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Abstract
In the rapidly expanding fields of cellular and molecular biology, fluorescence illumination and observation is becoming 

one of the techniques of choice to study the localization and dynamics of proteins, organelles, and other cellular compartments, 
as well as a tracer of intracellular protein trafficking. The automatic analysis of these images and signals in medicine, biotech-
nology, and chemistry is a challenging and demanding field. Signal-producing procedures by microscopes, spectrometers and 
other sensors have found their way into wide fields of medicine, biotechnology, economy and environmental analysis. With 
this arises the problem of the automatic mass analysis of signal information. Signal-interpreting systems which automatically 
generate the desired target statements from the signals are therefore of compelling necessity. The continuation of mass analysis 
on the basis of the classical procedures leads to investments of proportions that are not feasible. New procedures and system 
architectures are therefore required. We will present, based on our flexible image analysis and interpretation system Cell In-
terpret, new intelligent and automatic image analysis and interpretation procedures. We will demonstrate it in the application 
of the HEp-2 cell pattern analysis.

Keywords: Automation and Standardization of Visual 
Inspection Tasks; High-Content Analysis of Images HCA; 
Image Analysis and Interpretation; Image-Mining, Systems for 
Knowledge Discovery and Interpretation; Microscopic Cell Image 
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Introduction
In the rapidly expanding fields of cellular and molecular 

biology, fluorescence illumination and observation is becoming 
one of the techniques of choice to study the localization and 
dynamics of proteins, organelles, and other cellular compartments, 
as well as a tracer of intracellular protein trafficking. Quantitative 
imaging of fluorescent proteins and patterns is accomplished 
with a variety of techniques, including wide-field, confocal and 
multiphoton microscopy, ultrafast low-light level digital cameras 
and multitasking laser control systems. These microscopic images 
can be of 2-dimensional or 3-dimensional nature, or even videos 
recording the life cycle of a cell. Currently the interpretation of the 
resulting pattern in these digital images is usually done manually. 
However, the huge amount of data created and the growing use 
of these techniques in industry for pharmacological aspects 

or diagnostic purposes in medicine require automatic image 
interpretation procedures. These image interpretation procedures 
should allow to interpret these images automatically, and also 
to detect automatically new knowledge to study the cellular and 
molecular processes. The continuation of mass image analyses 
on the basis of the classical procedures leads to investments of 
proportions that are not feasible. New procedures based on image 
mining and case-based reasoning are therefore required. 

We are developing methods that allow the automatic analysis 
of these images for the discovery of patterns, new knowledge and 
relations. The present work is applied to 2-dimensional microscopic 
fluorescent images, but will be continued with 3-d-image and video 
analysis. The aim of our work is to provide the system with image-
analysis, feature-extraction and knowledge-discovery functions 
that are suited for mining a set of microscopic cell images for the 
automatic detection of image-interpretation knowledge and then 
applying this knowledge within the same system for automatic 
image interpretation of the HEp-2 cell images. At the end the system 
can work on-line in a pharmaceutical drug discovery process or in a 
medical laboratory process and automatically interpret the patterns 
on the cells in the image and calculate quantitative information 
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about the cell pattern. The developed processing functions should 
make the system flexible enough to deal with different kinds of 
cell-images and different image qualities and require a minimal 
number of interactions with the user for knowledge mining. The 
image-interpretation process is running fully automatically, based 
on the image-analysis and feature-extraction procedures developed 
for this kind of image analysis and the learned interpretation 
knowledge by the developed knowledge-mining procedures.

Challenges and Requirements to the Systems

Application-oriented systems that can only solve one specific 
task are very costly and it takes time to develop them. The success 
of automatic image-interpretation systems can only be guaranteed 
when the development effort is as low as possible and when they 
can be adapted quickly to different needs and tasks. It is preferable 
that the automatic system not only calculates image features 
from the images but also maps the measurements to the desired 
information the user wants to obtain with his experiment. This 
views High-Content Image Analysis as a pattern recognition and 
image interpretation problem rather than as an image measurement 
problem where all possible image features are extracted from the 
images for further analysis. The pattern or the final information, 
such as e.g. “do the bacteria co-localize with the lysosomes”, is the 
central focus of the image analysis and the system should provide 
all functions that are necessary to achieve this result.

That requires developing systems that can run on a class of 
applications such as microscopic fluorescent images. Such systems 
should have functions that are able to:

Automatically detect single cells in the image regardless of the 	
image quality with high accuracy, robustness and flexibility;

Automatically describe the properties of the cell nucleus and 	
the cytoplasm by image features (numerical and symbolical);

Automatically interpret the images into cell patterns or other 	
decisions (prediction);

Automatically detect new knowledge from image data and 	
apply it to automatic interpretation;

The challenges are:

New strategies are necessary that are able to adapt the system 	
to changing environmental conditions during image capture, 
user needs and process requirements;

Introduction of Case-Based-Reasoning (CBR) strategies 	
and Data-Mining strategies [1] into image-interpretation 
systems on both the low-level and high-level to satisfy these 
requirements.

