&

GAVIN PUBLISHERS

Archives of Natural and Medicinal Chemistry

Amin RP, et al. Arch Nat Med Chem ANMC-119.

Research Article DOI: 10.29011/ANMC-119.000019

Effects of Usnic Acid on Hyperglycemia and Renal Function in
Streptozotocin-Induced Diabetic Rats

Ripal P Amin, Sanket Niranjanbhai Patel, Sunil Kumar, William S. Zito, Michael A. Barletta®

Department of Pharmaceutical Sciences, St. John’s University, USA

“Corresponding author: Michael A Barletta, Department of Pharmaceutical Sciences, St. John’s University, USA. Tel: +1-7189906284;
Fax: +1-7189905763; Email: barlettm@stjohns.edu

Citation: Amin RP, Patel SN, Kumar S, Zito WS, Barletta MA (2018) Effects of Usnic Acid on Hyperglycemia and Renal Function
in Streptozotocin-Induced Diabetic Rats. Arch Nat Med Chem ANMC-119. DOI: 10.29011/ANMC-119.000019

Received Date: 9 September, 2018; Accepted Date: 3 October, 2018; Published Date: 12 October, 2018

[Abstract

~

Background: Diabetic hyperglycemia and glomerular hyper filtration play a causative role in the progression of chronic kidney
disease. Renal glucose handling via Sodium-Glucose Cotransporter (SGLT)-2 is a targetable approach and SGLT-2 inhibitors
have proven therapeutic benefits in diabetic kidney disease. Usnic Acid (UA) is an active constituent of lichen species and symbi-
otic organism of algae and fungi, which is variously studied in folk medicine. The objective of this study was to demonstrate the
beneficial effects of UA on glucose homeostasis and renal function in streptozotocin-induced diabetic Sprague-Dawley rats and
to determine whether UA has an effect on regulation of SGLT that may further aid in glucoregulation and renal function.

Methods: Type 1 diabetes was induced in Sprague-Dawley rats with Streptozotocin (STZ, 60mg/kg) by intraperitoneal route on
day 0. Diabetic rats were treated with UA (75 mg/kg) from day 15 to 35 via oral gavage. On day 35, urine was collected and Oral
Glucose Tolerance Test (OGTT) was performed. After OGTT, blood was collected through cardiac puncture and kidneys were
preserved for biochemical analysis. The results are expressed as mean + standard error of the mean for n=8 rats per study group.
The data were subjected to 1-way or 2-way ANOVA with Bonferroni’s multiple comparison post hoc test using Graph Pad Prism
5 and were considered significant at p<0.05.

Results: Diabetic rats chronically treated with UA had improved hyperphagia, hyperglycemia and glucose intolerance, glomeru-
lar hyper filtration, and urinary protein excretion (p<0.05). However, UA did not prevent loss of circulating insulin in diabetic
rats. UA’s blood glucose lowering effect was associated with enhanced diuretic-glucosuric response and decreased protein ex-
pression of renal SGLT-1 (p<0.05). While protein expression of SGLT-2 was partially increased in the diabetic kidney and it was
not decreased by UA. Metabolic corrections with UA treatment occurred in parallel with reductions in uremia and improvement
of renal function indices. Additionally, in diabetic rat kidney, UA treatment corrected oxidative changes.

Conclusions: Based on preliminary findings we conclude that chronic treatment of UA may act in an insulin-independent manner
in lowering of diabetic hyperglycemia and improvement of renal function. )

Keywords: Glucosuria; Hyperglycemia; Renal Function;
Sodium-Glucose Cotransporter; Usnic Acid

Introduction

Diabetic hyperglycemia and its renal and cardiovascular
complications contribute significantly to mortality and healthcare
cost [1-4]. Hyperglycemia has been shown to promote glomerular
hyper filtration [5], a phenomenon in diabetes/obesity that serves
as an early predictor of chronic kidney diseases [6-8]. The concept
of glomerular hyper filtration as a targetable mechanism to control
kidney diseases is very old [9]. Nonetheless, hyper filtration is an

incompletely and poorly understood process defined as an elevated
baseline glomerular filtration rate. It may contribute to uremic
toxicity, oxidative stress, inflammation and hypertension that over
time results in kidney diseases. Control of hyperglycemia has been
shown to significantly lower the incidence of kidney diseases.
Therefore, any approach to lower hyperglycemia or hyper filtration
will be beneficial.

