

## Review Article

# Facing with Limited Options in the Failing Aortic Valve of the Young: Validity of Aortic Cusp Extension Valvuloplasty and Valve Reconstruction

Anastasios C Polimenakos<sup>1\*</sup>, Michel N Ilbawi<sup>2</sup>

<sup>1</sup>Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Georgia Heart Center, Medical College of Georgia-Augusta, GA

<sup>2</sup>Division of Pediatric Cardiovascular Surgery, Department of Surgery, Heart Institute for Children, Advocate Children's Hospital-Oak Lawn, IL

**\*Corresponding author:** Anastasios C Polimenakos, Chief for Pediatric and Congenital Cardiothoracic Surgery, Medical College of Georgia, Children's Hospital of Georgia, Georgia Regents University, Georgia. Tel: +17066640585; Email: APOLIMENAKOS@gru.edu

**Citation:** Polimenakos AC, Ilbawi MN (2016) Impact of Bone Marrow Cell Therapy on Left Ventricular Ejection Fraction in Adult Patients with Heart Disease: An Application of Objective Bayesian Random-Effect. Cardiolog Res Cardiovasc Med 1: 101. DOI: 10.29011/2575-7083.000001

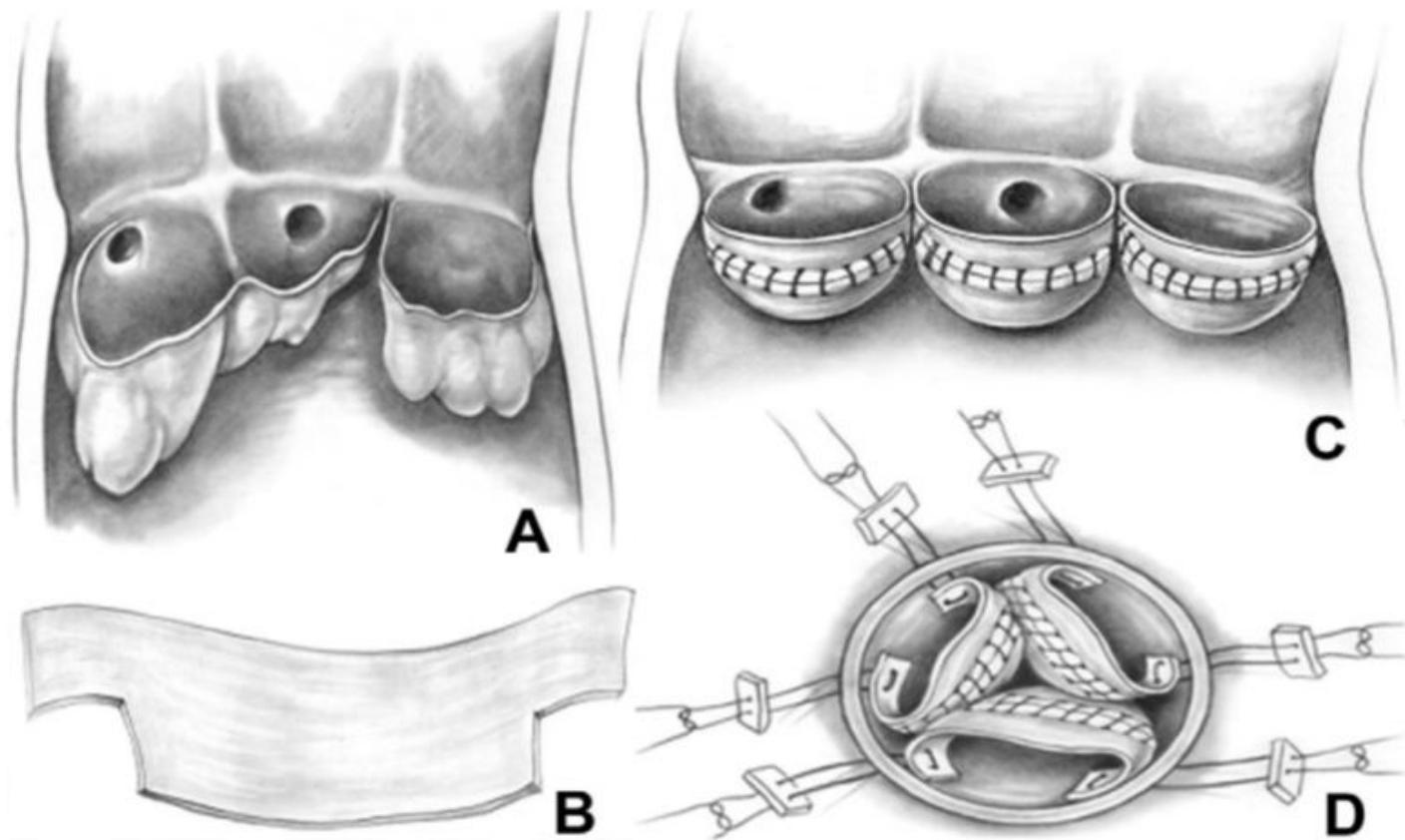
**Received Date:** 20 February, 2016; **Accepted Date:** 14 April, 2016; **Published Date:** 21 April, 2016