The Architecture

Our answer to this problem is a system architecture [2] named 
Cell Interpret (Figure 1) that is comprised of two main parts: 

The on-line part that is comprised of the image analysis and 	
the image interpretation part; 

The off-line part that is comprised of the database and the data 	
mining and knowledge discovery part;

These two units communicate over a database of image 
descriptions, which is created in the frame of the image-processing 
unit. This database is the basis for the image-mining unit.

Figure 1: Architecture of Cell Interpret.

The on-line part can automatically detect objects, extract 
image features from the objects and classify the recognized objects 
into the respective classes based on the prior stored decision rules. 
The interface between the off-line and the on-line part is the 
database where images and calculated image features are stored. 
The off-line part can mine the images for a prediction model or 
discover new groups of objects, features or relations. These similar 
groups can be used for learning the classification model or just 
for understanding the domain. In the later case the discovered 
information is displayed on the terminal of the system to the 
user. Once a new prediction model has been learnt the rules are 
inputted into the image interpretation part for further automatic 
interpretation after approval of the user. Besides that, there is an 
archiving and management part that controls the whole system and 
stores information for long-term archiving. 

Images can be processed automatically or semi-automatically. 
In the first case, a set of images specified by the expert is 
automatically segmented into background and objects of interest 
and the feature extraction procedures installed in the image analysis 
system are used for each object to automatically calculate all 
features. All features are extracted regardless of their applicability 
for the specific application. This requires executing feature subset 
selection methods later on. For semi-automatic processing, an 
image from the image archive is selected by the expert and then is 
it displayed on the monitor. To perform image processing an expert 
communicates with a computer. In this mode he has the option to 
calculate features based on the feature extraction procedures and/
or record symbolic features based on his expert knowledge. This 
procedure ensures that also complicated image features, which are 
difficult to name, articulate or develop automatic feature extraction 
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procedures, can also be taken into account and further evaluated by 
image mining. After the feature has been established by evaluating 
the acquired data base, the proper automatic feature extraction 
procedure can be developed and included into the system and 
made available for High-Content Analysis. The intelligence of the 
system will therefore incrementally improve.

Case-Based Image Segmentation

Image segmentation is a process of dividing an image into a 
number of different regions such that each region is homogeneous 
with respect to a given property, but the union of any two adjacent 
regions is not. Image thresholding is a well-known technique for 
image segmentation. Because of its wide applicability to many 
areas of digital image processing, a large number of thresholding 
methods have been proposed over the years [3-5]. Image 
thresholding has low computational complexity, which makes it an 
attractive method, but does not take into account spatial information 
and is mostly suitable for images where the gray-levels constitute 
well defined peaks, separated by not too broad and flat valleys. 
Another common approach to image segmentation is based on 
feature space clustering, which has sometimes been regarded as 
the multidimensional extension of the concept of thresholding. 
Clustering schemes using different kinds of features (multi-
spectral information, mean/variation of gray-level, texture, color) 
have been suggested [6-8]. This approach can be successfully used 
if each perceived region of the image constitutes an individual 
cluster in the feature space. This requires a careful selection of the 
proper features, which depends on image domain.

Segmentation can also be accomplished by using region-
based methods, or edge-detection-based methods, or methods 
based on a combination of those two approaches [9-11]. Region-
based methods imply the selection of suitable seeds from which to 
perform a growing process. In general, region-merging and region 
splitting are accomplished to obtain a meaningful number of 
homogeneous regions. Seed selection and homogeneity criterion 
play a critical role for the quality of the obtained results. Edge-
detection-based methods follow the way in which human observers 
perceive objects, as they take into account the difference in contrast 
between adjacent regions. Edge detection does not work well if the 
image is not well contrasted, or in the presence of ill-defined or too 
many edges.

Watershed-based segmentation [12] exploits both region-
based and edge-detection-based methods. The basic idea of 
watershed-based segmentation is to identify in the gray-level image 
a suitable set of seeds from which to perform a growing process. 
If the main feature taken into account is gray-level distribution, 
the seeds are mostly detected as the sets of pixels with locally 
minimal gray-level (called regional minima). The growing process 

groups each seed with all pixels that are closer to that seed than 
to any other seed, provided that a certain homogeneity in gray-
level is satisfied. Thus, watershed-based segmentation limits the 
drawbacks of region-based and edge-detection-based methods. 

