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Abstract
The current paper reviews the different propulsion options which can be used for LNG carriers. A variety of propulsion 

derivatives can be used such as gas and steam turbines, combined cycles, 2 and 4 stroke internal combustion engines, as well as 
liquefaction plants, while encompassing mechanical, electric and Dual Fuel (DF) technology systems. The selection of the suit-
able propulsion system is the major concern of the LNG carrier shipping industry because of the importance of the propulsion 
system for the ship capital and life cycle cost. The propulsion systems implemented have undergone continual alteration in order 
to adjust to market needs, which were always governed by both efficiency and the possibility of consuming Boil-Off Gas (BOG), 
always in compliance with the strict air pollution regulations. The current direction of LNG vessel propulsion systems is the in-
stallation of 2-stroke DF low pressure engines due to their high efficiency and their possibility of installing a BOG re-liquefaction 
plant. Another great advantage of this propulsion system is its compliance with the IMO TIER III emission regulations, without 
the need to install any supplementary gas treatment system.

Keywords: Boil-Off Gas; Dual-Fuel Engine; Electric Propul-
sion; Emission; LNG Carriers; Turbine

Abbreviations
BOG	 :	 Boil Off Gas

CODAG	:	 Combined Diesel Engine and Gas Turbine Pro-
pulsion

COGAG	:	 Combined Cruising Gas Turbine with Booster 
Gas Turbine Propulsion

DO	 :	 Diesel Oil

HFO	 :	 Heavy Fuel Oil

DFDE	 :	 Dual Fuel Diesel Electric Engines

GCU	 :	 Gas Combustion Unit

LNG	 :	 Liquefied Natural Gas

MARPOL:	 Marine Pollution Prevention Convention

NG	 :	 Natural Gas

UST	 :	 Ultra Steam Turbine

Introduction
The trend in power generation of shifting away from coal 

to reduce the adverse effects of CO2 and other gas emissions on 
the environment has made steep demand on the supply of natural 
gas. Because of these developments, natural gas is now the fastest 
growing energy source and in the last five years, the growth rate 
in LNG production has been about 60% with the current annual 
output now touching 260 million tons [1-2]. 

Liquefied Natural Gas (LNG) commerce is under constant 
growth owing to its vast demand worldwide [3-5]. Such demand 
is provided for mainly by maritime transport, which is the main 
stay of bulk material transportation. To meet current demand, the 
number of LNG vessels has increased considerably in recent years, 
both on international markets as well as short-haul sea shipping. 
The design of LNG vessels is determined by the characteristics of 
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the load, since it is transported in a liquefied state at cryogenic con-
ditions of-163°C, and with a pressure slightly above atmospheric 
[6-7]. LNG reduces the gas volume by 600 times and has a density 
of approx. 450 kg/m3. The LNG is always being refrigerated by 
means of its boil-off gas and, therefore, the LNG tanks will nor-
mally not be completely emptied because some of the LNG still 
has to cool down the tanks. The classification of this vessel type 
is carried out according to its design, with the integration of the 
re-liquefaction plant being the main characteristic, given that the 
availability of boil-off to be burned in the systems of power gener-
ation and propulsion depends on this .Technological developments 
implemented on LNG vessel propulsion systems is conditioned 
by factors that are both economic as well as environmental, inter-
linked by the MARPOL Convention, since the restriction of emis-
sions implies the use of higher quality fuels and hence, an increase 
in costs [9].There is no standard propulsion system for LNG ves-
sels [10]. After an exhaustive review of works related to LNG ves-
sel propulsion systems, an extensive variety of systems installed 
on board has been found, ranging from turbines to internal com-
bustion engines with endless variants. There is, however, no work 
that carries out a comparison of all systems installed. Therefore, 
the purpose of this review is to study of LNG vessel propulsion 
systems with environmental comparison, taking into account the 
latest technological developments in this field.

