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Abstract
Aims: Intra-Abdominal Hypertension (IAH) and Abdominal Compartment Syndrome (ACS) are life threatening conditions in 
critically ill patients. During the last decades a lot of experimental animal models had been evolved to explain the pathomechanism, 
the triggering conditions, the diagnostic methods and the ideal treatment strategy of IAH/ACS. The aim of this review is to 
compare animal models which have relevance in clinical investigations and to give an interpretation for the optimal model of 
IAH/ACS investigations.

Methods: Review of literature

Results: Small animal models (mouse, rat, rabbit) are cost-effective, easily applicable, with less infrastructural needs. They can 
be successfully applied for pathophysiological, biochemical, histological and immunohistochemical investigations. Large animal 
models (dog, sheep, pig) are expensive and require quite a lot of infrastructure, however they can represent renal, cardiovascular 
and gastrointestinal functions. They are ideal to investigate anatomical changes, surgical and intensive care techniques. 

Conclusions: Pig has very close anatomy and physiology to human. This similarity gives an excellent opportunity for modelling 
different surgical and emergency conditions and also allows to measure cardiovascular, respiratory and urinary parameters. 

Introduction
The definitions of the Intra-Abdominal Hypertension (IAH) 

and Abdominal Compartment Syndrome (ACS) were declared by 
the World Society of Abdominal Compartment Syndrome (current 
name: World Society of Abdominal Compartment). IAH refers to 
elevated Intra-Abdominal Pressure (IAP) over 12 mmHg. ACS 
occurs when the IAP rises to 20 mmHg with Abdominal Perfusion 
Pressure (APP) below 60 mmHg with one or more new organ 
dysfunction. Despite of high level intensive care the ACS remains 
a life-threatening condition, when any delay in diagnosis and/or 
treatment leads to multi-organ failure and death [1-5]. 

Although during the last decades a lot of publications/
investigations were done on IAH/ACS, the real pathomechanism, 
the exact triggering conditions, the ideal diagnostic and treatment 
options require further investigations in the future [6-67].

There are many reports on different animal models of 
experimental ACS. The most important fields of investigation are 
the pathophysiological effects of IAH, the diagnostic tools and the 
treatment options [6-67]. The most suitable model for a certain 
experimental field has not been clarified yet.

The aim of this paper is to compare animal models which have 
relevance in clinical investigations and to give an interpretation of 
the optimal model for IAH/ACS investigations. 

Method
PubMed® database was used for search of publications related 
to small and large animal models of IAH/ACS. In agree with 
Schachtrupp’s method [1], articles published before 2007 were 
excluded, except those three papers which were important to 
underly a finding or statement. Current literature of IAH/ACS 
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definitions, treatment and open abdomen therapy also has been 
reviewed.

Discussion
Criteria of ACS in animal models

There are several reports about animals used for IAH/

ACS model to answer questions related to pathomechanism, 
pathophysiology, diagnostic and treatment options [6-69]. The 
available articles (except of reviews) are showed in Table 1. 
The definition of ACS in animal model is an artificially elevated 
IAP resulting in circulatory, respiratory and renal failure, which 
requires cardiac output reduction and mechanical ventilation. The 
ideal model is cost-effective, simple and easily reproducible [1].

Authors (ref.nr.) Species Applied IAP 
(mmHg)

Duration 
of IAP

Induction method of 
IAH Aims of the study

Chang, et al. [8] mouse 5,10,20 
cmH2O

24 h saline solution 
intraperitoneally mechanism of IAH in hepatorenal syndrome

Zhang, et al. [11] mouse 5,10,20 
cmH2O

24 h albumin 
intraperitoneally mechanism of IAH in hepatopulmonary syndrome

Jahromi, et al. 
[24] mouse 20 4 h mineral oil 

intraperitoneally
effect of IAH alone and combined with head trauma on 

the permeability of the blood-brain barrier

Youssef, et al. 
[23] mouse 20 4 h mineral oil 

intraperitoneally effect of IAH on the permeability of blood-brain barrier

Q.He, et al. [41] mouse 15,20,30,40 
cmH2O

8 h peritoneal dialysis 
solution

survival time, liver function in IAH and changes after 
oxygen therapy

Runck, et al. [15] rat 7,9,11,13 30 min helium 
pneumoperitoneum

effect of IAH on respiratory system compliance at 
different PEEP levels

Chang, et al. [53] rat nd nd haemorrhage and fluid 
(RL) resuscitation model for secondary IAH

