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/Abstract

N

The integrity of the nigrostriatal dopaminergic system underpins the capacity to initiate and control movement with
loss of dopamine a central aspect of inability to express activity. Effective strategies for enhancing physical exercise provide
both preventional and interventional ingredients for maintaining movement and/or reinstating movement among patients with
Parkinson’s disease, as well as improving the performance of non-motor behaviors. The relative loss or availability of striatal
dopamine correlates directly with the expression of locomotor behavior in mice. Regular and persistent maintenance of exer-
cise programs ensures a plethora of lasting benefits that include enhanced or repaired functional connectivity, and elevations of
mood, cognitive performance, sleep quality and motor ability concurrent with reductions in pain, apathy and weight problems.
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Taking into account, the burgeoning proportion of individu-
als presenting more-or-less sedentary occupations/lifestyles, physi-
cal exercise, defined as a planned, structured physical activity with
the purpose of improving one or more aspects of physical fitness
and functional capacity, presenting a useful and non-invasive, non-
pharmacological health strategy, renders a lifestyle encompassing
perhaps the most effective health-promoting behavior available
to individuals with positive outcomes for ageing as well as both
neurologic and psychiatric conditions. Since ageing-related disor-
ders may be expected to increase and the relative benefits of new
and improved chemotherapies will probably not develop apace,
it seems necessary that preventional and interventional measures
focus upon lifestyle suitability. Taking into account the prolonged
prodromal stage of PD, in most cases, renders it a risky notion
to decide whether or not insidious disease expression leads to a
reduction of physical activity years before motor symptom onset
and PD diagnosis (Ascherio and Schwarzschild, 2016). Physical
exercise/activity improves neuroimmune functioning, ensures the
prevention/intervention of chronic heart disease, cardiovascular
problems, type II diabetes, obesity and psychological Ill-health,
e.g. depressiveness and apathy, all of which may exacerbate the se-
verity of Parkinson’s disease (PD), and provide a buttress to guard
against the risk for developing future parkinsonism in different
populations. Thus, despite limited success reflected by longitudi-
nal studies for assessing the its efficacy in PD patients, exercise

is recommended to restore and reinstate functionality in the dop-
amine (DA) system and promote better performances to improve
motor functions in individuals (Fisher et al., 2013, 2014; Goodwin
et al., 2008, 2011, 2015; Petzinger et al., 2015). In this context, it
has emerged that all types of physical activity, and not just exer-
cise regimes, may decrease the risk for PD or decelerate the rate
of disorder progression (Ellis et al., 2013; Paul et al., 2016; Yang
et al., 2015), not just with regard to symptom-profiles but also af-
fecting accidents due falls, and cognition, mood and sleep domains
(Reynolds et al., 2016; Sparrow et al., 2016). Nevertheless, there
is meagre support for the contention that any particular type of
exercise, e.g. the superiority of progressive resistance training,
in comparison with other physical training for rehabilitation in
PD ought to prevail (Saltychev et al., 2016). Sedentary lifestyles
are implicated in several neurodegenerative conditions that may
or may not co-occur with PD through the shared propensities for
neuroinflammation, oxidative stress and/or metabolic syndrome at
cellular levels (Jang et al., 2016; La Hue et al., 2016).

The necessity for establishing and promoting strategies
and tactics for embracing physical activity and reducing the time
spent dwelling/retreating within sedentary behaviors among elder-
ly populations with mild to moderate PD has never been greater
(BenkaWallen et al., 2015). It is important also to be aware that
PD patients often present a concatenation of non-motor symptoms,
such as cognitive impairment and dementia (Chen et al., 2016),
sleep problems (Pagano et al., 2016), depression and anxiety (Tay-
loretal., 2016), apathy (Alzahrani et al., 2016), pain (Young Blood
etal., 2016) and fatigue (Martino et al., 2016). Non-exercise physi-
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cal activity, with positive effects upon functional performance, has
been shown to be related to the severity of motor symptoms in
PD autonomous from the magnitude of nigrostriatal degeneration
depicting an inverse relationship between motor UPDRS severity
scores and duration of non-exercise physical activity (Snider et
al., 2015). Under laboratory conditions utilizing the MPTP mouse
model of PD, physical exercise has been found to alleviated aki-
nesia and DA deficits (Archer and Fredriksson, 2010, 2012, 2013;
Archer and Kostrzewa, 2016; Archer et al., 2014; Fredriksson et
al., 2011) and ameliorate several parameters of regional and cellu-
lar neurodegeneration/neuroinflammation by promoting synaptic
plasticity (Shin et al., 2016), neural precursor cell proliferation in
the hippocampus (Klein et al., 2016; Sung, 2015), activations of
antioxidant systems (Tsou et al., 2015) and mitochondrial function-
ing (Cheng et al., 2016; Gongalves et al., 2016; Marques-Aleixo et
al., 2016), as well as providing improved cognitive performan and
DA integrity (Aguiar et al., 2016). In order to derive a more strin-
gent test of parkinsonism in the laboratory, Hood et al. (2016) ad-
ministered aged mice (16 month-old mice) with progressive doses
of the selective DA neurotoxin, MPTP, that induced a 55% loss of
striatal tyrosine hydroxylase (TH), and a somewhat higher loss of
dopamine transporter (DAT). Exercise, performed on a treadmill
at 18 cm/sec over 1 hour, 5 days/week, over 4 weeks, did not alter
the loss of TH or DAT in the MPTP-denervated mice although
spontaneous locomotion was elevated in these mice. Nevertheless,
despite this latter observation a strong relationship between sed-
entary or exercise conditions — MPTP-lesioned or intact (vehicle-
treated) mice — high or low levels of DA and high or low levels of
spontaneous locomotor behavior in a correlational analysis among
50 individuals mice (see Figure 1, below).
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Figure 1: Mean locomotion counts in the Spontaneous Motor activ-
ity test during Week 10 (Friday test) in relation to mean striatal dop-
amine concentration (ng/mg) by each of the five groups: Vehicle, MPTP,
MPTP+Exercise, MPTP+Exerciset+tMilmedl (MPTP+Exercise+Yeast*)
and MPTP+Exerciset+MilmedIl (MPTP+Exercise+Yeast**) groups, and
by all 50 mice studied. Pearson’s correlation coefficient, r = 0.914, (N =