To overcome the drawbacks of the algorithms mentioned above, 
learning methods are applied to image segmentation. These 
learning methods are applied to learn the mapping between image 
features and semantically meaningful parts, to learn the parameters 
of the segmentation algorithm or to learn the mapping between 
rank performance of the segmentation algorithm and the image 
features. There are statistical learning methods, machine learning 
methods, neural-net-based learning methods, and learning methods 
using a combination of different techniques. The main drawbacks 
of these methods are: 

The need of a sufficiently large training set, and 1.	

The need of training again the whole model, when new data 2.	
come in. 

Therefore, it seems to be useful to use Case-based Reasoning 
(CBR) for a flexible image segmentation system, since CBR can be 
used as a reasoning approach as well as an incremental knowledge-
acquisition approach. We propose a novel image-segmentation 
scheme based on case-based reasoning. We use CBR for meta-
learning of the segmentation parameters (see Section 4.1) and for 
case-based object recognition (see Section 4.2).

CBR Meta Learning for Image Segmentation

The case-based reasoning unit for meta learning of 
image segmentation parameters [13] consists of a case base in 
which formerly processed cases are stored. A case is comprised 
of image information, non-image information (e.g. image-
acquisition parameters, object characteristics and so on), and 
image-segmentation parameters. The task is now to find the best 
segmentation for the current image by looking up the case base for 
similar cases. Similarity determination is done based on non-image 
information and image information. The evaluation unit will take 
the case with the highest similarity score for further processing. In 
case there are two or more cases with the same similarity score, 
the case appearing first will be taken. After the closest case has 
been chosen, the image-segmentation parameters associated with 
the selected case will be given to the image-segmentation unit and 
the current image will be segmented (Figure 2). It is assumed that 
images having similar image characteristics will show similar good 
segmentation results when the same segmentation parameters are 
applied to these images. The image segmentation algorithm is in 
our case a histogram-based image-segmentation algorithm [13] 
and a watershed-based image-segmentation algorithm [14].
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Figure 2: CBR Image Segmentation Unit.

The result of the segmentation process can be observed by 
the user or an automatic evaluation procedure. When the evaluation 
is done by the user, he compares the original image with the 
labeled image on display. If he detects deviations of the marked 
areas in the segmented image from the object area in the original 
image, which should be labeled, then he will evaluate the result as 
incorrect and case-base management will start. This will also be 
done if no similar case is available in the case-base. The proposed 
method is close to the critique-modify framework described by 
Grimnes, et al. [15]. The evaluation procedure can also be done 
automatically. However, the drawback is that there is no general 
procedure available. It can only be done in a domain-dependent 
fashion. Once the chosen evaluation procedure observes a bad 
result, the respective case is tagged as bad case. The tag describes 
the critique in more detail. 

In an off-line phase, the best segmentation parameters for 
the image are determined by an optimization procedure and the 
attributes, which are necessary for similarity determination, are 
calculated from the image. Both, the segmentation parameters and 
the attributes calculated from the image, are stored into the case-
base as a new case. In addition to that the non-image information 
is extracted from the file header and stored together with the other 
information in the case-base. During storage, case generalization 
will be done to ensure that the case base will not become too 
large.

Case-based Object Recognition

We propose our case-based object recognition method to 
recognize objects by their shape. In contrast to traditional object 
recognition methods [16] our method is comprised of a case 
mining part and the object recognition part [17]. The case mining 
part can learn the desired contour of the object and the number of 
contours necessary for recognizing a particular class of objects. 
The learnt contours make up the case base and are the basis for the 
case-based object-recognition method. The objects in the image 

may be occluded, touching, or overlapping. It can also happen that 
only part of the object appears in the image. 

A case-based object-recognition method uses cases that generalize 
the original objects and matches them against the objects in the 
image, see Figure 3. During this procedure a score is calculated that 
describes the quality of the fit between the object and the case. The 
case can be an object model which describes the inner appearance 
of the object as well as its contour. In our case the appearance of 
the whole object can be very diverse. The shape seems to be the 
feature that generalizes the objects. Therefore, we decided to use 
contour models. We do not use the gray values of the model, but 
instead use the object’s edges. For the score of the match between 
the contour of the object and the case we use a similarity measure 
based on the scalar product. It measures the average angle between 
the vectors of the template and the object.
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Figure 3: Principle of case-based object-recognition architecture.

The acquisition of the case is done semi-automatically. 
Prototypical images are shown to an expert. The expert manually 
traces the contour of the object with the help of the cursor of the 
computer. Afterwards the number of contour points is reduced for 
data-reduction purposes by interpolating the marked contour by 
a first-order polynom. The marked object shapes are then aligned 
by the Procrustes Algorithm [18]. From the sample points the 
direction vector is calculated. From a set of shapes general groups 
of shapes are learnt by conceptual clustering which is a hierarchical 
incremental clustering method [19]. The prototype of each cluster 
is calculated by estimating the mean shape [19] of the set of shapes 
in the cluster and is taken as a case model.