The importance of renal glucose handling has been
documented for many years. Complete reabsorption of filtered
glucose by renal proximal tubule cells via luminal SGLT-2 and
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SGLT-1 is of greater significance and recently became targetable
tool in diabetes. SGLT-2 (low affinity and high capacity, 90-97%)
and SGLT-1 (high affinity and low capacity, 3-10%) transporters are
located in renal proximal tubule. Active reabsorption of glucose via
SGLT isoforms is driven by an electrochemical gradient created by
basolateral Na'-K'-ATPase where Glucose Transporter (GLUT)-2
facilitates passive transport of glucose back to venous circulation
in favor of a glucose gradient. When renal glucose reabsorption
is saturated, extra glucose spills in urine, i.e. glucosuria ensues.
The intensity of glucosuria depends on glomerular filtration, blood
glucose and renal transport capacity.

Lichens are symbiotic organisms formed by fungi and
algae. Usnic Acid (UA) is one of the most extensively studied,
widely distributed and variously utilized dibenzofuran metabolites
of lichens. Multiple evidences have shown that lichen species
containing one or both, the (+) and (-) enantiomers, of UA
exhibit anti-cancer [10,11] and growth inhibitory actions against
several microorganisms [12,13] and plant pathogens [14]. While,
Okuyama, et al. [15] showed analgesic and anti-inflammatory
properties of lichen components-UA and diffractaic acid in mice,
Vijayakumar and colleagues [16] showed acute and chronic anti-
inflammatory activity of (+) UA in Wistar rats. Administration of
UA also has shown anti-ulcerogenic and anti-oxidative effects in
rats [17]. UA containing lichen species have also been used in the
treatment of tuberculosis [18] and even in folk medicine [19-21].
These effects have not been attributed to UA, yet. On the other
hand, high dose of UA has been reported to cause oxidative hepatic
injury [22,23] and uncommon adverse reactions [24-26]. As UA
have shown anti-inflammatory, and anti-oxidative properties,
we were interested to evaluate its beneficial effects in diabetes.
In preliminary results, UA showed inhibition of SGLT in porcine
derived proximal tubule cell line LLC-PK, (IC,, = 29 uM). To
allow further therapeutic applications of UA, the present study
was focused primarily to demonstrate the beneficial effects of
UA on glucose homeostasis and renal function in streptozotocin-
induced diabetic Sprague-Dawley rats and to determine whether
UA has an effect on regulation of SGLT that may further aid in
glucoregulation and renal function.

Material and Methods

Animal Treatment

Male Sprague-Dawley rats were obtained from Taconic
Farms, Germantown, NY and were kept in a room maintained
at a temperature of 23+1°C and in a 12hr light/dark cycle. All
experimental groups were maintained on laboratory rodent diet
(LabDiet® 5001, PMI Nutrition International, Brentwood, MO)
and drinking water ad libitum. Animals were randomly divided
into four groups (n=8 per group): normal rats treated with 10 mM