Tihan, et al. [12] rat 20 2 h CO2 
pneumoperitoneum

if glutamine improves reperfusion-induced oxidative 
injury of IAH

Bishara, et al. 
[37] rat 7,10,14 45 min CO2 

pneumoperitoneum
if phosphodiesterase-5 inhibition protects against renal 

effects of IAH+ congestive heart failure

Sukhotnik, et al. 
[31] rat 6 2 h air pneumoperitoneum effect of IAH and hyperoxia on superior mesenteric 

artery blood flow, enterocyte proliferation and apoptosis

Meier, et al. [28] rat 40 nd gelatine solution 
intraperitoneally

whether compartment pressure of the rectus sheath 
reflects IAP

Gong, et al. [54] rat 20 4 h nitrogen 
pneumoperitoneum

whether IAP of 20 mmHg is comparable with ACS in 
humans
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Meier, et al. [29] rat 20 3 h gelatine polysuccinate 
intraperitoneally

if monitoring the rectus abdominis muscle by 
microdyalisis means early detection of organ 

dysfunction in ACS

Düzgün, et al. [7] rat 15,20,25 1 h polyethylene glycol 
intraperitoneally

relationship between intestinal ischemia and serum 
D-lactate levels in IAH

Leng, et al. [57] rat 4,8,12,16,20 90 min nitrogen 
pneumoperitoneum effect of slightly elevated IAP on intestinal mucosa

Lima, et al. [3] rat 12 3 h cotton surgical 
dressing model for ACS

Meier, et al. [10] rat 20 3 h gelatine polysuccinate 
intraperitoneally IAH and decompression induced reperfusion injury

Akkapulu, et al. 
[55] rat 15 1,4 h air pneumoperitoneum morphological/functional alteration of the adrenal 

glands in IAH

Chen, et al. [42] rat 20.25 24 h air pneumoperitoneum effects of open and conservative closure techniques on 
liver function in IAH+sepsis

Liu, et al. [43] rat 20 4 h air pneumoperitoneum if melanocortin-4 receptor agonist reduces intestinal 
injury in IAH

Chadi, et al. [45] rat 20 2 h CO2 
pneumoperitoneum mechanisms of tissue and microvascular injury in ACS

Cagido, et al. [51] rat 10 2x15 min air pneumoperitoneum effect of alternating ventilation in IAH

Mahjoub, et al. 
[58] rabbit 20 1 h glycine solution 

intraperitoneally effect of IAH on left ventricular relaxation

Ünlüer, et al. [9] rabbit 25 1 h CO2 
pneumoperitoneum

role of cobalt- albumin binding assay for the early 
diagnosis of ACS

Yagci, et al. [17] rabbit 15,20,25 12 h intraabdominal balloon bacterial translocation at various levels of IAH

Yoshino, et al. [1] rabbit 0,8-45,1 nd instillation of RL 
intraperitoneally relationship between rabbit and human IAP

Balci, et al. [36] dog 45 cmH2O 4 h saline solution 
intraabdominally effect of IAH on gastric emptying time
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Avraamidou, et 
al. [32] pig 25-30 3 h helium 

pneumoperitoneum

effect of ischaemic preconditioning on hemodynamic, 
biochemical and inflammatory alterations caused by 