Automatic and Symbolic Feature Extraction

The system can now, based on the feature-extraction filter 
data base (Figure 4) installed in the system, calculate image 
features for the labeled objects. These features are composed of 
statistical gray-level features, the object contour, square, diameter, 
shape [20] and a novel texture feature based on random sets [21] 
that is flexible enough to describe different textures of cells. 
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Figure 4: Feature Filter Data Base.

The novel texture-feature descriptor is flexible enough to describe 
different textures inside the cells that reflect the appearance or 
location of subcellular particle`s (vesicles, bacteria moving into 
the cells, or chromosomes etc.). The texture descriptor is based 
on Random Sets that were invented by Matheron [22]. An in-
depth description of the theory can be found in Stoyan, et al.  [23]. 
The Boolean model allows to model and simulate a huge variety 
of textures e.g. for crystals, leaves, etc. The texture model X is 
obtained by taking various realizations of compact random sets, 
implanting them in Poisson points in Rn, and taking the supremum. 
The functional moment  of X, after Booleanization, is 
calculated as: 

              

K where is the set of the compact random set of Rn,  the 

density of the process and  (X‘⨁X̌) is an average measure 
that characterizes the geometric properties of the remaining set of 
objects after dilation. Formula (1) is the fundamental formula of 

the model. It completely characterizes the texture model.  
does not depend on the location of B, i.e., it is stationary. One can 
also provide that it is ergodic so that we can peak the measure for 
a specific portion of the space without referring to the particular 
portion of the space.
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Formula 25 show us that the texture model depends on two 
parameters:

 The density 	 of the process and

a measure 	 that characterizes the objects. In the 
one-dimensional space, it is the average length of the lines 

and in the two-dimensional space is the average 
measure of the area and the perimeter of the objects under the 
assumption of convex shapes. 

We consider the two-dimensional case and develop a proper 
texture descriptor. Suppose now that we have a texture image with 
8 bit gray levels. Then we can consider the texture image as the 
superposition of various Boolean models, each of them having 
a different gray level value on the scale from 0 to 255 for the 
objects within the bit plane. To reduce the dimensionality of the 
resulting feature vector, the gray levels ranging from 0 to 255 are 
now quantized into S intervals t. Each image f(x,y) is classified 
according to the gray level into t classes, with t={0,1,2,..,S}. For 
each class a binary image is calculated containing the value “1” 
for pixels with a gray level value falling into the gray level interval 
of class t and value “0” for all other pixels. The resulting bit plane 
f (x,y,t) can now be considered as a realization of the Boolean 

model. The quantization of the gray level into S intervals was done 
at equal distances. In the following, we call the image f(x,y,t) a 
class image.  In the class image we can see a lot of different objects. 
These objects get labeled with the contour-following method [20]. 
Afterwards, features from the bit-plane and from these objects are 
calculated. Since it does not make sense to consider the features of 
every single object due to the curse of dimensionality, we calculate 
the mean and standard deviation for each feature that characterizes 
the objects such as the area and the contour. In addition to that, we 
calculate the number of objects and the areal density in the class 
image. 

The list of features and their calculation are shown in Table 
1. The first one is the areal density of the class image t which is 
the number of pixels in the class image, labeled by “1”, divided by 
the area of the image. If all pixels of an image are labeled by “1”, 
then the density is one. If no pixel in an image is labeled, then the 
density is zero. From the objects in the class image t, the area, a 
simple shape factor, and the length of the contour are calculated. 
Per the model, not a single feature of each object is taken for 
classification due to the curse of dimensionality, but the mean and 
the standard deviation of each feature are calculated over all the 
objects in the class image t. We also calculate the frequency of the 
object size in each class image t. 

Depending on the number of slices S we get a feature set of 
42(S=6), 84(S=12), 112(S=16) features.

Description Name Type Formula

Area in class image t Area_t num

Density in class image t Dens_t num
with  

Number of objects Count_t num n(t)

Mean area of objects in class image t Area Mean_t num

Standard deviation of the contour 
length of objects in class image t Cont Std Dev_t num
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The contour length of a single object is with l being the number of contour pixels having odd chain coding numbers and m being 
the number of contour pixels having even chain coding numbers.

Mean contour length of objects in 
class image t Cont Mean_t num

Standard deviation of the contour 
length of objects in class image t Cont Std Dev_t num

Table 1: Texture Features based on Random Set.

The system evaluates or calculates image features and stores 
their values in a database of image features. Each entry in the 
database presents features of the object of interest. These features 
can be numerical (calculated on the image) and symbolical 
(determined by the expert as a result of image reading by the 
expert). In the latter case the expert evaluates object features 
according to the attribute list, which has to be specified in advance 
for object description or is based on a visual ontology available for 
visual content description. Then the user feeds these values into 
the database. When the expert has evaluated a sufficient number of 
images, the resulting database can be used for the image-mining 
process.