LNG Carriers and Boil-Off Gas
All liquefied gases carried in bulk must be carried on a gas 

carrier in accordance with the Gas Code rules of IMO (International 
Maritime Organization). The gas tankers are constructed according 
to the double-hull concept, including the bottom areas as a protec-
tion against ship grounding incidents. Furthermore, the gas must 
be carried according to the so-called “cargo containment system” 
principle, i.e. the cargo tanks are installed separately in the ship’s 
holds, and are not a part of the ship’s structure. The gas tanks (fully 
refrigerated at atmospheric pressure) used today in LNG carriers 
as shown in (Figure 1). are normally of the spherical (Moss) type, 
introduced in 1971, and membrane type, introduced in 1969, and 
in some few cases of the structural prismatic design. The spherical 
tanks and tanks of the structural prismatic design are self-support-
ing and are tied to the main hull structure. The tanks with the mem-
brane wall system are rectangular and fully integrated into the hull 
and rely on the strength of the ship’s hull. The membrane system is 
based on a very thin primary steel barrier (0.7-1.5 mm membrane 
of stainless steel alloy) supported through the insulation [11]. Such 
tanks, therefore, are not self-supporting, but only a relatively small 
amount of steel has to be cooled. Heat transfer to the LNG from the 
environment through insulated spaces and holding tanks results in 
the boiling of the load, with the consequent formation of steam, re-
ferred to as Boil-Off Gas (BOG). The greatest production of BOG 
is generated during cargo transportation [12-15].

Figure 1: Examples of Equal-Sized Membrane and Spherical LNG Carriers.
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The application of natural gas in marine engines depends 
on its properties. Natural gas is lighter than air, and in the event 
of leakage it disperses upwards to the atmosphere. Evaporating 
Liquefied Natural Gas (LNG) floats away, in contrast to other liq-
uid fuel vapors, which linger near the engine and the bilge. The 
flammability of LNG is only possible within a tight mixture with 
air ranging (5%:15 %). The properties of NG and conventional 
marine fuel oil are summarized in (Table 1) [15-17].

Property Marine Fuel Oil Natural gas

Ignition temperature,°C 250 600 

Density, kg/m3@ 1 bar 850 0.74

Lower calorific value, MJ/kg 42 50 

Carbon contents (%) 84.7 70 

Hydrogen contents (%) 12 42 

Table 1: Comparison between LNG and Marine Fuel Oil Properties.

Propulsion Options for LNG Carriers
The propulsion system for LNG vessels is closely related 

with the generation and consumption of the cargo boil-off One 
way of classifying LNG vessel propulsion systems is according to 
the purpose appointed for the BOG produced in the cargo spaces. 
Both the fuels used as well as the emissions regulations are factors 
that influence the direction of LNG vessel propulsion system [18]. 
Another propulsion system classification is based on the fuel to be 
used allowing the possibility of selecting the propulsion system 
based on future lines of development. Steam Turbine (ST) based 
propulsion has been the main system implemented on LNG ves-
sels since 1960, as this system allows the simultaneous burning in 
boilers of heavy fuel-oil together with the BOG generated during 
transportation, which in turn feed the propulsion turbines and elec-
tric turbo generators. Since 2003, LNG vessel propulsion systems 
have been at a turning point. STs are being replaced by internal 
combustion engines due to improvements in the efficiency of the 
latter and because, as above mentioned, these permit the burning 
of both heavy fuel oil as well as BOG from the cargo [19]. In ad-
dition, the Dual Fuel Diesel Electric Engine (DFDE) is one of the 
promising propulsion systems for LNG carriers. The DF engine 
adopted the lean-burn concept from the Otto-cycle, and a small 
amount of diesel as the pilot fuel, approximately 1 to 8%, which is 
used for ignition in the combustion chamber in its operation with 
gas as fuel (gas mode). DFDE engines developed around the year 
2003 are 4- stroke (4S). At present, however, owing to technologi-
cal advances which enable the use of NG in 2 - stroke engines (2S), 
a new change in propulsion systems to be implemented on LNG 
vessels is occurring to follow, a description of the main LNG ves-
sel propulsion systems is discussed.

Steam Turbine Propulsion

Steam turbine has been the main propulsion system for LNG 
ships from very early days of gas transportation by sea primarily 
because of the ease with which the natural BOG can be burned 
in the boilers. A suitable marine steam power plant employs two 
boilers each of around 80-90 tons per hour steaming capacity at 
60-70 bar pressure and 520ºC super heat steam temperature [20]. 
Propulsion system will comprise of a high pressure, an intermedi-
ate pressure and a low pressure turbine with total power output of 
35-45 MW. The low pressure turbine also carries an astern turbine 
on the same rotor shaft for speed reversal. The auxiliary electrical 
power of about 10 MW will be provided by two steam turbines 
generators and one medium speed diesel generator of 3 MW power 
ratings. Overall thermal efficiency of a typical 30 MW convention-
al marine steam power plant, Mitsubishi, used for propulsion of 
157000 m3 LNG tanker has been estimated to 35% [21]. Now the 
improved versions of these steam plants designed on UST technol-
ogy are able to offer nearly 15% fuel saving which amounts to an 
increase in the overall fuel efficiency to about 41% and is thus 
comparable to the fuel consumption of DFDE [22].