citrate buffer (control, i.p.), pH 4.5; untreated diabetic rats (STZ);
diabetic rats treated with UA (STZ+UA; 75 mg/kg/day, oral gavage,
days 15-35, once daily). The dose of UA was selected based on
earlier reports [15-17,23,27,28]. Experimental type 1 diabetes
was induced by a single administration of STZ (60 mg/kg, i.p.)
dissolved in citrate buffer (10 mM, pH 4.5) on day 0. STZ solution
was freshly prepared each time. After 72 hrs of STZ administration,
the non-fasting blood glucose concentration was determined in
all animals on day 0,4,7,10,14,21,28 and 35, via the tail pricking
method (~1 mm) using a commercially available glucometer
(TRUE track, Nipro Diagnostics, Fort Lauderdale, FL) that utilizes
the glucose oxidase method. On day 21,28 and 35, blood glucose
was monitored at 0,4,8 and 24 hours post UA administration to
determine its effectiveness in lowering of blood glucose. Animals
having blood glucose over 300 mg/dL were considered diabetic and
used for further studies. STZ and UA were purchased from Sigma
Aldrich, San Diego, CA. All animal procedures were performed
in accordance with guidelines established by the United States
Department of Agriculture and were approved by the Institutional
Animal Care and Use Committee of St. John’s University, NY.
Changes in body weight was monitored every week throughout
the study. At the end of study (35 days) urine was collected while
the animals were kept in metabolic cages to evaluate the effect of
UA on excretion of glucose and renal function. On Day 35, Oral
Glucose Tolerance Test (OGTT) was performed on all animals to
evaluate the effect of UA on glucose intolerance. All overnight
fasted animals were received oral challenge with glucose solution
(2g/kg). Blood glucose for OGTT was measured via tail pricking
method (~1 mm) using a commercially available glucometer
before (0 min) and after (15,30,45,60,90,120,240 and 480 min)
glucose challenge. After OGTT, the blood sample was collected
into EDTA-coated tubes through cardiac puncture under isoflurane
anesthesia and animals were euthanized. Blood was processed
for plasma preparation (700g,30 min). The kidneys were excised
by the freeze clamp technique and stored at -80°C. The kidney
homogenate (10%w/v) was prepared in Phosphate Buffered Saline
(PBS), pH 7.4, containing protease and phosphatase inhibitors.

Biochemical Analysis

Plasma insulin content was measured by solid-phase, two-
side, direct sandwich ELISA (Calbiotech Inc., Spring Valley, CA).
The urinary glucose excretion was measured using colorimetric
assay kit (Procedure No. 510, Sigma Chemical Co., St. Louis,
MO) representing a minor modification of the method [29].
Renal expression of sodium-glucose cotransporter (SGLT)-1 and
SGLT-2 was quantified via direct sandwich ELISA (Mybiosource
Inc., San Diego, CA). Urea Nitrogen (UN) and Creatinine (Cr) in
plasma and urine were measured using colorimetric kit (Stanbio
Laboratory, Boerne, TX) to estimate indices of renal function
such as Glomerular Filtration Rate (eGFR), fractional excretion of
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urea nitrogen (FE (%) = 100X (urine urea/plasma urea)/ (urine
creatinine/plasma creatinine)), blood urea nitrogen to creatinine
ratio (BUN-to-Cr) and urine-to-plasma creatinine ratio (UP).
GFR was estimated as described earlier by Pestel [30]. Plasma and
kidney homogenate samples were deproteinized using phosphoric
acid and used for measurement of reduced (GSH) and oxidized
glutathione (GSSG). The concentrations of GSH and GSSG in
kidney and plasma was measured by a fluorometric method that
uses o-phthalaldehyde as a fluorescent reagent [31]. Reduced and
oxidized glutathione values were reported in micromole/mg tissue.
Activities of catalase (CAT), Glutathione Peroxidase (GPx) and
Super Oxide Dismutase (SOD) were determined by the methods
of Aebi [32], Glinzler and Flohé [33] and Misra [34], respectively,
and reported as U/mg protein/min.

Statistical Analysis

The experimental results are expressed as mean + S.E.M.
(standard error of the mean) for n=8 per group. The data were
subjected to 1-way or 2-way ANOVA with Bonferroni’s multiple
comparison post hoc test using Graph Pad Prism 5 and were
considered significant at p<0.05.