Image Mining and Knowledge Discovery

The image mining part should allow extracting knowledge 
or making observations from different perspectives. Therefore, 
we have included methods for predictions and methods for 
knowledge discovery [1]. Knowledge discovery methods allow us 
to summarize data into groups and patterns or observe relations 
among groups. Usually they are prior to prediction. We prefer 
conceptual clustering [1] for this task since the discovery process 

is incremental and therefore fits perfectly to case-based reasoning 
and decision tree induction as prediction methods.

Decision Tree Induction

Decision tree induction allows one to learn from a set of data 
samples a set of rules and basic features necessary for decision-
making in a specified diagnostic task, see Figure 5. The induction 
process does not only act as a knowledge discovery process, it 
also works as a feature selector, discovering a subset of features 
that is the most relevant to the problem solution. Decision trees 
partition decision space recursively into sub-regions based on the 
sample set. In this way the decision trees recursively break down 
the complexity of the decision space. The outcome has a format 
which naturally presents a cognitive strategy that can be used for 
the human decision-making process. For any tree all paths lead to a 
terminal node, corresponding to a decision rule that is a conjunction 
(AND) of various tests. If there are multiple paths for a given class, 
then the paths represent disjunctions (ORs). The developed tool 
allows choosing different kinds of methods for feature selection, 
feature discretization, pruning of the decision tree and evaluation 
of the error rate. It provides an entropy-based measure, a gini-
index, gain-ratio and chi square method for feature selection [1].
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Class SepalLeng SepalWi PetalLen PetalWi

Setosa 5,1 3,5 1,4 0,2

Setosa 4,9 3,0 1,4 0,2

Setosa 4,7 3,2 1,3 0,2

Setosa 4,6 3,1 1,5 0,2

Setosa 5,0 3,6 1,4 0,2

Versicolor 7,0 3,2 4,7 1,4

Versicolor 6,4 3,2 4,5 1,5

Versicolor 6,9 3,1 4,9 1,5

Versicolor 5,5 2,3 4,0 1,3

... ... ... ... ...

Decision Tree 
Induction

---
150 DS

PETALLEN

<=2.45
50 DS

[Setosa  ]

>2.45
100 DS

PETALLEN

<=4.9
54 DS

PETALWI

<=1.65
47 DS

[Versicol]

>1.65
7 DS

[Virginic]

>4.9
46 DS

[Virginic]

ResultAttribute-Value Pair Representation Data Mining

Figure 5: Basic Principle of Decision Tree Induction.

The following methods for feature discretization are 
provided: cut-point strategy, chi-merge discretization, minimum 
description length, principal based discretization method and lvq-
based method [1]. These methods allow one to make discretization 
of the feature values into two and more intervals during the process 
of decision-tree building. Depending on the chosen method for 
attribute discretization, the result will be a binary or n-ary tree, 
which will lead to more accurate and compact trees. The tool allows 
one to choose between cost-complexity pruning, error-reduction-
based methods and pruning by confidence-interval prediction. The 
tool also provides functions for outlier detections. To evaluate the 
obtained error rate one can choose test-and-train and n-fold cross 
validation. Missed values can be handled by different strategies 
[1].

The user selects the preferred method for each step of the 
decision tree induction process. After that the induction experiment 
can start on the acquired database. A resulting decision tree will be 
displayed to the user. He/she can evaluate the tree by checking 
the features used in each node of the tree and comparing them 
with his/her domain knowledge. Once the diagnosis knowledge 
has been learnt, the rules are provided either in txt-format or XML 
format for further use in the image interpretation part or the expert 
can use the diagnosis component of the tool for interactive work. 
It has a user-friendly interface and is set up in such a way that non-
computer specialists can handle it very easily.

Case-based Reasoning for Image Interpretation

It is difficult to apply decision trees in domains where 

generalized knowledge is lacking. But often there is a need for 
a prediction system, even though there is not enough generalized 
knowledge. Such a system should 

a) Solve problems using the already stored knowledge and 

b) Capture new knowledge, making it immediately available to 
solve the next problem. 

To accomplish these tasks case-based reasoning is useful. Case-
based reasoning explicitly uses past cases from the domain 
expert´s successful or failing experience. Therefore, case-based 
reasoning can be seen as a method for problem-solving as well 
as a method to capture new experience in an incremental fashion 
and make it immediately available for problem-solving. It can be 
seen as a learning and knowledge-discovery approach, since it can 
capture from new experience some general knowledge such as 
case classes, prototypes and some higher-level concepts. We find 
these methods especially applicable for inspection and diagnosis 
tasks. In the case of these applications people store prototypical 
images into a digital image catalogue rather than a large set of 
different images [22].