## Review

Available treatment options for Aortic Insufficiency (AI) or Aortic Stenosis (AS) include various techniques of surgical aortic valvuloplasty and Aortic Valve Replacement (AVR) [1-6]. It is uncertain whether AVR is the optimal course of therapy, especially in children and infants in whom Left Ventricular (LV) function has to be preserved for a longer life span. Aortic Valve (AoV) remodeling with Cusp Extension Valvuloplasty (CEV) techniques aim at restoring the morphologic characteristics of the valve where simple techniques of commissuroplasty or isolated cusp repair do not suffice to restore competency of valve apparatus. [7-10].

Growth potential and availability of pulmonary auto graft are major advantages of the Ross procedure, especially in the pediatric population. Despite being technically demanding, CEV may be particularly advantageous in infants and children relative to other alternatives, including freedom from reoperation and need for anticoagulation when mechanical prostheses are used, or complications inherent to the Ross procedure. Indications for AoV surgery are often based on experience with adult patients. In a pediatric patient any delay may be detrimental because of the longer life span. In addition, AI after Balloon Valvuloplasty (BV) can be particularly deleterious during infancy owing to its disruptive nature on both valve planes and cusp integrity [11,12]. Durable CEV techniques may sway the timing for intervention toward earlier surgery [13-15].

Advances in surgical techniques, myocardial protection, and streamlined perioperative management have contributed to


a remarkable improvement in early and late mortality after AoV surgery in children. Detailed echocardiographic evaluation of the valve's anatomy and flow kinetics have made repair applicable and safe.

Without precluding future replacement strategies, CEV techniques preserve growth potential of the native tissue with no need for anticoagulation. Excluding lesions (isolated commissural fusion or single cusp prolapsed or tear) for which standard non-CEV techniques have proved durable [16] CEV can be applicable choice in patients with congenital or acquired AI, post-BV AI or/ and AS plus AI and any degree of de conditioned bicuspid AoV with worsening AI, cusp or combined annular and cusp structural failure. As recommended [13,14,17] patients selected for CEV have usually an echocardiographic profile consistent with aortic annulus z value of -1.5 or greater without LV or mitral annulus hypoplasia, and several other echocardiographic Doppler derived indices that determine severity of valve dysfunction and timing for ACEV. These include (1) regurgitant jet-to-annulus diameter ratio of 35% or greater or progressive increase LV end-diastolic dimension (LVEDD)z value of -2.5 or greater, (2) peak instantaneous gradient of 40 mm Hg or greater associated with progressive LV hypertrophy, or (3) mixed lesions with a variable degree of AI and AS. Tricuspidization can be added in bicuspid AoV with eccentric opening, in cases in which raphe were well developed, and patients with aortic valve of limited cusp mobility away from the hinge point. Compromised mobility of cusp at the hinge point, extensive and multiple cusp dysplasia, and extensive commissural fibrosis

extending to the coronary ostia were relative contraindications.