Results

Effect of UA on Body Weight, Food Intake, Plasma
Insulin and Blood Glucose

Control rats showed normal body growth (mean: 290+5 g at
day 0 to 368411 g at day 35), while body weight of untreated or
UA-treated diabetic rats remained statistically unchanged during
study (Figure 1A). Similarly, type 1 diabetic rats showed significant
hyperphagic response (STZ: 31.442.2-34.2+1.8 vs. control:
25.341.8-24.442.1 g/rat/day, days 4-35), which was reduced by UA
(24.8+1.6-27.7£1.9 g/rat/day; days 4-35) (Figure 1B). Diabetic rats
also showed typical STZ-induced hypoinsulinemia as compared to
control rats (STZ: 7.5+0.1 vs. control: 15.4+3.4 mU/L). Treatment
with UA did not prevent loss of insulin (Figure 1C). In diabetic
rats, STZ-induced hypoinsulinemia was associated with persistent
hyperglycemia throughout study period (STZ: 360+16-536+18
vs. control: 91£2- 121+6 mg/dL) (Figure 1D). On day 21, i.e.
after one week of treatment, UA was able to control rise in blood
glucose significantly (301£11, 302+10 and 392+50 mg/dL at 4, 8
and 24 hour) which remained similar on day 28 (316+16, 333+13
and 372+37 mg/dL at 4, 8 and 24 hour) and day 35 (300£15, 326+8
and 369+16 mg/dL at 4, 8 and 24 hour).
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Figure 1: Effect on (A) body weight, (B) food consumption, (C) plasma insulin and (D) blood glucose before (days 0-14) and after (day 21, 28 and
35) treatment with Usnic Acid (UA) in Streptozotocin (STZ)-induced diabetic rats. Results are expressed as mean + S.E.M. for n=8 per group. The
results were subjected to 1-way (C) or 2-way (A, B, D) ANOVA with Bonferroni’s multiple comparison post hoc test using Graph Pad Prism 5 and were

considered significant at p<0.05; "vs. control, *vs. STZ.
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Effect of UA on Oral Glucose Tolerance Test

Diabetic rats showed significant glucose intolerance, i.e.
higher blood glucose (554+15-442+18 mg/dL) persisted longer for
480 minute (Figure 2). Whereas normal control rats showed only
modest increases in blood glucose (90+3 -174+13 mg/dL) which
was normalized completely at 90 minute. Glucose intolerance
in diabetic rats was significantly r-educed with UA treatment
(325423-472424 mg/dL).
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Figure 2: Effect of usnic acid on Oral Glucose Tolerance Test (OGTT) in
Streptozotocin (STZ)-induced diabetic rats. On Day 35, overnight fasted
animals were administered with UA or vehicle control 15 min before oral
challenge with glucose solution (2 g/kg). Glucose levels were determined
at 0,15,30,45,60,90,120,240 and 480 minute after oral glucose challenge.
Results are expressed as mean + S.E.M. for n=8 per group. The results
were subjected to 2-way ANOVA with Bonferroni’s multiple comparison
post hoc test using Graph Pad Prism 5 and were considered significant at
p<0.05; *vs. control, "vs. STZ.

Effect of UA on Diuresis and Indices of Renal Function

In comparison to normal control rats, diabetic rats as
expected showed significant diuresis (STZ: 685 vs. control:
15+1 mL/day) which was further increased by UA (81+4 mL/day)
(Figure 3A). Correspondingly, diabetic rats also showed significant
urinary protein excretion (STZ: 3.7+0.4 vs. control: 1.0+0.1 mg/h)
which was reduced with UA treatment (2.8+£0.3 mg/h) (Figure
3B). Untreated diabetic rats exhibited glomerular hyper filtration
as determined by eGFR (STZ: 59.3+6.2 vs. control: 9.7+0.4 uL/
min) which was reduced significantly with UA (41.8+2.8 uL/
min) (Figure 3C). In the same way, index of renal excretory and
reabsorptive capacity FE  (STZ: 240+37 vs. control: 105+6
%) (Figure 3D) and an index of acute kidney injury BUN-to-Cr

ratio (STZ: 95+10 vs. control: 66+4) (Figure 3E) were markedly
increased in diabetic rats which were normalized with UA treatment
(FE_: 85+6; BUN-to-Cr: 61+6). However, UP_, an index of distal
tubular water handling remained statistically unchanged in study
groups (Figure 3F).
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Figure 3: Effects of chronic treatment of usnic acid on (A) urine volume,
(B) urinary protein excretion, (C) estimated glomerular filtration rate
(eGFR), (D) fractional excretion of urea nitrogen (FEUN, %), (E) Blood
Urea Nitrogen-to-Creatinine ratio (BUN-to-Cr) and (F) Urine-to-Plasma
Creatinine ratio (UP_) in Streptozotocin (STZ)-induced diabetic rats.
Results are expressed as mean + S.E.M. for n=8 per group. The results
were subjected to 1-way ANOVA with Bonferroni’s multiple comparison
post hoc test using Graph Pad Prism 5 and were considered significant at
p<0.05; "vs. control, *vs. STZ.