IAH

Henzler, et al. 
[30] pig 30 2x9 h CO2 

pneumoperitoneum

effect of preserved spontaneous breathing during 
mechanical ventilation on hemodynamics, gas 

exchange, respiratory function and lung injury in IAH

Kotzampassi, et 
al. [27] pig 12 30+60 min helium 

pneumoperitoneum
if combination of PEEP ventilation and IAH alter 

splanchnic hemodynamics greater than alone

Cortes-Puentes, 
et al. [26] pig 5-25 nd air pneumoperitoneum influence of IAH and PEEP on airway plateau pressure 

and bladder pressure

da Silva Almeida, 
et al. [22] pig 20 4x30 min air pneumoperitoneum cardiopulmonary effects of PEEP equalization to IAH 

and acute lung injury 

Mohan, et al. [33] pig 20 4 h CO2 
pneumoperitoneum

effects of IAP on physiologic changes of abdominal 
wall reconstruction and component separation

Jaques, et al. [35] pig 30 2x30 min abdominal banding evaluate dynamic indices of fluid responsiveness

Gruenewald, et 
al. [34] pig 20 nd CO2 

pneumoperitoneum

compare three continuous cardiac output monitoring 
methods and a bolus thermodilution CO technique in 

IAH

Regli, et al. [39] pig 18.26 nd air-filled 
intraabdominal balloon

impact of IAP and PEEP on femoral venous pressure 
and femoral venous oxygen saturation 

Regli, et al. [59] pig 18.26 nd air-filled 
intraabdominal balloon

effect of PEEP on functional residual capacity and 
oxygen delivery in IAH

Moller, et al. [18] pig 20.25 12 h

CO2 
pneumoperitoneum 

and saline-filled 
intraabdominal bag

whether two methods used to create IAH has different 
impacts on organ dysfunction

Kubiak, et al. 
[13] pig 30 nd CO2 

pneumoperitoneum

if IAH and atelectasis would be reflected by 
transpulmonary pressure but independent of airway 

plateau pressure

Vivier, et al.  [4] pig 30 nd abdominal banding effects of gradual increase in IAP on central circulation

Shah, et al. [52] pig 20 nd portal vein occlusion 
and haemorrhage

develop a large animal model of ACS incorporating 
hemorrhagic shock/resuscitation

Argyra, et al. [14] pig 20.35 45-60+45-
60 min

helium 
pneumoperitoneum if natriuretic peptides are produced in IAH
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Formenti, et al. 
[21] pig 15 nd insufflation

the ability of PEEP to affect the reduction of resting 
lung volume in IAH, unilateral pleural effusion and 

their combination

Regli, et al. [20] pig 18.22 30 min intraabdominal balloon respiratory and cardiac effects of PEEP in IAH+ sick 
lungs

Benninger, et 
al. [6] pig 30 nd CO2 

pneumoperitoneum
if compartment pressure of the rectus sheath reflects 

IAP

Nielsen, et al. 
[49] pig 25 4 h CO2 

pneumoperitoneum
if D-lactate could be a useful biochemical marker of 

intestinal ischaemia

Du, et al. [46] pig >12 2 h haemorrhage and fluid 
(RL) resuscitation

if speckle tracking imaging is useful in assessment of 
myocardial contractibility in IAH

Correa-Martin, et 
al. [40] pig 30.20 5 h CO2 

pneumoperitoneum

if gastric air tonometry is an early predictor of 
inadequate splanchnic perfusion and its relation to 

abdominal perfusion pressure

Chopra, et al. 
[60] pig 30 nd CO2 

pneumoperitoneum evaluate IAP measurement techniques

Diaz, et al. [61] pig 22 nd fluid instillation 
(Voluven 6% ®)

effect of tidal volume on pulse pressure and stroke 
volume variation and prediction of fluid responsiveness 

in IAH

Leventi, et al. 
[50] pig 30.25 3h, 15 min helium 

pneumoperitoneum
if ischemic preconditioning can modify oxidative stress 

induced by IAH

Otto, et al. [44] pig 30 12 h CO2 
pneumoperitoneum effect of IAH on pancreatic histology and ultrastructure