In order to enhance plant efficiency of steam turbine propul-
sion system, the newly developed concept has been introduced in 
the market, so called as Ultra Steam Turbine as shown in (Figure 
2). Comparing with the existing steam system, the reheating cycle 
was added to improve thermodynamic efficiency and the intermedi-
ate pressure turbine section is incorporated in addition to HP (High 
Pressure) and LP (Low Pressure) turbines. It is expected that this 
development will enhance the efficiency of steam ship by about 
15%, but still lower than other solutions with diesel engines [23].

Figure 2: Ultra Steam Turbine System Propulsion System.
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 Dual Fuel Four Stroke Diesel Engines (DFDE)

In the early stage of LNG transportation diesel engines lost to 
steam turbines mainly because they could not handle natural BOG 
from the cargo tanks. But now the new diesel engines particularly 
the 4-stroke medium speed design can alternatively burn both liq-
uid as well as gas fuels and because of that they have been con-
sidered potential alternative to less fuel-efficient steam turbines. A 
look at the new orders of LNG ships shows a good number of these 
contracts have been signed with 4 stroke medium speed diesel en-
gines as prime mover in electrical propulsion modes. In gas mode 
when BOG is the fuel the engine operates with lean air/fuel ratio on 
the principle of Otto cycle with a small amount of diesel oil injec-
tion in the combustion chamber as pilot fuel for ignition. However, 
when the BOG is insufficient then the engine is operated on liquid 
fuel such as Diesel Oil (DO) or Heavy Fuel Oil (HFO). In this situ-

ation the BOG has to be disposed of by burning in the GCU with 
consequent penalty on energy loss. Therefore, loss of BOG togeth-
er with losses in associated electrical components of the propul-
sion system (6-8%) must be taken into account while comparing 
DFDE with its competitors. In the DFDE design, as shown in (Fig-
ure 3), because electrical power for propulsion and cargo handling 
are in different operating time phase the net power requirement of 
the ship is considerably reduced unlike in other mechanical cou-
pled propulsion systems which is a distinct advantage. However, 
the loss from BOG disposal during liquid fuel mode of operation 
will more than offset this advantage. Another serious shortcom-
ing of DFDE is the high risk of detonation and misfiring as load 
increases. The DFDE have very narrow range of air/fuel ratio for 
detonation free operation which calls for a complex control system 
as each cylinder requires dedicated air to fuel ratio controller [24].

Figure 3: Dual Fuel Four Stroke Diesel Engines Propulsion Option.

Slow Speed Diesel Engines

It is another majority in propulsion systems for LNG carriers now-
adays, especially for the LNG carriers of very large capacity and 
the long-distance trading vessels, which are the factors coming si-
multaneously in general. It has been a little controversial which 
one is more efficient system between DF diesel electric propulsion 
system and this conventional slow diesel application, which have 
been main trends of LNG carrier propulsion recently. Usually the 
designers carry out economic evaluation on their own, but the final 

conclusion is on the operators who evaluate operation cost on the 
basis of their input data about values of fuel oil, LNG cargo, natu-
ral BOG and forced BOG, initial investment, maintenance cost, 
etc. under the given trading & operating profile. This propulsion 
system is identical to those used in most of the merchant ships. 
2- Stroke diesel engine is installed on the tank top in engine room 
and a shaft line is directly coupled to the engine for propulsion. No 
doubt this is the most efficient ship propulsion machinery at the 
moment in marine field. 4- Stroke diesel auxiliary generators are 
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provided for electric power supply. Sometimes shaft disconnecting 
devices are provided for each shaft line in case of twin skew ves-
sels, in order to disconnect the failed engine from propulsion shaft 
line as soon as possible and keep on voyage [25-26]. 