We have developed a unit for Cell Interpret that can 
perform similarity determination between cases, as well 
as prototype selection [23] and feature weighting [24]. We 
call a nearest-neighbor to x  if 

, where i  The 
instance is classified into category , if is the nearest neighbor 
to  and belongs to class . In the case of the k-nearest neighbor 
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we require k-samples of the same class to fulfill the decision rule. 
As a distance measure we use the Euclidean distance. Prototype 
Selection from a set of samples is done by Chang`s Algorithm 
[23]. Suppose a training set  is given as }. The 
idea of the algorithm is as follows: We start with every point in 

 as a prototype. We then successively merge any two closest 
prototypes 1and p2 of the same class by a new prototype , if the 
merging will not downgrade the classification of its patterns in 
. The new prototype  may simply be the average vector of 1 and 

2. We continue the merging process until the number of incorrect 
classifications of the patterns in  starts to increase. 

The wrapper approach is used for selecting a feature subset 
from the whole set of features. This approach conducts a search 
for a good feature subset by using the k-NN classifier itself as an 
evaluation function. The 1-fold cross-validation method is used 
for estimating the classification accuracy and the best-first search 
strategy is used for the search over the state space of possible 
feature combination.  The algorithm terminates if we have not 
found an improved accuracy over the last k search states. The 
feature combination that gave the best classification accuracy is 
the remaining feature subset. After we have found the best feature 
subset for our problem, we try to further improve our classifier by 
applying a feature-weighting technique.

The weights of each feature are changed by a constant 
value : . If the new weight causes an improvement of 
the classification accuracy, the weight will be updated accordingly; 
if not, the weight will remain as it is. After the last weight has been 
tested the constant  will be divided into half and the procedure 
repeats. The procedure terminates if the difference between the 
classification accuracy of two iterations is less than a predefined 
threshold. 

Conceptual Clustering

The intention of clustering as another image mining function 
is to find groups of similar cases among the data according to the 
observation. This can be done based on one feature or a feature 
combination. The resulting groups give an idea how data fit 
together and how they can be classified into interesting categories. 
Classical clustering methods only create clusters but do not explain 
why a cluster has been established. Conceptual clustering methods 
build clusters and explain why a set of objects confirm a cluster. 
Thus, conceptual clustering is a type of learning by observation 
and it is a way of summarizing data in an understandable manner 
[1]. In contrast to hierarchical clustering methods, conceptual 
clustering methods build the classification hierarchy not only 
based on merging two groups. The algorithmic properties are 
flexible enough to dynamically fit the hierarchy to the data. 
This allows incremental incorporation of new instances into the 
existing hierarchy and updating this hierarchy according to the 
new instance.

A concept hierarchy is a directed graph in which the root 
node represents the set of all input instances and the terminal nodes 
represent individual instances. Internal nodes stand for sets of 
instances attached to the nodes and represent a super-concept. The 
super-concept can be represented by a generalized representation 
of this set of instances such as the prototype, the medium or a 
user selected instance. Therefore a concept C, called a class, in the 
concept hierarchy is represented by an abstract concept description 
and a list of pointers to each child concept M(C)={C1, C2, ..., Ci, ..., 
Cn}, where Ci is the child concept, called subclass of concept C.

Our conceptual clustering algorithm presented here is based 
on similarities, because we do not consider logical but numerical 
concepts [19]. The output of our algorithm for applying eight 
exemplary shape cases of fungal strain Ulocladium Botrytis is 
shown in (Figure 6). On top level the root node is shown which 
comprises the set of all input cases. Successively the tree is 
partitioned into nodes until each input case forms its own cluster. 
The main advantage of our conceptual clustering algorithm is 
that it brings along a concept description. Thus, in comparison to 
agglomerative clustering methods, it is easy to understand why 
a set of cases forms a cluster. During the clustering process the 
representative case, and also the variances and maximum distances 
in relation to this representative case, are calculated, since they are 
part of the concept description. The algorithm is of incremental 
fashion, because it is possible to incorporate new cases into the 
existing learnt hierarchy.

 

Figure 6: Output of the Conceptual Clustering Algorithm for 2-D 
Shapes obtained from Fungal Spores.

Results
The kinds of cells that are considered in this application are 

HEp-2 cells, which are used for the identification of Antinuclear 
Autoantibodies (ANA). ANA testing for the assessment of 
systemic and organ-specific autoimmune diseases has increased 
progressively since immunofluorescence techniques were first 
used to demonstrate antinuclear antibodies in 1957. HEp-2 
cells allow for recognition of over 30 different nuclear and 
cytoplasmic patterns, which are given by upwards of 100 different 
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autoantibodies. The identification of the patterns has up to now been 
done manually by a human inspecting the slides with the help of a 
microscope. The lacking automation of this technique has resulted 
in the development of alternative techniques based on chemical 
reactions, which do not have the discrimination power of the ANA 
testing. An automatic system would pave the way for a wider use 
of ANA testing. Prototypical images of HEp-2 cell patterns for six 
different classes are shown in Figure 7. The images were taken by 
an image-acquisition unit consisting of a microscope AXIOSKOP 
from Carl Zeiss Jena, coupled with a video camera.