Olofsson, et al. 
[48] pig 50 nd CO2 

pneumoperitoneum

gastric, intestinal and renal cortex microcirculation 
and central hemodynamics and respiration in stepwise 

increase of IAP

Lu Ke, et al. [25] pig 25 6,9,12 h nitrogen 
pneumoperitoneum perfect time of decompression

Skoog, et al. [16] pig 30 4,6 h CO2 
pneumoperitoneum

metabolic response and circulatory changes after 
decompression in IAH

Lu Ke, et al. [56] pig 30.20 12 h nitrogen 
pneumoperitoneum

effect of SAP+ IAH on hemodynamics, systemic 
oxygenation, organ damage

Elvevoll, et al. 
[62] pig 30.15 2+2 h helium 

pneumoperitoneum
effect of IAH on microvascular fluid exchange and 

microcirculation
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Brenninger, et 
al. [5] pig 30 nd fluid-filled 

intraabdominal bag

comparison of volume reserve capacity and 
development of IAH after forced primary abdominal 

closure and different TAC techniques

Hlebowicz, et al. 
[38] pig nd nd nd microvascular blood flow in the intestinal wall and the 

omentum before and during NPWT

Kaussen, et al. 
[19] pig 30.15 24 h CO2 

pneumoperitoneum
bacterial translocation to mesenteric lymph nodes in 

IAH

Correa-Martin, et 
al. [47] pig 20.30 3 h CO2 

pneumoperitoneum indirect measurement techniques of IAP

Nemeth, et al. 
[69] pig 30 3 h fluid-filled 

intraabdominal bag

microcirculatory and micro-rheological alterations 
in ACS, using various temporary abdominal closure 

methods, including NPWT

Csiszkó, et al. 
[69] pig 30 3h fluid-filled 

intraabdominal bag

microcirculation of organs, haemorrheological changes, 
pressure distribution in the abdominal cavity during 

NPWT

Ferrara, et al. [63] sheep 20 2 h saline solution 
intraabdominally

effect of IAH on intestinal and renal blood flow, urine 
output

The most adequate animal models for the different fields 
of investigations still remained unclear, as well to determine the 
adequate IAP level, the period of IAH and the method of IAH 
creation to represent the human conditions better. 

The most often used animals are rats and pigs. The application 
of animal research to human scenarios is challenging due to the 
differences in abdominal wall elasticity. Rabbits have the lowest, 
followed by dogs, and humans has the highest elasticity [68]. Pig 
chest and abdominal wall contours are different from human [24].

Methods for developing IAH/ACS

The significant elevation of IAP (˃12 mmHg) usually is 
secondary to intra-abdominal bleeding, sudden development of 
fluid accumulation (ascites, peritonitis), oedema of the organs 
and/or retroperitoneal space caused by extra-abdominal condition 
(burn, cardiac arrest, sepsis). This is often observed in severe acute 
pancreatitis, bowel distension and/or obstruction. Iatrogenic IAH 
could be secondary to excessive fluid resuscitation [2,4,5]. 

IAH can be induced by inflating the abdomen with gas (air, 
Nitrogen, Carbon-Dioxide (CO2), helium or argon) or injecting 
fluid (saline, polyethylene glycol solution, glycine solution, 
mineral oil, dextran, hydroxyethyl starch, gelatine polysuccinate, 
peritoneal dialysis solution) into the peritoneal cavity [1,10,11,15,
21,27,30,32,34,44,57,61]. 

Both gases and fluids can be applied directly or using an 
intra-abdominal plastic bag [67]. Although in case of direct 
intraperitoneal application the distribution of pressure is more 
equal than in case of balloon placement, the absorption of the 
material has to be taken in consideration, especially when air 
carbon-dioxide or crystalloids were used [1]. CO2 may cause 
hypercapnia and acidosis [21]. It has been proved that CO2 is 
cost effective, easily available and controllable, sustainable for a 
long period. Its absorption does not result organ insufficiency and 
the absorbed amount is minimal in case of IAP higher than 15 
mmHg [22]. Helium and argon are inert but expensive, and argon 
can affect hemodynamic parameters [1]. Nitrogen is a colourless, 
odourless, tasteless, inert material [28]. 

