary for the user. Therefore we are constantly working on
a methodology of data mining that is presented in our data mining
tutorial (www.data-mining-tutorial.de) and copied in our data
mining tools included in Cell Interpret.

Another interesting observation in high-content analysis
is that of images are created by using different staining to make
specific cell details/objects visible [33,34]. It is obvious that in the
resulting images the specific object details/parts are most visible
and the analysis of these images can be simply made. However,
for a computer vision expert arises the question if this approach is
really necessary in all case studies or would it be better to consider
the whole task as a pattern recognition problem as has been done
in the HEp-2 cell application and study the different patterns that
appear when treating the cells in different ways. This statement
might be a bit provocative and we have to admit that we do not
know all applications in HCA but we would be happy to further
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discuss this with experts from the domain.

We also think that a better categorization of the different
image analysis tasks is necessary to ensure a standardization of the
image analysis procedures in HCA. A first study in that direction
has been given in [35] [36]. Biologists, computer scientists and all
other people involved in this field need to further discuss this and
find a common basis of understanding. The case-based reasoning
approach in our system architecture Cell Interpret we are recently
being further developing for cell-tracking and 3D image analysis.

Conclusion

In this paper we have presented our architecture, Cell
Interpret, for High-Content Image Analysis and the methods
used for the different tasks such as image segmentation, feature
extraction, image mining and classification and interpretation.
Most of the methods are based on case-based reasoning. CBR
solves problems using already stored knowledge, and captures
new knowledge, making it immediately available for solving the
next problem. Therefore, case-based reasoning can be seen as
a method for problem solving, and also as a method to capture
new experience and make it immediately available for problem
solving. It can be seen as a learning and knowledge-discovery
approach, since it can capture from new experience some general
knowledge, such as case classes, prototypes and some higher-level
concepts. The idea of case-based reasoning originally came from
the cognitive science community which discovered that people are
reasoning on formerly successfully solved cases rather than on
general rules. Our interest is to build intelligent flexible and robust
data-interpreting systems [37-41] that are inspired by the human
case-based reasoning process and by doing so to model the human
reasoning process when interpreting the cell images.
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