Two strokes slow speed engines were used as the main propul-
sion system in merchant shipping because of its low maintenance 
costs, high efficiency and the option of burning low-quality fuels. 
This system is used on LNG carriers of over 200,000 m3 on long 
distance crossings but with the peculiarity of integrating a re-liq-
uefaction plant and a Gas Combustion Unit (GCU), as shown in 
(Figure 4). The re-liquefaction plant has the task of re-liquefying 
the BOG generated in cargo tanks and returning it to into a liquid 
state inside, avoiding any wastage of the LNG being transported. 
On the other hand, the Gas Combustion Unit (GCU) is designed to 
burn the BOG generated which, if there were a breakdown in the 
re-liquefaction plant, would be impossible to treat, avoiding the 
pressure increase in the tanks and could cause great damage.

Figure 4: Propulsion System using 2- Stroke Diesel Engines and Re-
Liquefaction Plant.

Gas Turbines in Combined Cycle

Gas turbines despite their many good features such as com-
pact size, light weight, excellent reliability, and high power to 
weight ratio and quick response to sudden power demand have 
not found favors with ship owners mainly because of low fuel 
efficiency. In marine field, gas turbines have found applications 
mostly in naval ships propulsion and to some extent in offshore 
industry. In naval applications the gas turbines are used in either 
Combined Diesel or Gas Turbine (CODOG) or Combined Cruis-
ing Gas Turbine with Booster Gas Turbine (COGAG) configura-

tions in which the base cruising power is provided by a low pow-
ered diesel engine or gas turbine. The high-power demand for the 
short sprint combat action comes from the large power gas turbine 
which makes overall power plant operation reasonably fuel ef-
ficient but still less economical. However, gas turbines in land-
based application have been used in combined cycle with steam 
turbines and achieved very favorable fuel efficiency often superior 
to all other prime movers [26-27] (Figure 5). illustrates a power 
driven combined cycle arrangement. The system comprises a GT 
of around 36 MW which is responsible for supplying the required 
torque through a reducer, to rotate the ship’s propeller. The exhaust 
gases generated in the GT are sent to the recovery boiler where 
they provide the heat input required to generate steam that is sent 
to a turbine of around 10 MW, coupled to a generator that sup-
plies power to the vessel during navigation. The plant also includes 
three auxiliary generators with a combined capacity of between 6 
and 12 MW used for power generation at port, when both turbines 
are stopped [28].

Figure 5: Combined Gases and Steam Propulsion System for LNG Car-
riers.

 Environmental Comparative Study
Fuel efficiency is the most significant performance index of 

a propulsion system as it not only affects the operating cost of the 
ship but also hugely contributes to gas emissions. Steam power 
plants have lower fuel efficiency in comparison to internal com-
bustion engines but recent developments in UST technology with 
increased pressure and temperature followed by steam re-heating 
the fuel efficiency of marine steam plants has been raised almost to 
the level of marine diesel engines. Similarly, operating gas turbines 
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in combined cycle with a steam turbine gives much improved fuel 
efficiency often higher than conventional diesel engines. Fuel ef-
ficiency of a typical conventional steam turbine propulsion plant 
of a 157000 m3 LNG tanker has been calculated from the heat bal-
ance data obtained during sea trials. The estimated fuel efficiency 
of this plant works out to 35% and if additional 15% fuel saving 
from UST design is also taken into account then the overall fuel 
efficiency of steam plant comes to 42% which is very close to the 
DFDE. Fuel efficiency of different propulsion options is shown in 
(Table 2) [29-30].

LNG propulsion option Thermal ef-
ficiency

Specific fuel con-
sumption (g/kWhr)

Steam turbine 35% 286

Ultra-Steam Turbine 41% 243

2-stroke diesel engines 
and re-liquefaction plant 40% 230

Dual Fuel four Stroke 
Diesel Engines 42% 243

Gas Turbines in Com-
bined Cycle 50% 245

Table 2: Comparison between Thermal Efficiency of Different LNG Pro-
pulsion Options.

On the other hand, gas emission is now a major environmen-
tal concern because of its impact on global warming and to address 
the issue, strict time bound emission control levels for ships have 
been imposed by the IMO through appropriate MARPOL regu-

lations. Because of MARPOL restrictions gas emission will con-
stitute a major parameter of comparison for alternate propulsion 
systems. It is therefore important to understand the chemistry of 
gas emissions and their Cost-Sulphur essentially enters fuel in the 
refinery with crude oil and converts into SO2 or higher oxides when 
burns in combustion chamber. Since Sulphur is present in fuel as 
impurity nothing can be really done in the combustion chamber to 
minimize its emission and the only option to prevent excess SO2 
release is to limit Sulphur content in the fuel [31]. 