Fluid instillation represents best the so-called ‘Pathologic’ 
model described by Schachtrupp, et al. where bowel oedema is 
the etiologic factor of IAH, induced by haemorrhage or systemic 
inflammation followed by fluid resuscitation [1]. Kaussen, et al. 
succeeded to reproduce IAH- induced pathologic changes, bacterial 
translocation in a ‘Non-pathologic’ model, where ACS was not 
triggered by intra-abdominal pathologic condition [22]. Glycine 
solution is non-absorbable in contrast to crystalloids [1]. Dextran, 
hydroxyethyl starch may contribute with immune response. 
Gelatine polysuccinate seems not to cause fluid redistribution [31]. 
Mineral oil for this indication has been described as a non-toxic, 
inert, incompressible, non-absorbable material [26]. 
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IAH induction by gas or fluids may be completed or 
stabilized by an abdominal restraint device, a mechanical cast 
around the abdomen [7,38,56]. Lima, et al. induced IAH with 
Zobec® (cotton surgical dressing) insertion and found IAP constant 
during experiment [6]. 

IAH can be supplemented by other interventions: animals 
can be haemorrhaged and resuscitated or kept hypovolemic. Bowel 
ligation can be performed to represent obstruction, or punctured to 
induce sepsis [1]. Acute pancreatitis, acute lung injury can also 
be induced [23,25,59]. Bishara, et al. created a congestive heart 
failure rat model with creation of fistula between the abdominal 
aorta and inferior caval vein, or with occlusion of the left anterior 
descending artery [40]. Chang, et al. worked up portal hypertension 
in rat model by partial ligation of the portal vein [56]. Based on the 
connection between IAH and blood-brain barrier, disruption can 
be examined with head trauma imitation in mice [27]. Keeping the 
IAP at 20 mmHg during four hours can result blood-brain barrier 
disruption in mice, which is reversible performing decompression 
[26]. Mohan, et al. emphasized that primary closure of the 
abdomen in case of large abdominal wall defects can lead to IAH 
in pigs, and component separation was advised as a new hernia 
repair technique [36].

Which pressure is able to generate ACS?

IAH caused organ dysfunction can be examined on both 
small and large animal models [6,10,11,14,20-23,25-27,30,32-
34,39,43,47,48,51,52,56,58-60,62,64-66]. The pressure applied 
is usually between 12 and 30 mmHg. The duration of the high 
pressure period is between 30 minutes and 24 hours regardless of 
animal type [6,10-15,17-23,25-28,30-33,35-39,43-50,52-54,58-
61,65-67]. Very similar cardiorespiratory, urinary and histological 
changes were found to human data in Gong’s rat model applying 
20 mmHg IAP for 4 hours. The IAH was induced by nitrogen 
neumoperitoneum followed by four hours’ reperfusion period [57]. 
In large animal models the most commonly used pressure was 30 
mmHg [7-9,16,17,19,22,33,35,38,47,50,53,63,65]. This pressure 
level is required in pigs to indicate changes in gastric or intestinal 
mucosal blood flow [50]. 15 mmHg IAP during four hours was 
able to induce functional but no morphological changes of the 
adrenal glands in rat model [58]. Reperfusion caused injury of the 
liver, lung, intestines and myocardium can be observed in rats after 
third hour of IAP=20 mmHg [13]. 

Mild elevation of IAP (8 mmHg) can result bowel mucosal 
ischaemia in rat model, highlighting that IAH requires very urgent 
treatment [60]. Renal and respiratory dysfunctions with early 
inflammatory changes and deficient perfusion of the liver was 
demonstrated in Chadi’s rat model using fluorescence microscopy. 
The neutrophil activity was represented by myeloperoxidase. 
[48]. Laparoscopy and post-desufflation reperfusion caused bowel 
isquemia was observed during superior mesenteric artery blood 

flow measurements in rat model applying 6 mmHg IAP for two 
hours [34].