Effect of UA on Glucosuria and Renal Expression of
SGLT-1 and SGLT-2

As expected, normal control rats showed negligible
glucosuria, i.e. urinary excretion of glucose (1.9+£0.2 mg/h) which
was found significantly elevated in diabetic rats (20.3£2.5 mg/h)
(Figure 4A). UA treatment increased glucosuric response further
(32.0+0.8 mg/h) in diabetic rats. However, renal protein expression
of SGLT-2, a predominant isoform responsible for glucosuric
response remained statistically unchanged in study animals
(Figure 4B). On contrary, protein expression of SGLT-1 was found
increased in diabetes (STZ: 3.49+0.35 vs. control: 2.85+0.26 ng/
mg protein) which was reduced with UA treatment (2.48+0.20 ng/
mg protein) (Figure 4C).
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Figure 4: Effects of chronic treatment of usnic acid on (A) urinary excretion of glucose and renal expression of (B) SGLT-2 and (C) SGLT-1 protein
in Streptozotocin (STZ)-induced diabetic rats. Results are expressed as mean+ S.E.M. for n=8 per group. The results were subjected to 1-way ANOVA
with Bonferroni’s multiple comparison post hoc test using Graph Pad Prism 5 and were considered significant at p<0.05; "vs. control, “vs. STZ.

Effect of UA on Indices of Oxidative Stress in Kidney

In general, oxidative stress in untreated diabetic rat kidney was found modestly affected in comparison to normal control rat
kidney. In diabetic kidney, activity of SOD was found increased (STZ: 6.25+0.89 vs. control: 5.13+0.47 U/mg protein/min) which was
reduced with UA treatment (4.65+1.23 U/mg protein/min) (Figure 5A). But activity of CAT was found decreased in diabetic kidney
(STZ: 0.36+0.08 vs. control: 0.53+0.03 U/mg protein/min) and UA treatment prevented decreases in CAT activity (0.53+0.14 U/mg
protein/min) (Figure 5B). Activity of GPx was found increased in diabetic kidney (STZ: 11.3£1.7 vs. control: 7.4+0.4 U/mg protein/
min) which was normalized with UA treatment (6.6+1.1 U/mg protein/min) (Figure 5C). Of physiological merit, the GSH: GSSG ratio
in diabetic kidney was decreased as compared to control (STZ: 0.29+0.02 vs. control: 0.33+0.03) which was again prevented with UA
(0.37+0.04) (Figure 5D).
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Figure 5: Effects of chronic treatment of usnic acid on activities of (A) Superoxide Dismutase (SOD), (B) Catalase (CAT), (C) Glutathione Peroxidase
(GPx) and (D) Reduced Glutathione (GSH)-to-Oxidized Glutathione (GSSG) in kidney of Streptozotocin (STZ)-induced diabetic rats. Results are
expressed as mean + S.E.M. for n=8 per group. The results were subjected to 1-way ANOVA with Bonferroni’s multiple comparison post hoc test using
Graph Pad Prism 5 and were considered significant at p<0.05; "vs. control, “vs. STZ.
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Discussion

Rats treated with STZ showed typical responses of diabetes
such as hyperphagia, hypoinsulinemia, reduced weight gain,
persistent hyperglycemia, severe glucose intolerance and renal
dysfunction. To the best of our knowledge, this preliminary chronic
study is the first to demonstrate the beneficial effects of UA in
STZ-induced rats with hyperglycemia and renal dysfunction. In
this study the glucose lowering effect of UA was not associated
with normalization of circulating insulin. This suggests it may have
a potential role as an insulin-independent co-treatment with insulin
secretagogues or insulin to lower diabetic hyperglycemia at any
stage of diabetes. Such an insulin-independent approach possesses
minimal risk of hypoglycemia with UA treatment. These results
suggest that UA may have improved glucose metabolism since UA-
treated diabetic rats also exhibited reduced glucose intolerance.
It is likely that changes in appetite or energy expenditure with
UA treatment may have occurred over time which contributed to
changes in blood glucose. Although, further studies are needed to
clarify such mechanisms.