In order to calculate exhaust gas emissions from ships, Emis-
sions Factors (EF) were developed by third GHG study 2014 [32]. 
This can be used directly with Specific Fuel Consumption (SFC) 
for emission calculations as expressed in Equation (1). For exam-
ple, the baseline or reference CO2 emission values for the different 
fuel types used in marine engines can be expressed as in Equations 
(2, 3, 4). In addition, (Table 3). shows CO2 emissions factor for all 
the different fuels which can be used in the marine field [33].

          (1)

            (2)

              (3)

              (4)

Type of fuel Reference Carbon 
Content 

CF 
(t-CO2/t-Fuel) 

1. Diesel/Gas oil ISO 8217 Grades DMX through DMB 0.8744 3.206

2. Light Fuel Oil (LFO) ISO 8217 Grades RMA through RMD 0.8594 3.151

3. Heavy Fuel Oil (HFO) ISO 8217 Grades RME through RMK 0.8493 3.114

4. Liquefied Petroleum Gas Propane/Butane 0.8182 / 0.8264 3.000 / 3.030

5. Liquefied Natural Gas (LNG) 0.7500 2.750

6. Methanol 0.3750 1.375

7. Ethanol 0.5217 1.913

Table 3: CO2 Emission Factors for Different Types of Fuels.

Due to the trend of environmental-friendly design and the 
regulations that limit emissions worldwide, it becomes an impor-
tant factor to be considered during ship design. Use of boil-off gas 
as a fuel is a big advantage to reduce emissions from ships and 

the additional equipment’s for flue gas treatment could be con-
sidered case by case upon the selected propulsion system and the 
applicable regulations. Please refer to the comparison of emissions 
between some of the alternatives as shown in (Table 4) [34-38].
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Marine power 
plant

NOx  (g/
kWh)

SOx (g/
kWh)

CO2 (g/
kWh)

Particulates 
(g/kWh)

2-stroke marine 
diesel engine 17 12.9 5.5 0.5

4-stroke marine 
diesel engine 12 13.6 6.16 0.4

Dual fuel diesel 
electric 1.3 0.05 5 0.05

Steam Turbine 1 11 9.3 2.5

Gas turbine 2.5 0 5.9 0.01

Table 4: Emissions from Different LNG Propulsion Power Plants.

Lowering of exhaust gas emissions is obligatory on Emis-
sion Control Areas (ECA) set by the International Maritime Orga-
nization (IMO) according to the International Convention for the 
Prevention of Pollution from Ships (MARPOL) Annex VI require-
ments and in the future worldwide in all sea areas. The levels of 
tier II and tier III may be fulfilled on LNG carriers depending of 
propulsion plant and use of fuel type [39-40].

Conclusions
Selection of the LNG ship propulsion option can be based 

on comprehensive comparison between the available propulsion 
systems. Many more factors play key roles in the selection of pro-
pulsion system for large LNG ships. Based on the current review 
of LNG carrier propulsion systems, it possible to formulate the 
following conclusions:

Steam turbine has been adapted to most LNG carriers because •	
it has been burnt all Boil-Off Gas (BOG) or vaporized gas 
from cargo tanks in boilers as a fuel without the re-liquefac-
tion plant. Its reliability is high because both BOG and Heavy 
Fuel Oil (HFO) are combustible as fuel for main boilers.

 In the dual fuel diesel engine, the dual fuel burning of BOG •	
and HFO is possible and fuel efficiency is better but the high-
pressure injection is required when the BOG is introduced 
to the engine. There is also a disadvantage of needed MDO 
fuel for pilot burning. Flexibility is inferior because exclusive 
BOG combustion is impossible and moreover in the diesel 
engine a large quantity of NOx is discharged due to the high 
combustion temperature. 

In the diesel engine with re-liquefaction plant, the propulsion •	
engine and BOG handling are perfectly separated. In this case 
more emissions are discharged due to the HFO fired diesel 
engine. 

In the gas combined cycle, the BOG is fired in the gas turbine. •	
The steam turbine is driven by steam generated by the exhaust 

gas energy from gas turbine. There is needed a high-quality 
fuel MDO or MGO (expensive fuels) so the emission is low-
ering and is like the same from the steam turbine plant. This 
system is a proposition with an electric propulsion plant for 
the largest LNG carriers.
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