Gradual increase of IAP helps to observe the effects of 
ischemic preconditioning in pig model [35,53], especially when 
it leads to redistribution of blood volume to the thorax [51]. It is 
also possible to examine isquemia reperfusion caused changes in 
different periods of decompression [15,19,53,55].

Diagnostic procedures in animal models 

To avoid delay in diagnosis making and to prevent multi organ 
failure, continuous monitoring of IAP is highly recommended. The 
optimal pressure measurement method is still a debating question, 
however there are many publications underlying the advantages of 
the widely used urinary catheter technique [2,4,9,28,31,43,50,63]. 
The bladder pressure measurement in human is a relatively 
small strain for the patient. This technique is safe, cost-effective, 
easily applicable and widely available, however there are few 
contraindications like injury or obstruction of the urinary bladder 
[1,20,43,63].

An indirect method of pressure measurement was investigated 
by Meier in rectal sheet. It seems to be a good alternative, applied 
for diagnosis and monitoring, although it has to be considered that 
the extensibility of the rat abdominal wall is different from that of 
humans [28]. Pig rectal sheet compartment pressure was studied 
by Benninger’s team during IAH and found that it reflects IAP 
well [9].

In a proper position of the animal the level of the fluid in 
the catheter reliably shows IAP when IAH is induced by free fluid 
instillation into the peritoneal cavity [44]. In rat models usually 
two percutaneous catheters (one for inflation and another for 
measurement) used to be placed [34]. IAP monitoring through 
nasogastric catheter showed too low values in pigs, however 
another working group has found gastric air tonometry (gastric 
pH) sensitive enough in IAH and closely related to splanchnic 
hypoperfusion in pigs [43,63]. Comparing transvesical, transgastric 
and transperitoneal measurement techniques in pig model, it can be 
concluded that the transvesical method provides the most similar 
results to the direct measurement techniques [50]. Femoral venous 
pressure monitoring cannot be recommended to asses IAP in pigs 
[42]. Direct measurement of IAP at different parts of the abdomen 
is possible with placement of special sensors and a multichannel 
monitoring device [67]. Measurement of the microcirculation by 
Laser Doppler Flowmetry can be a useful tool for estimation of 
organ damage [41,65-67]. 

Abdominal rectal muscle microdialysis in rats is a promising 
tool for monitoring IAP and early detection of organ damage 
[32]. This technique is able to show early (after one hour) and 
more pronounced increase of interstitial concentration of lactate, 
glycerol level and lactate/pyruvate ratio. Brain natriuretic peptide 
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was found elevated in pigs during IAH, therefore it could be an 
alternative marker of ACS [17]. Other parameters like serum 
D-lactate level -product of intestinal bacterial metabolism- may 
be an early indicator for increased IAP before intestinal isquemia 
occurs in rats. Lactate level is elevated in the portal vein secondary 
to increased mucosal and capillary permeability [10,52].

Conservative therapy of ACS in animal models

Conservative treatment options in human medicine are 
sedation, diuretics, hemodialysis, muscle relaxation, decompression 
of the gastrointestinal tract, evacuation of the abdominal fluid 
through a percutaneous catheter, etc. [2,4,5]. The two most 
important parts of intensive therapy are still under debate: which 
is the optimal ventilation strategy, and which is the quality and 
quantity of fluid should be given for resuscitation and to maintain 
mean arterial pressure without enlargement of organ oedema or 
intra-abdominal fluid collection.

Lima et al. has found that IAH with hypovolaemia causes 
more severe damage to the intestines after three hours, reason why 
hypovolaemia should be urgently corrected [6]. Rat model seemed 
to be ideal to demonstrate the effects of different resuscitation 
fluids on IAP [56].