In a knowledge-acquisition process [25] with a human 
operator, using an interview technique and a repertory grid method, 
we acquired the knowledge of this operator, while classifying the 
different cell types. Some of this knowledge is shown in Table 
2. The symbolic terms show that a mixture of different image 
information is necessary for classification. The operator uses the 
intensity as well as some texture information. In addition, the 
appearances of the cell parts within the cells are of importance, 
like “dark nuclei”, which also requires spatial information. 

Class 1 Class 2 Class 3

Class 4 Class 5 Class 6

Figure 7: Prototypical Images of Six Classes.

Class Class Name Description

Homogeneous 
nuclei fluorescence Class_1

Smooth and uniform 
fluorescence of the nuclei.

Nuclei appear sometimes dark.
The chromosome fluorescence 
is from weak  to very intense

Fine speckled nuclei 
fluorescence Class_2 Dense fine speckled 

fluorescence
... ... ...

Nuclei fluorescence Class_9

Nuclei are weakly homogenous 
or fine-grained and can 

hardly be discerned from the 
background

Table 2: Some knowledge about the class description given by a 
human operator.

Each image is processed by the image-analysis procedure 
described in the previous section. The color image is transformed 
into a gray-level image. The image is normalized to the mean and 
standard gray level calculated from all images to avoid invariance 
caused by the inter-slice staining variations. Automatic thresholding 
has been performed by the algorithm described in Section 4.1. For 
the objects in each slice, features based on the texture descriptor 
described in Section 5 are calculated for classification  [26]. The first 
one is a simple Boolean feature which expresses the occurrence or 
non-occurrence of objects in the slice image. Then the number of 
objects in the slice image is calculated. From the objects, the area, a 
shape factor, and the length of the contour are calculated. The mean 
value for each feature is calculated over all the objects in the slice 
image. This is done in order to reduce the dimension of the feature 
vector. Since the quantization of the gray level was done in equal 
steps and without considering the real nature, we also calculated 
for each class the mean value of the gray level and the variance of 
the gray level. A total of 192 features were calculated that make up 
a very intelligent structure and texture descriptor for cells [26]. The 
data base created from 7-10 images per class which made up 30 
cells per class is given to our decision tree unit. This unit learns the 
classification knowledge based on decision tree induction. Finally, 
the system was evaluated based on cross validation. The final result 
is shown in Table 2. The overall classification accuracy is 92.73%. 
The class specific classification accuracy [1] is shown for each 
class in Table 3 on the right side of the table and the classification 
quality for each class in the bottom line of the table. In most of the 
classes we achieved good classification accuracy. There are only 
few classes where the classification accuracy is not as good as the 
other ones. It is interesting to note that in case of class_5 four cases 
got misclassified as class_14 “U1-RNP” but when checking with 
the expert it tended out that the classifier put these samples in the 
right class. The case was that the expert mislabeled the cases as 
class_5 while the automatic system recognized that these samples 
belong not to class_5 but to class_14. This example shows nicely 
that an automatic system can lead to standardization of cell image 
classification. It provides objective results, it works constantly 
without getting tired and the results are reproducible.

The computation time of an image for the Hep-2 application 
is 20 seconds by an image size of 1600x1200. This computation 
time is fast enough for the considered application and for most 
other applications. Users who like to have a faster computation 
time can easily speed up the computation time by parallelization. 
Parallelization can be done in the simplest case by using more than 
one computer. In the hardest case, the whole algorithm can be set 
up in parallel fashion.

The methods developed within the framework Cell Interpret 
have been applied to many different applications of microscopic 
cell images including Hep-2 cell, Hela-cells and Malaria diagnosis. 
They showed to be flexible enough for different kind of cell 
images diagnosis tasks and they efficiently enabled the mining of 
the relevant knowledge for the development of an automatic image 
interpretation system. The Hep-PAD version developed based 
on Cell Interpret has been licensed to qualified industries and is 
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meanwhile a commercial application in usage at different medical laboratories e.g. by Prof. Landenberg from the University Clinic in 
Mainz/Germany. We are currently further developing the framework of Cell Interpret to video microscopy and developing more feature 
extraction and image mining procedure that can further support the image mining process.