### The main principles for CEV are summarized here

After median sternotomy autologous pericardium treated with a 0.625% glutaraldehyde solution, bovine pericardium or thin polytetrafluoroethylene membrane for the cusp reconstruction is chosen. Aortobicaval cardiopulmonary bypass with moderate hypothermia (32°C), antegrade and retrograde myocardial preservation is used. After an oblique aortotomy incision each cusp is evaluated as to the extent of tissue deficiency, the shape, and the irregularities of the free edge. Only each cusp's thickened free margin and body are thinned out, leaving its base and unaffected body intact. When tricuspidization is needed, the fused cusp is cut at the raphe precisely to the aortic wall. Any sub commissural fused tissue is released. A pericardial extension is then fashioned to fit the specific architecture of each cusp, but slightly oversized in depth (10% to 15%) and length (up to 25%). Continuous 5-0 or 6-0 polypropylene suture is used. The sutures are placed from the cusp's center toward each commissure. The suture line on the pericardial site is slightly wider than that on the cusp to support a generous mural edge. The depth of each sinus is assessed. Each neo cusp's free edge is leveled with the sinotubular bar at the commissural level but more caudally at the center. The commissural ends are suspended at the level of the sinotubular bar using transmural pledgeted polypropylene sutures. Suspension is tailored to provide optimal coaptation, avoid crowding of the sub commissural triangle, and reestablish normal semi lunar appearance of each neocusp. When severe dilatation of the ventricular–aortic junction is present, a reduction annuloplasty at the sub commissural area between right and left cusps is performed. When the cusp is prolapsed, no attempt is made to excise any portions, but the pericardial extension is sutured to the cusp's free margin and, consequently, suspended to the aortic wall as described (Figure 1).



**Figure 1:** Cusp Extension Valvuloplasty with Tricuspidization.

(A) Each cusp is evaluated as to the extent of tissue deficiency, the shape, and the irregularities of the free edge. Only the thickened free margin and body are thinned out, leaving its base and unaffected body intact. When tricuspidization is needed, the fused cusp is cut at the raphe precisely to the aortic wall.

(B) A pericardial extension is then fashioned to fit the specific architecture of each cusp, but slightly oversized in depth (10% to 15%) and length (up to 25%).

(C) The suture line on the pericardial site is slightly wider than on the cusp to support a generous mural edge. Each neocusp's free edge is leveled with the sinotubular bar at the commissural level.

(D) The commissural ends of the constructed cusps are suspended at the level of the sinotubular bar using transmural pledgedged polypropylene sutures.

As reported [13,18] CEV with selective tricuspidization effectively reduced AI and AS and improved LV wall thickness and LV dimensions in infants and children. Promising early outcomes have been reported in adolescents with congenital or acquired aortic valve disease. Most series are relatively small, or include a combination of simple and complex repairs [7,14]. As shown [13,14,19], this repair strategy allows expeditious LV reverse remodeling even in patients with significant LV dilation or LV wall thickness with satisfactory long-term durability and freedom from AVR. The  $z$  values of LVEDD, aortic annulus, aortic sinus diameter, sinotubular junction diameter, and LV wall thickness, which improved after ACEV, remained relatively stable in patients who met no AVR criteria at last echocardiographic follow-up after ACEV. Use of a cusp extension as part of an aortic valve repair strategy in patients with rheumatic AI and a structurally normal aortic valve can be fairly durable [20]. Our experience and that of others [13-15,17,19] indicate that CEV provides a comprehensive repair and restores all the important anatomic features of the aortic

valve. Most critical among these, in a congenitally abnormal valve, are the attenuated sub commissural triangles, the foreshortening of the cusp's free margin, the shallow sinus (es) of Valsalva, and the eccentric and uneven orifice opening. Cusp extensions counteract the valve's inherent sinus (es) of Valsalva shallowness, reestablish normal depth of the sinuses, secure adequate and longer coaptation surface, and restore the normal "Crown like" appearance of the valve. Cusp resuspension at the level of the sinotubular bar, aiming at a wider sub commissural triangle allows more freedom of the cusp's movement. Tricuspidization ensures a larger central opening and minimizes turbulence. Several substitutes have been used to augment the cusps. These include autologous or bovine pericardium, and polytetrafluoroethylene membrane. Glutaraldehyde-treated autologous pericardium has been most consistently used in the aortic position. Although glutaraldehyde promotes calcification and fibrosis, it is needed for collagen fiber linkage and, hence, tissue strength. The concentration and duration of treatment with glutaraldehyde can vary [13-15,17]. Shorter period of rinsing has been advocated for smaller children and infants [19]. This might promote increased pericardial pliability and minimizes the incidence of excessive stiffness and early calcification of the reconstructed cusps.