50) p < 0.00001. Yeast* = MilmedlI; Yeast** = MilmedIl. Methods and
Procedures for MPTP and Milmed treatments as well as the exercise (run-
ning-wheels) protocols were carried out and maintained as detailed pre-
viously (Archer and Fredriksson, 2010, 2012, 2013; Archer et al., 2014;
Fredriksson et al., 2011).

This correlational analysis implies that a sufficiency of locomotor
behavior is dependent upon the integrity of DA neurons. Loss of DA due
to MPTP treatment accompanied by sedentary conditions leads to low
levels of activity. As hypothesized (Kravitz et al., 2016) deficits in DA
signaling contribute to a sedentary state leading to obesity. This notion
is underpinned by: (i) impairments in DA synthesis, release and recep-
tor function relate to obesogenicdiets, and (ii) since movement initiation
and control requires intact striatal DA, loss of DA is central to sedentary
behavior.

Human studies of PD patients point to marked improvement of
gait, balance and mobility due to the organization of supervised exercise
programs using fMRI to promote improvements in functional connectiv-
ity (Alberts et al., 2016; Beall et al., 2013; Shah et al., 2016). In a study
of 19 early PD patients and 20 healthy controls who took part in a super-
vised, high-intensity, stationary recumbent bicycle exercise program (3
occasions/week over 12 weeks) utilizing maximal aerobic power, Duch-
esne et al. (2016) employed brain scanning to examine changes related to
performance of an implicit version of the serial reaction time task before
and after the learning task. Pre-post implicit motor sequence learning-re-
lated escalations of functional activity were observed in the hippocampus,
striatum and cerebellum of the PD patients; these functional activity incre-
ments were correlated with increases in aerobic fitness with regard to the
hippocampus but not the cerebellum which presented a negative relation-
ship to aerobic fitness. They concluded that exercise induced alterations
in brain regions associated with motor learning accompanied by improved
motor performance in PD patients. Despite the prolonged prodromal stage
of PD, there is a sufficiency of evidence to maintain that sports activity/
physical training combined with high levels of overall physical activity
by youth and young adults provide protective measures unless pre-exist-
ing markers for biologic or genetic factors that lower PD risk are pres-
ent (Shih et al., 2016). Motor training exercises involving ‘coordination
and manipulation therapy’ improved mobility, balance and cardiac func-
tion in PD patients over the course of a 12-month period (Zhao et al.,
2016). Furthermore, exercise programs designed for PD patients allevi-
ated non-motor symptoms over several domains that included depression,
cognition, fatigue, apathy, anxiety, and sleep (Cusso et al., 2016). Lauze
et al. (2016) found that physical exercise/activity interventions induced
positive effects upon physical and functional capacities whereas effects
upon disease symptoms and psychosocial aspects, although present, were
to a lesser extent and with greater variability. One aspect for concern is
that exercise studies in PD and dementia consistently exclude Lewy Body
dementia patients (Inskip et al., 2016), despite preliminary indications re-
garding exercise-induced improvements.

Conclusions

Excepting for hereditary predispositions and/or neurotoxicologi-
cal environmental accidents, regular physical exercise that encompass a
sufficient degree of physical effort and energy expenditure will serve as
a proactive, preventional buttress against symptoms and biomarkers for
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any forthcoming PD. Once a PD diagnosis has been assigned, it has been
found to be essential that PD patients invest both intention and endeavor
in maintain, or even increasing, exercise frequency, duration and intensity.
The retroactive, self-destructive step of retreating into a sedentary, apa-
thetic lifestyle presents the most debilitating and self-damaging scenario
that may be contemplated; it should come as no surprise that the ‘inactiv-
ity’ complacence is associated with a myriad of non-motor symptoms to
add to disorder progression.
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son was appreciated.
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