Example: Result LDS6 and DM4  
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15   Class Specific Quality 
  AmaCent Actin AMA Who Centromer CoarseSp Homogen Jo-1 Nucleolaer PMSCL SCL70 Speckled SS-A SS-B U1-RNP Vimentin Sum CSQ 
AmaCent 6                             6 100,00% 

Actin   7                           7 100,00% 

AMA Who     7                         7 100,00% 
Centromer       7                       7 100,00% 

CoarseSp         5           2         7 71,43% 
Homogen           8                   8 100,00% 

Jo-1             6                 6 100,00% 
Nucleolaer               7               7 100,00% 

PMSCL                 7             7 100,00% 

SCL70                   8           8 100,00% 
Speckled                     6         6 100,00% 

SS-A             1         7       8 87,50% 
SS-B                         7     7 100,00% 

U1-RNP         4           1     7   12 58,33% 

Vimentin                             7 7 100,00% 
Sum 6 7 7 7 9 8 7 7 7 8 9 7 7 7 7 110   

Cl. Qual. 100,00% 100,00% 100,00% 100,00% 55,56% 100,00% 85,71% 100,00% 100,00% 100,00% 66,67% 100,00% 100,00% 100,00% 100,00%   94,48% 
Classification Quality                 

                  
Total Number of 
samples     110  110             
Correct classied 
samples     102  106             

Correctness     92,73%  96,36%             

Error rate     7,27%  3,64%        
 

Table 3: Results for Hep-2 Pattern Analysis.

Expert Opinion

Recent developments are highly application oriented. Often 
the system works only in a semi-automatic modus [27,28] that 
puts a lot of work to the user using the system. Standard image 
processing methods are applied to specific tasks combined with 
a lot of heuristics [27-31] to make the methods more or less 
automatically work on the specific images. One such method is 
the Watershed-Transformation for image segmentation [31]. We 
have developed a flexible and automatic Case-Based Watershed 
Transformation method where the WT can be adapted to the image 
characteristics of the image under consideration.

Standard texture feature extraction procedures are used as 
well [32] but the random set approach as described here does 
have the flexibility to describe the different particles appearing 
in a cell and their randomness. Application-oriented systems that 
can only solve one specific task are very costly and it takes time 
to develop them. The success of automatic image-interpretation 
systems can only be guaranteed when the development effort is as 
low as possible and when they can be adapted quickly to different 
needs and tasks. The proposed architecture of Cell Interpret will 

help to overcome this problem. There are commercial High-
Content Analysis developments where data mining capabilities are 
included in the system. However, a better understanding of when 
and how to apply these methods and how to interpret the results 
are necessary for the user. Therefore we are constantly working on 
a methodology of data mining that is presented in our data mining 
tutorial (www.data-mining-tutorial.de) and copied in our data 
mining tools included in Cell Interpret.

Another interesting observation in high-content analysis 
is that of images are created by using different staining to make 
specific cell details/objects visible [33,34]. It is obvious that in the 
resulting images the specific object details/parts are most visible 
and the analysis of these images can be simply made. However, 
for a computer vision expert arises the question if this approach is 
really necessary in all case studies or would it be better to consider 
the whole task as a pattern recognition problem as has been done 
in the HEp-2 cell application and study the different patterns that 
appear when treating the cells in different ways. This statement 
might be a bit provocative and we have to admit that we do not 
know all applications in HCA but we would be happy to further 

http://www.data-mining-tutorial.de
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discuss this with experts from the domain.

We also think that a better categorization of the different 
image analysis tasks is necessary to ensure a standardization of the 
image analysis procedures in HCA. A first study in that direction 
has been given in [35] [36]. Biologists, computer scientists and all 
other people involved in this field need to further discuss this and 
find a common basis of understanding. The case-based reasoning 
approach in our system architecture Cell Interpret we are recently 
being further developing for cell-tracking and 3D image analysis.

Conclusion
In this paper we have presented our architecture, Cell 

Interpret, for High-Content Image Analysis and the methods 
used for the different tasks such as image segmentation, feature 
extraction, image mining and classification and interpretation. 
Most of the methods are based on case-based reasoning. CBR 
solves problems using already stored knowledge, and captures 
new knowledge, making it immediately available for solving the 
next problem. Therefore, case-based reasoning can be seen as 
a method for problem solving, and also as a method to capture 
new experience and make it immediately available for problem 
solving. It can be seen as a learning and knowledge-discovery 
approach, since it can capture from new experience some general 
knowledge, such as case classes, prototypes and some higher-level 
concepts. The idea of case-based reasoning originally came from 
the cognitive science community which discovered that people are 
reasoning on formerly successfully solved cases rather than on 
general rules. Our interest is to build intelligent flexible and robust 
data-interpreting systems [37-41] that are inspired by the human 
case-based reasoning process and by doing so to model the human 
reasoning process when interpreting the cell images.
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