Published studies have demonstrated an inherent durability failure component with CEV strategies associated with progressively decreasing freedom from aortic valve re intervention [Table 1]. As expected, moderate or greater recurrent AI or AS at interval follow-up after CEV was an independent predictor of failure [17]. With respect to freedom from AI or AS after CEV, outcomes are often unpredictable. Some patients exhibit rest enosis, whereas others have recurrent AI or both. It is recommended that in isolated AS with AoV annulus  $z$  value less than 1.5 the Ross procedure should be considered as the preferred choice due to early failure of CEV strategies.

| Author                              | Year | Study Type:<br>(Only CEV included)     | Material used<br>/Selective Tricuspidization | Age at Repair<br>(years):<br>Median or Mean | Patients<br>N       | Follow-up<br>(years)<br>Median | Early Mortality | Late Mortality | AI at last<br>follow-up <sup>b</sup><br>N(%) | Freedom from<br>Valve<br>Replacement<br>(years) |
|-------------------------------------|------|----------------------------------------|----------------------------------------------|---------------------------------------------|---------------------|--------------------------------|-----------------|----------------|----------------------------------------------|-------------------------------------------------|
| Kalangos A et al <sup>a</sup> [20]  | 1999 | Retrospective<br>(YES)                 | Autologous pericardium/<br>NO                | 11.5±2.7                                    | 41                  | 3<br>(0.4-5)                   | None            | 1              | 1(2)                                         | Not reported                                    |
| Prete R et al <sup>b</sup> [18]     | 2006 | Retrospective<br>(YES)                 | Bovine pericardium/<br>YES                   | 18<br>(10-27)                               | 12                  | 1.1<br>(0.3-3.9)               | None            | ?              | 1(8)                                         | Not reported                                    |
| Alsoufi B et al[13]                 | 2006 | Retrospective<br>(YES)                 | Autologous pericardium/<br>YES               | 11.4<br>(5-17.6)                            | 22                  | 1.7<br>(0.1-5)                 | None            | None           | 7(31)                                        | 80±18%<br>(at 2.5)                              |
| McMullan DM et al <sup>c</sup> [15] | 2007 | Retrospective<br>case-control<br>(YES) | Autologous pericardium/<br>YES               | 12.6<br>(2.6-18)                            | 21                  | 3.1<br>(0.2-7.4)               | None            | None           | 6(28)                                        | 90%<br>(at 3)                                   |
| Bacha EA et al <sup>d</sup> [14]    | 2008 | Retrospective<br>(NO)                  | Autologous pericardium/<br>NO                | 8.8<br>(0.1-18) <sup>1</sup>                | 65(81) <sup>2</sup> | 4.5<br>(0.1-16)                | 1               | 2              | 21(26)                                       | 54±9%<br>(at 7.5)                               |
| Polimenakos AC et al[17]            | 2010 | Retrospective<br>(YES)                 | Autologous pericardium/<br>YES               | 9.3±2.7                                     | 139                 | 14.4<br>(0.1-21.4)             | None            | None           | 44(31)                                       | 71.8±5.1%<br>(at 10)                            |

**Table 1:** Studies in children and adolescents with aortic valve repair where cusp extension valvuloplasty was applied

<sup>(a)</sup>Only patients with rheumatic valve disease

<sup>(b)</sup>Only patients with bicuspid aortic valve

<sup>(c)</sup>Case control study comparing CEV (21 patients) vs Ross operation (25 patients)