IAH rat model is suitable for respiratory parameter 
measurement and mechanical ventilation technique evaluation [54]. 
It has been proved that 100% oxygen inhalation improves survival 
of the liver and intestines in IAH mice and rats [34,44]. Positive 
End Expiratory Pressure (PEEP) ventilation effects on IAH/ACS 
have been investigated by several authors. No negative effect on 
oxygenation and hemodynamics related to PEEP was found in rats 
[18]. PEEP effect was assessed in IAH pig model with healthy 
and sick lungs by Regli. It was found that PEEP is recommended 
in lung injury to prevent ARDS and atelectasis. In porcine model, 
PEEP not lower than IAP is advisable because of the favourable 
effect on functional residual capacity and oxygen delivery. Higher 
PEEP levels do not result further elevation of IAP [25,62]. Henzler 
has proved that spontaneous breathing besides Bilevel Positive 
Airway Pressure does not improve respiration, nor hemodynamics 
and causes lung damage in pigs [33]. In contrast, Kotzampassi 
highlighted that PEEP and IAH act cumulatively and both causes 
hypoperfusion of the liver and intestines [30]. IAH and PEEP have 
influence on airway plateau pressure and bladder pressure [29]. 
Plateau pressure and transpulmonary pressure in IAH pig model 
was examined by Kubiak. Transpulmonary pressure was found 
useful to set mechanical ventilation in critically ill [16].

Therapeutic effects of different drugs were investigated by 
several working groups, for example tadalafil (phosphodiesterase-
5-inhibitor) on IAH induced renal dysfunction [40], melanocortin-
4-receptor agonist on intestinal inflammatory changes and 
ischaemia in ACS rats [46]. Norepinephrine effects were examined 

by Ferrara in sheep model and no change was found in intestinal 
blood flow, neither in intestinal villi microcirculation, nor on renal 
perfusion [66]. Some protective effects were found from glutamine 
to avoid reperfusion induced damage in rats [15].

Surgical treatment of ACS in animal models

When conservative therapy fails urgent de-compressive 
laparotomy followed by open abdomen management is necessary 
[2,4,5,19,28,41,45]. Identify the critical level of IAP or IAH period 
when the surgery is indicated remained controversial questions. 
The well-known, but nowadays only historical Bogota Bag 
insertion still could have important role in war situations, in mass 
casualty incidence or in the Third World countries. The Negative 
Pressure Wound Therapy (NPWT) become “Gold standard” for 
open abdomen management [4,5,64,67] (Table 2.). The mode 
of application, the effects and side effects also require further 
evaluation. 

Table 2: IAH/ACS Treatment.
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The timing of decompression is also a crucial question. In 
pig model it seemed to be reasonable after six hours of 25 mmHg, 
when improved intestinal blood flow, normalized intra-peritoneal 
lactate/pyruvate ratio -referring better oxygenation of the organs- 
were detected [19,28].

Pig and rat models were used for evaluation of abdominal wall 
reconstruction after decompressive laparotomy [8,13,41,45,69]. No 
significant differences were found with regard to the hemodynamic 
and pulmonary parameters, but bag silo and zipper had higher 
volume reserve capacity (adding volume into the bag) than NPWT. 
NPWT application is highly advised, because it provides better 
conditions for delayed fascial closure [8]. The pig model is ideal 
for microvascular blood flow monitoring with Laser Doppler 
Flowmetry. It has been proved that with increasing levels of 
negative pressure applied, intestinal blood flow lowers, promoting 
fistula formation [41]. Nemeth et al. investigated microcirculatory 
and micro-rheological data in ACS pig model during Bogota-bag 
and NPWT application. NPWT at pressure levels -100 mmHg and 
-50 mmHg resulted better outcome. Important finding from this 
study that the worst microcirculatory parameters were measured 
in the omental fat tissue both in NPWT and Bogota Bag groups, 
probably due to its exposed position during the experiment [67]. 
In human conditions this finding probably even more significant, 
considering that the omentum in pig is a rudimentary organ 
compared to human and hardly covers the intestines.