Diabetic rats as expected showed a glucuretic response.
Concurrent UA treatment further enhanced this response and
may have added benefits in reducing extracellular volume and
circulating glucose load. Results suggest, this benefit may not
be due to a decreased number of SGLT-2 since renal expression
of this isoform remained unchanged in study animals. Thus, it is
likely that UA may either have reduced the activity of SGLT-2
or modulated the expression and/or activity of GLUT-2. These
require further detailed investigation. Moreover, SGLT-2 inhibition
has been shown to unmask SGLT-1 significantly (~40%) [35]. In
agreement with this notion, untreated diabetic rats showed an
increase in renal SGLT-1 expression that was reduced significantly
by UA. So, it is likely that UA’s glucuretic effects were also due
to a reduced number of renal SGLT-1 isoforms. Vidotti, et al. [36]
also have reported increased renal cortical expression of SGLT-1
protein after long term type 1 diabetes which was normalized with
insulin therapy. In untreated diabetic kidneys, oxidative stress
seemed to favor formation of hydrogen peroxide as activity of
SOD was increased while CAT activity was decreased in our study.
A compensatory detoxification of hydrogen peroxide may have led
to a decrease in GSH: GSSG and increase in GPx activity. Yet, UA
normalized such modest enzymic changes which is in agreement
with past reports [17,20]. Oxidative stress in diabetes has been
associated with increase in renal threshold of glucosuria and
facilitated renal reabsorption of glucose via both SGLT isoforms.
Based on preliminary results, it may be considered that chronic
treatment of UA may have beneficial glucosuric effects that are
partially dependent on its ability to mitigate oxidative changes.

While studying renal regulation of blood glucose it is
importantto determine renal function changes. Although glomerular

hyperfiltration is an early reliable predictor of renal dysfunction,
significant challenges exist for the field of hyperfiltration. A
pathological decline in Glomerular Filtration Rate (GFR) might be
indistinguishable from a ‘beneficial’ resolution of hyperfiltration
over a short follow up. Moreover, renal function varies considerably
when diuresis occurs, e.g. during diabetes. Therefore, analysis of
multiple sensitive and specific indices would satisfactorily predict
progression of renal function. Appearance of protein in urine as a
function of glomerular filtration is a very sensitive marker of renal
function [37]. Diabetic rats treated with UA showed a reduced rate
of protein excretion which suggests UA may have protected the
glomerular leakage of protein. Tubular epithelium is a barrier that
regulates the composition of the glomerular filtrate. Urea Nitrogen
(UN) and Creatinine (Cr) are filtered through the glomerulus.
UN is reabsorbed, while Cr is neither secreted nor reabsorbed
in renal tubules. Thus, Cr clearance does not indicate tubular
function. Also, glomerular filtration of Cr is one of the factors that
determines Cr concentration in serum [38]. Conversely, FE , a
function of urea and Cr clearance with glomerular filtration, is a
sensitive and reliable predictor of renal excretory and reabsorptive
capacity [39,40]. In diabetic rats, hyperfiltration with an increase
in FE  indicates reabsorption uremia. BUN-to-Cr is also used
in conjunction with FE  for gross determination of uremic
abnormalities. Preliminary results suggest that chronic treatment
with UA normalized reabsorption of urea and may have protected
kidney against uremic toxicity in diabetic rats. Likewise, urine-to-
plasma creatinine (UP_) ratio is a measure of urinary concentrating
ability of distal tubules. Usually, increases in FE _ is associated
with a decline in UP_ under severe renal damage. In the present
study, UP_ is partially depressed in untreated and UA-treated
diabetic rats therefore we speculate that diabetes did not affect
distal tubules. Additionally, histological analysis would support
our finding and we do agree that absence of histological result is a
severe limitation of our study.

Conclusions

Preliminary results of our chronic study show that UA may act
in an insulin-independent manner to lower diabetic hyperglycemia
[41] as well as may protect kidney against uremic abnormalities
[42]. Based on results, it may appear that UA-mediated lowering
of glucose is not sufficient to meet daily anti-hyperglycemic target,
but this does not rule out the possible beneficial actions of UA
in diabetic kidney diseases. Adjunct therapy of UA with insulin
secretagogues or insulin may provide greater benefits, however
further studies are needed to confirm the glucoregulatory and
renoprotective mechanism(s) of UA in diabetes [43].
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