<sup>(d)</sup>Combined study the CEV (65) and non-CEV (16) patients

<sup>1</sup>Patients who underwent CEV

<sup>2</sup>In parenthesis are all patients; 65 only had CEV

<sup>3</sup>Moderate or Severe aortic insufficiency

Considering that (1) despite satisfactory long-term outcomes [3-5,21], the Ross procedure requires valves-conduit replacement in the right ventricular outflow and is associated with increasing evidence of progressive neo aortic root dilation or auto graft failure; (2) small valve prostheses, especially in infants and children, can be associated with patient-prosthesis mismatch as the child outgrows the valve, morbidity related to long-term anticoagulation, and the need for future valve replacement [5,22], CEV with selective tricuspidization provides an alternative that can neutralize many of the drawbacks of early valve replacement. It has extremely low operative early or long-term mortality, can be associated with reproducible results, and arrests the disease process until such

an age that valve replacement becomes more advantageous. As a result, with improved patient selection and refinement of cusp extension valvuloplasty techniques, the durability of CEV should continue to improve. Thus, CEV might represent an attractive option in infancy and early childhood and the platform as bridge-to-AVR later in childhood and adolescence.

In conclusion, results with CEV in children and adolescents with complex congenital or acquired aortic valve disease encourage earlier and more aggressive management considering that LV has to preserve function for a longer life span. The aortic annulus  $z$  value, transvalvular pressure gradient, LV hypertrophy progression, LV dimensions (such as LVEDD  $z$  value), and regurgitant jet-to-annulus diameter ratio may guide optimal timing and strategy. When certain anatomic and functional valve criteria are met, CEV with selective use of tricuspidization is a safe, effective, and reproducible surgical choice. It allows expeditious LV reverse remodeling with satisfactory long-term durability and freedom from AVR. Thus, AVR with prosthesis or autologous pulmonary valve can be reserved for patients not suitable for CEV or as a late resort after CEV failure in late childhood or adolescence.

Multi-center studies comparing CEV-related repair techniques with AVR are needed to refine selection criteria and determine patients' suitability for each strategy.