In another pig model [69] -also from our team- it has been 
proved that the protective layer provides equal and effective 
negative pressure distribution for the lateral parts of the abdominal 
cavity as well. This finding underlines the effectiveness of NPWT. 
According to our findings, -100 mmHg negative pressure seems to 
be the most preferable to apply in clinical conditions [69]. 

Are there any further investigating fields of ACS animal 
models?

Cardiac events were assessed in some experimental IAH/
ACS models [7,23,49,51,59,61,64]. Left ventricular relaxation can 
be measured in rabbits [61]. Continuous cardiac output monitoring 
techniques may be investigated in pigs allowing early detection 
of hemodynamic instability [37]. It has been proved in IAH pig 
model that ischaemic preconditioning can modify organ damage 
level, hemodynamic, biochemical and inflammatory parameters 
[35,53]. Du, et al. has investigated the speckle tracking imaging, 
a useful method for myocardial contractibility assessment in mini 
pig IAH model [49]. 

Pancreatitis is one of the most frequent etiology of IAH. 
The ongoing pancreatitis with rising tissue necrosis results higher 
and higher IAP [47]. Intraductal sodium taurocholate was used to 
create experimental Severe Acute Pancreatitis (SAP) in pigs by 
Lu Ke’s team. It was found that due to the good abdominal wall 

compliance the pig has broad space in the abdomen, therefore SAP 
creation has to be combined with nitrogen neumoperitoneum to 
induce IAH [59]. 

Bacterial translocation from the gastrointestinal tract occurs 
at higher levels of IAP (15-20 mmHg) in rabbits, and at 15-30 
mmHg in pigs after 24 hours [20,22]. Cobalt-albumin binding assay 
can help in early diagnosis making of ACS detecting intestinal 
ischaemia in rabbits [12]. 

Pulse pressure variation and stroke volume can be examined in 
IAH pig model in means of fluid resuscitation needs [38,64,65].

Ascites and cirrhosis can be induced in mice by 
intraperitoneal administration of albumin and subcutaneous carbon 
tetrachloride injection to examine hepatopulmonary syndrome and 
IAH [14]. Mouse model can be used to describe the correlation 
between hepatorenal syndrome and IAH [11]. Gastric empty time 
was measured with scintigraphy in dogs by Balci’s team. Close 
correlation was found between IAP and gastric empty time. Close 
monitoring of this factor is advised in ACS patients to prevent 
gastric reflux and aspiration [39]. 

Acute lung injury can be induced by lavage with a surfactant 
deactivating material or oleic acid to study acute lung injury and 
IAH effects in pigs [23,25]. It was found in pleural effusion pig 
models that early abdominal decompression improves the lung 
restriction [24]. 

Conclusions
Small animal models (mouse, rat, rabbit) are cost-effective, 

easy to apply, with less infrastructural needs. They are suitable for 
experiments require large sample numbers. They can be successfully 
applied for pathophysiological, biochemical, histological and 
immunohistochemical investigations. Anatomy and physiology of 
these small animals may differ from that of humans, but they are 
closer to infants’. Small animal models can be applied for several 
investigation fields of IAH/ACS, and give well correlating results 
to large animal data.

There is consensus about large animal models (dogs, sheep, 
pigs), which are closest to human conditions. Although they are 
expensive and require quite a lot infrastructure, they can represent 
renal, cardiovascular and gastrointestinal functions. Large animal 
models are ideal to investigate anatomical changes, surgical and 
intensive care techniques. 

Both small and large animal models have certain limitations, 
which have to be taken into consideration during data evaluation 
and before to apply in clinical use.

According to literature and to our experience, porcine models 
are ideal for IAH/ACS experiments. Pig has very close anatomy 
and physiology to human which provides excellent opportunity for 
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tissue (histology) and bacteriological sampling, for measurements 
on microcirculation and for pressure monitoring at different 
points of the abdomen. The pig model also allows respiratory, 
cardiovascular parameter and urinary output monitoring, and 
evaluation of new surgical techniques. 
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