## References

1. Lupinetti FM, Duncan BW, Lewin M, Dyamenahalli U, Rosenthal GL (2003) Comparison of autograft and allograft aortic valve replacement in children. See comment in PubMed Commons below *J Thorac Cardiovasc Surg* 126: 240-246.
2. Durán CM, Alonso J, Gaite L, Alonso C, Cagigas JC, et al. (1988) Long-term results of conservative repair of rheumatic aortic valve insufficiency. See comment in PubMed Commons below *Eur J Cardiothorac Surg* 2: 217-223.
3. Laudito A, Brook MM, Suleiman S, Bleiweis MS, Thompson LD, et al. (2001) The Ross procedure in children and young adults: a word of caution. See comment in PubMed Commons below *J Thorac Cardiovasc Surg* 122: 147-153.
4. Karamlou T, Jang K, Williams WG, Calderone CA, Van Arsdell G, et al. (2005) Outcomes and associated risk factors for aortic valve replacement in 160 children: a competing-risks analysis. See comment in PubMed Commons below *Circulation* 112: 3462-3469.
5. Elkins RC, Lane MM, McCue C (2001) Ross operation in children: late results. See comment in PubMed Commons below *J Heart Valve Dis* 10: 736-741.
6. Hawkins JA, Minich LL, Shaddy RE, Tani LY, Orsmond GS, et al. (1996) Aortic valve repair and replacement after balloon aortic valvuloplasty in children. See comment in PubMed Commons below *Ann Thorac Surg* 61: 1355-1358.
7. Tweddell JS, Pelech AN, Frommelt PC, Jaquiss RD, Hoffman GM, et al. (2005) Complex aortic valve repair as a durable and effective alternative to valve replacement in children with aortic valve disease. See comment in PubMed Commons below *J Thorac Cardiovasc Surg* 129: 551-558.
8. De La Zerda DJ, Cohen O, Fishbein MC, Odim J, A Calderon C, et al. (2007) Aortic valve-sparing repair with autologous pericardial leaflet extension has a greater early re-operation rate in congenital versus acquired valve disease. See comment in PubMed Commons below *Eur J Cardiothorac Surg* 31: 256-260.
9. Ilbawi MN, DeLeon SY, Wilson WR Jr, Roberson DA, Husayni TS, et al. (1991) Extended aortic valvuloplasty: a new approach for the management of congenital valvar aortic stenosis. See comment in PubMed Commons below *Ann Thorac Surg* 52: 663-668.
10. Al Halees Z, Al Shahid M, Al Sanei A, Sallehuddin A, Duran C (2005) Up to 16 years follow-up of aortic valve reconstruction with pericardium: a stentless readily available cheap valve? See comment in PubMed Commons below *Eur J Cardiothorac Surg* 28: 200-205.
11. Vida VL, Bottio T, Milanesi O, Reffo E, Biffanti R, et al. (2005) Critical aortic stenosis in early infancy: surgical treatment for residual lesions after balloon dilation. See comment in PubMed Commons below *Ann Thorac Surg* 79: 47-51.
12. Fratz S, Gildein HP, Balling G, Sebening W, Genz T, et al. (2008) Aortic valvuloplasty in pediatric patients substantially postpones the need for aortic valve surgery: a single-center experience of 188 patients after up to 17.5 years of follow-up. See comment in PubMed Commons below *Circulation* 117: 1201-1206.
13. Alsoufi B, Karamlou T, Bradley T, Williams WG, Van Arsdell GS, et al. (2006) Short and midterm results of aortic valve cusp extension in the treatment of children with congenital aortic valve disease. See comment in PubMed Commons below *Ann Thorac Surg* 82: 1292-1299.
14. Bacha EA, McElhinney DB, Guleserian KJ, et al. Surgical aortic valvuloplasty in children and adolescents with aortic regurgitation: acute and intermediate effects on aortic valve function and left ventricular dimensions. *J ThoracCardiovascSurg* 2008; 135:552-9.
15. McMullan DM, Oppido G, Davies B, et al. Surgical strategy for the bicuspid aortic valve: tricuspidation with cusp extension versus pulmonary homograft. *J Thorac Cardiovasc Surg* 2007; 134:90-8.
16. Chartrand CC, Saro-Servando E, Vobecky JS (1999) Long-term results of surgical valvuloplasty for congenital valvar aortic stenosis in children. See comment in PubMed Commons below *Ann Thorac Surg* 68: 1356-1359.
17. Polimenakos AC, Sathanandam S, El Zein C, et al. Aortic cusp extension valvuloplasty with or without tricuspidation in children and adolescents: long-term results and freedom from aortic valve replacement. *J ThoracCardiovascSurg* 2010; 139:933- 41.
18. Prêtre R, Kadner A, Dave H, Bettex D, Genoni M (2006) Tricuspidisation of the aortic valve with creation of a crown-like annulus is able to restore a normal valve function in bicuspid aortic valves. See comment in PubMed Commons below *Eur J Cardiothorac Surg* 29: 1001-1006.
19. Polimenakos AC, Sathanandam S, Blair C, Elzein C, Roberson D, et al. (2010) Selective tricuspidation and aortic cusp extension valvuloplasty: outcome analysis in infants and children. See comment in PubMed Commons below *Ann Thorac Surg* 90: 839-846.
20. Kalangos A, Beghetti M, Baldovinos A, Vala D, Bichel T, et al. (1999) Aortic valve repair by cusp extension with the use of fresh autologous pericardium in children with rheumatic aortic insufficiency. See comment in PubMed Commons below *J Thorac Cardiovasc Surg* 118: 225-236.
21. Hazekamp MG, Grotenhuis HB, Schoof PH, Rijlaarsdam ME, Ottenkamp J, et al. (2005) Results of the Ross operation in a pediatric population. See comment in PubMed Commons below *Eur J Cardiothorac Surg* 27: 975-979.
22. Alsoufi B, Al-Halees Z, Manlihot C, et al. (2009) Mechanical valves versus the Ross procedure for aortic valve replacement in children: propensity-adjusted comparison of long-term outcomes. *J Thorac Cardiovasc Surg* 137: 362-370.